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Abstract. The structure and the hamiltonicity of vertex-transitive graphs of order gp, where q and p are
distinct primes, are studied. It is proved that if ¢ < p and p # 1 (mod ¢) and G is a vertex-transitive graph of
order gp such that AwG contains an imprimitive subgroup, then either G is a circulant or V(G) partitions
into p subsets of cardinality ¢ such that there exists a perfect matching between any two of them. Partial

results are obtained for p = 1 (mod ¢). Moreover, it is proved that every connected vertex-transitive graph of
order 3p is hamiltonian.

1. INTRODUCTION

All the groups and graphs considered in this paper are finite. For the group-theoretic con-
cepts not defined here, we refer the reader to [26). A transitive permutation group is called
(m ,n )-imprimitive if it has a complete block system consisting of m blocks of cardinality »,
where m,n 3 2. Such a block system will be called a complete (m 1 )-block system or a com-
plete n-block system. We shall assume familiarity with basic graph theory terminology. An -
graph is a graph with n vertices. In this paper, ¢ and p will always denote distinct primes.

There has recently been a growing interest in the study of vertex-transitive graphs and the
subclass of Cayley graphs. Most of this has been motivated by the intriguing conjecture made
by Lovisz in 1969 [13, p. 497) that every connected vertex-transitive graph has a hamiltonian
path. This conjecture has been verified for graphs of order p, 2p, p2, p*, and 2p? (in which case
the graph has a hamiltonian cycle unless it is the Petersen graph), 4p and 5p (see [1, 16, 17, 18,
19]). Other specific propertics of vertex-transitive and Cayley graphs have also been studicd,
such as connectivity [8, 24, 25) and 1-factorizability [22). Furthermore, considering a restricted
class of vertex-transitive graphs of valency p, Lorimer [11, 12] obtained some substantial results
about their automorphism groups. Of course, a graph-theoretic characterization of the entire

class of vertex-transitive graphs is presently beyond us. However, since every group of order
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p", k g3, is of a fairly simple structure, the fact that every vertex-transitive p"-graph, kg3, isa
Cayley graph [18] gives us considerable information about the structure of these graphs.

If we call an n-graph G having an automorphism whose sole orbit is V(G ) an n -circulant,
then, of course, a p-graph is vertex-transitive if and only if it is a p -circulant. (This result was
first observed by Turner [23], who gave an algebraic description of n-circulants.) An extension
of this idea is the concept of a metacirculant introduced by Alspach and Parsons [2). To
rephrase their definition, an n-graph G is called a (k,m)-metacirculans if n =km and AwG
contains a transitive subgroup that is a semidirect product of a cyclic group of order m by
another cyclic group (whose order is necessarily a multiple of k). (A finite group I is a semi-
direct product of a group A by a group B if A «T, B <I',ANB =1, and AB =T.) We shall
also say that G is an n-meacirculant or a metacirculant. Alspach and Parsons [2, 3] studied
various properties of metacirculants and gave an algebraic characterization for these graphs. In
[4), Alspach and Sutcliffe conjectured that every vertex-transitive 2p-graph is a 2p)
metacirculant. This conjecture was proved by the author [14)] for graphs whose automorphism
groups contain an imprimitive subgroup. On the other hand, using the classification of simple
groups, one can deduce that no simple primitive groups of degree 2p exist when p > 5 (see [10,
p- 239]). This implies that the above conjecture is true in general. However, it would be
worthwhile to try to find a more self-contained proof of this fact.

In this paper, we study vertex-transitive gp-graphs, where g p >2. A vertex-transitive
graph is called (m,n)-imprimitive, where m ,n 22, if its automorphism group contains an
(m ,n)-imprimitive subgroup and is called primitive if its automorphism group contains no
imprimitive subgroup. In view of the above definitions, one easily sees that every vertex-
transitive gp-graph is either (g p )-imprimitive or (p ¢ )-imprimitive or primitive. (We remark
that the classes of (g p)-imprimitive and (p ¢ )-imprimitive graphs overlap—in fact, they both
contain gp -circulants. Moreover, a (p,2)-imprimitive graph is necessarily (2,p )-imprimitive—
see [14].) We know that the class of primitive gp -graphs is not empty as it contains, for exam-
ple, the odd graph O, and its complement [15]. In a recent paper Liebeck and Saxl [10] have

described all primitive groups of degree gp where ¢ and p are distinct primes. Their result may
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prove useful in studying primitive gp -graphs. In this paper we shall devote our attention to the
two subclasses of imprimitive graphs, investigating their hamiltonicity and studying their rela-
tionship to the metacirculants. The main results are proved in Sections 3, 4 and 5. Proposition
3.3 states that, for ¢ <p, the classes of (g » )-metacirculants and (q »)-imprimitive graphs
coincide, whereas Theorems 3.4 and 3.5 deal with the properties of imprimitive gp -graphs
which are not metacirculants. We shall also give examples of such graphs. Moreover, we prove
that connected (¢ .p )-imprimitive graphs, where ¢ <p, and connected vertex-transitive 3p-

graphs are hamiltonian (Theorems 4.4 and 5.6).

2. PRELIMINARIES

We start by defining a number of new concepts and then go on to prove a few lemmas that
will be needed to obtain our main results.

Let V be a finite set, W cV, and T be a permutation group on V. We let
Ty={ye:¥W)=W) and we let V(I) denote the set of orbits of I If aeT, let
V(a) = V({a)). We say that o is (m,n y-semiregular if it has m orbits of cardinality » > 2 and no
other orbits. By [a], we denote the subgroup of all permutations T in [ such that 1(X) € V(o)
whenever X & V(o). Suppose that I' is imprimitive, with a complete block system
B={B,, By, ..., By}. Then, '-y' will denote the permutation on B induced by Yye T’ (that means
Y:B; —y(B;) foreachi € (1,2,..., k)). By [26, Proposition 7.2}, T, the set of a]l-'f(ye I),is
a transitive permutation group on B, and the mapping Y —)‘-Y- is 2 homomorphism of I onto T.

IfGisagraphand X,Y cV(G),letX O Y denote the set of edges of G having one end-
vertex in X and the other end-vertex in Y and let G{X,Y] denote the subgraph of G whose
vertex-set is X UY and whose edge-set is X OY. If V is a partition of V(G), then the factor
graph G of G with respect to V has the vertex set Vand X,Y e V are adjacent if and only if

X OY contains some, but not all, of the unordered pairs [x.y], x € X,ye?Y. LetQ cE(G)
be an orbit of a subgroup I' of AurG , where we consider the action of I induced on E(G). We

let G(Q) denote the graph induced by Q. Clearly, if I is a transitive subgroup of AwtG, then

G(Q) is vertex-transitive.
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We let Z, and Z, denote the ring of residue classes of integers mod n and its group of

units, respectively.

LEMMA 2.1, Let 2 gm <p, where p is an odd prime, G be a (p /m)-imprimitive graph,
and B be a complete (p sm)-block system of I' S AwrG . Then there exist vertices X1, . . ., X,, of
G belonging to different orbits of some (mp)-semiregular element o of I' such that

B=(B;:i € Z,}where B; = (o (x,): r =1,..., m} foreachi € Z,.

Proof. The group I has an element a of order p. Clearly @ has order 1 or p but @ cannot
be the identity on B since this would imply every orbit of « has cardinality at most m. Thus, &
has order p which implies every orbit of o has cardinality a multiple of p and must intersect
each block of B. But since a has order p, each orbit of o has cardinality p and thus, if
Bg={x),...,xy), each x; belongs to a different orbit and B; = {ai(x,): r =1,...,m} for each

zEZP.I

LEMMA 2.2. Let ¢ be an odd prime. If (W, W) is a bipartition of an edge-transitive
graph G of order 2¢ and some automorphism of G interchanges W and W’ and ¢ divides
|E(G)|, then G is regular.

Proof. Suppose that G is not regular. Then (since G is edge-transitive), there are distinct
k,m such that each edge of G joins a -valent to an m-valent vertex. For i =k,m,let W;, W;’
be the sets of i -valent vertices in W,W*, respectively. Since G has an automorphism that inter-
changes W and W, it follows that

IW; | = |W,’| fori =km. )

Then, (1) implies that, for i =k,m, the sets W;,W;" are nonempty proper subscts of W, W,

respectively. Clearly
[EG)l =W, OW,’| + W, aw,’|.

Counting the number of edges in W, OW,,"and W,, OW,’ in two different ways, we obtain (in

view of (1))
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2%|Wy| = |EG)| =2m|Wp|. @

Since |W| =g¢ is an odd prime and divides |E(G)| and @ cW,, W, cW, it follows from (2)

that ¢ divides both k and m, which is clearly impossible. B

LEMMA 2.3. Let B be a complete p-block system of a transitive permutation group I on

V,letA=Ker(' = 1), and let B € B. Then either B € V(A) or A fixes each pointin B.

Proof. Let ye I'g. Then, ¥'8y(B") = Y'y(B’) =B’ for each 8 & A and B’ € B. There-
fore, Y'Ay=A, ie., A < Tp. It follows that the orbits of A are blocks of I's. In particular, since

|B| =p, a prime, it follows that either B € V(A) or A fixes each pointinB. W

The importance of metacirculants in the study of vertex-transitive graphs was suggested in
the introduction. The following proposition summarizes some of the properties of gp-

metacirculants that can be deduced from various results proved in [2].

PROPOSITION 2.4. Letp and g be distinct primes.
() If p £1(mod q), then a (¢ p)-metacirculant is a circulant. In particular, if p <g, then a
(q » )-metacirculant is a circulant.
(ii) If p #1(mod q?), then a (¢ p)-metacirculant is a Cayley graph. If p = 1(mod q?), then there
exist non-Cayley (¢ p )-metacirculants. W
Let T be a transitive permutation group on a finite set V. The following three group-
theoretic results will be used in the proofs of Theorems 3.4 and 3.5.
PROPOSITION 2.5 ([26], Theorem 5.1). f T’ is a Frobenius group, the elements of I of
degree | V| together with 1 form a regular normal subgroup of I'. M
PROPOSITION 2.6 ([26), Theorem 11.6). Let [V} be a prime. Then T is solvable if and
onlyif I, "I, =1forv#w. B
PROPOSITION 2.7 ([26], Theorem 11.7). If | V] is a prime and I"is nonsolvable, then I is

2-transitiveon V. W

101



3. IMPRIMITIVE gp-GRAPHS

We start the discus;ion of imprimitive gp -graphs with two simple observations on these
graphs and their factor graphs.

LEMMA 3.1. Letp and ¢ be distinct primes. Let G be a (g ,p )-imprimitive graph and B
be a complete (¢ p)-block system of I' SAwG such that G /B is totally disconnected. Then G

is a circulant.

Proof. Let B e B. There exists Ye T cyclically permuting the blocks in B. Let
Bi={@B)( e Z;). The definition of the factor graph G /B then implies the existence of a sym-
metric (stable under multiplication by —1) subset of Zq such that G [B,-,Bj] =KP pifj-ies
and G[B;,B ] is totally disconnected otherwise. Let H be the p-circulant induced by the block
B and let X be the g -circulant with the symbol S. It is easily seen that G is isomorphic to the
lexicographic product K[H] of K by H. Therefore AutG contains a transitive cyclic group of

order gp and so G is a circulant. B

LEMMA 3.2. Let p and ¢ be distinct primes. Let an imprimitive gp-graph G have a
(¢ .p )-semiregular automorphism o such that [¢] is transitive and G /V(ox) is connected. Then G
is a (¢ p )-metacirculant.

Proof. Since [o] is transitive and V()| = ¢, a prime, there exists ye [a), which cycli-
cally permutes the orbits of a. The connectedness of G/V(c) implies that {@) is a Sylow p-
subgroup of (a,y). Let A be the subgroup of (a,y) fixing each orbit of . Since Y™{(a)y < A, there
exists 8 € A such that Y(e)y = 5 e)8. Let =8y, Then (o,1) is a semidirect product of (o)
by (%) and a transitive subgroup of AutG . Therefore, G is a (7 ,p )-metacirculant.

Henceforth we shall assume that ¢ <p. The following result characterizes (qp)-
imprimitive graphs.

PROPOSITION 3.3. If ¢ < p are primes, then the classes of (9 » )-imprimitive graphs and

(9 .p )-metacirculants coincide.

Proof. Clearly, a (g p)-metacirculant is necessarily (¢ p )-imprimitive. Conversely, let G
be a (¢ ,p )-imprimitive graph and let B be a complete (g p)-block system of I' S AutG. Then,
by [14, Theorem 3.6), G has a (g p )-semiregular automorphism o such that V(a) = B and [o] is

transitive. Since G/B is a vertex-transitive graph of prime order g, it is either connected or
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totally disconnected. We then apply Lemmas 3.1 and 3.2 to deduce that G is a (¢p)-
metacirculant, I

The class of (p,q)-imprimitive graphs seems to be less tractable than the class of (qo)-
imprimitive graphs. The following two theorems provide a partial description of the structure of
(p ,q)-imprimitive graphs.

THEOREM 3.4. Letq <p be primes. Let G bea (p,q)-imprimitive graph which isnota
metacirculant and let T be a (p ¢ )-imprimitive subgroup of AutG . Then, the mapping (T’ = n

is an isomorphism and I' = T is nonsolvable.

Proof. Let B be a complete (p,q)-block system of I. By Lemma 2.1, there are vertices
xy,..., X, of G belonging to different orbits of some (g p )-semiregular element o of I such
that B={(B; :i € Z,], where B; ={af(x,):r=1,..., q). In view of Lemma 3.1, we may
assume that G/B is connected. Let us assume that A=Ker (T — ) is non-trivial. Then, by
Lemma 2.3, there exist e A and i € Z, such that B; € V(B). Since G/B is connected, it fol-
lows by [14, Lemma 3.5] that V(B) = B. Therefore, (0.} < {B] and so [B] is transitive. There-
fore Lemma 3.2 (with a replaced by p) implies that G is a (q,p)-metacirculant, a contradiction.
This proves that A is trivial, ie., (T - T) is an isomorphism. Suppose now that T=T is
solvable. Since ll_"l =|T| 2qp, T cannot be regular, so its minimal degree is not p. Therefore,
by Proposition 2.6, the minimal degree of Tisp -1and, thus,isa Frobenius group. By Propo-
sition 2.5, the elements of T of degree p together with 1 form a regular normal subgroup MofT.
Since T is regular, |ﬁ| =p. Therefore 11 is the image of {&) under the isomorphism (' = I‘).
From this and the fact that 1 a T, we infer that {o) « T. Hence,I' < [o). Therefore, [a] is tran-
sitive. Hence G/V () is either connected or totally disconnected. Lemmas 3.1 and 3.2 then
imply that G is a metacirculant, a contradiction. Therefore, I =T is nonsolvable. This con-

cludes the proof of Theorem 3.4. B

THEOREM 3.5. Let ¢ <p be primes, p #1(med ), and let G be a (p,q)-imprimitive
graph which is not a circulant. Then V(G ) can be partitioned into p subsets of cardinality ¢

such that there exists a perfect matching between any two of them.
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Proof. Let T be a (p,q)-imprimitive subgroup of AurG and B be a complete (p,q)-block
system of I'. As in the proof of Theorem 3.4, we let the vertices Xy, ...,x, of G belong to dif-
ferent orbits of some (¢.p)-semiregular element & of " such that B = {B;:i e Z,)}, where
B; = {a‘(x,) :r=1,...,q). Morcover, we may assume that G /B is connected and that I" = Tis
nonsolvable and thus, by Proposition 2.7, it is 2-transitive on B. Therefore, the subgraphs
B(i,j)=GI[B;,B ;1 #j)of G are all isomorphic bipartite graphs, and since G/B is connected,
they are not totally disconnected. Further, the 2-transitivity of I implies that, for each edge orbit
Q of T, the graphs G(Q) NB(ij) (@ # /) are all isomorphic. Let i,J € Z, be distinctand 0,
be an edge orbit of I". Then the graph Go = G(Qg) N B (i,j) is not totally disconnected.

Clearly, G is edge-transitive. An element of Q¢ must have either one or no end-vertex in B;.
Therefore, the number of edges of G (Q o) with one end-vertex in B; is

X IEBG.a)NGQM| =@ -1)EGy)I. 3

aeZ\(ij

Clearly, G{(Q) is vertex-transitive and, therefore, k-regular for some k. Since |B;| =q, it fol-
lows by (3) that (p ~ 1IE(Gy)| =kq. Therefore, since p #1 (mod q), q divides |E(Gy)|.
The 2-transitivity of I implies the existence of an element of I, which interchanges B; and B;.
Therefore, the graph G, satisfies all the assumptions of Lemma 2.2 and, hence, is regular of
valency greater than or equal to 1. Hence, by [S, Theorem 8.7], G has a perfect matching, and
s0 B (i,j) has a perfect matching. Since i,j were arbitrary, distinct elements of Z,, it follows

that B is the desired partition of V(G). W

COROLLARY 3.6. Let g <p be primes, p £1(mod q) and let G be an imprimitive gp -

graph with valency strictly less than P — 1. Then G is a circulant.

Proof. If G is (9. )-imprimitive, then G is a circulant by Propositions 2.4 and 3.3. If G is

(p .4 )-imprimitive, then G is a circulant by Theorem 3.5. &

We know of four imprimitive 49p graphs—L (04), L (Kg), and their complements—that are

not metacirculants. All four have order 15. Since 5 #1 (mod 3), these graphs must satisfy the

conditions of Theorem 3.5. In fact, the vertex set of L
B;(i

3) Ppartitions into five blocks
=1,2,3,4,5) of cardinality three, each of which is an independent set and, furthermore,
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L(03)B;,B;]= 3K, fori #j. Thus, L(O3) is 4-regular (see (14] for a detailed discussion of
L(04)). If we add all the edges within each of the five blocks, we get a 6-regular graph, which
tumns out to be L (K g)°.

We would like ta, get. more information about imprimitive ¢p -graphs. for the case
p =1(mod q). Use of Theorem 3.4 and the classification of 2-transitive finite permutation

groups (see [7]) might contribute to a classification of imprimitive gp -graphs.

In the last two sections we study the hamiltonicity of vertex-transitive gp -graphs.

4. HAMILTONICITY OF IMPRIMITIVE ¢p-GRAPHS.

If P =vvy- v, is an n-path of a graph G we call v, =o(P) and v, = (P ) respectively
the origin and rerminus of P. We shall sometimes call P avv,-pathora UW-path ora v W-
path:or a Uv,-path if U, W are any sets such that v, e U and v, e W. If e AwG, we let
a(P) = avav,) -+ - afv,). Similarly, if uyug - u,uy is an n-cycle of G we let a(C) =
o 1 J0uie ) * + + iy, YO (4 )

Let « be an (m p )-semiregular automorphism of a graph G. The quorient graph Gla.of G
w.rt. o is the graph with vertex set V(o) and X,Y e V(o) adjacent if X OY #@D. If
C=XgX, X, Xois acycle of G/a, we let {C) denote the subgraph of G with the vertex set

U X; and the edge set U X; OX;,;. Welet {G ,a) be the spanning subgraphof G whose edge
ieZ, ieZ,

setis E(G)\ X OX. A.spiral path of {€) is a path x¢gx - - x,_ B(xg) wherex; € X,
XeV(a)

(rez,) and Be (\ (1). If X,Y e V(), then G[X,Y] is regular of some valency

d0¢.Y)=d(Y X)and G[X]=G X X] is regular of some valency dX).

LEMMA 4.1. If(C) has a spiral path, then {C) is hamiltonian.

Proof. Let xgx, - ** x,_1B(xo) be a spiral path of (C) and let P =x¢x; " " *X,-1. Then
PB(P).- -~ PP~1(P )x is a hamiltonian cycle of (C). W
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LEMMA 4.2. If (C) is non-hamiltonian, then d (X, Xr+1)=1 for each r € Z, and there
exists acycle C =xgx; * - - X,_1xq such that x, € X, for each r € Z, and (C) is the union of the

n-cycles o/ (C) (j € Z,).

Proof. Since C is a cycle of G/a, it follows that d(X,,X,,) 2 1 for each r € Z,. Thus
there exists a path xox, * * * x,, where x, € X, foreachr e Z, and a vertex yg € X is adjacent
t0 x,_;. Since (€) is non-hamiltonian, Yo=xg by Lemma 4.1. If d(X, X,,;)>1 for some
r € Z,, then there exists j € Z; such that x, -aj(x,,,,) and therefore xgx; * - ~x,aj(x,,|) s
o (x,1)0 (x) is a spiral path of (C), a contradiction. Thus d(X, X,,)=1foreach r € Z,.
Hence (C) is the sum of the n-cycles of (xoxy - x,1x0) ( € Z,).m

PROPOSITION 4.3 ([1], Lemma). Let P 25 and G be a vertex-transitive p-graph with

valency at least 4 and u,v € V(G ) be distinct. Then G has a hamiltonian u,v-path,

We begin the discussion of hamiltonian properties of vertex-transitive qp -graphs with the

following theorem.

THEOREM 4.4. If a (¢ p )-imprimitive graph G, where ¢ <p, is connected and not iso-

morphic to 05, then G is hamiltonian,

The above theorem was first proved in [15]. However, as Alspach and Parsons proved that
every connected (m,p )-metacirculant is hamiltonian for m odd [3, Theorem 1], we can deduce
Theorem 4.4 from Proposition 3.3. For the sake of completeness, we sketch the proof of
Theorem 4.4, Let € AweG be (¢ .p)-semiregular with [a] transitive. Then the induced sub-
graphs G[X), X e V() are all isomorphic vertex-transitive p-graphs. Note that G/a is a
connected vertex-transitive ¢ -graph and therefore hamiltonian, Using Lemma 4.2 one can prove
that G /cx contains a hamiltonian cycle € such that either (C)has a spiral path (in which case G

is hamiltonian) or (C) is a sum of ¢ cycles of lengthp and d(X) 22 for each X € V(o). In the
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case d(X)=24, a hamiltonian cycle of G is easily found by Proposition 4.3. Since
|X] =p >q 22is odd, it follows that d(X) is even and so we are left with the case d(X) =2 for
each X € V(). The transitivity of (o] implies the existence of T e [0 such that {0t} is transi-
tive and t~'at = of for some integer s. If s =1, then G contains a subgraph isomorphic to the
cartesian product of K, with C,,, if ¢ = 2, and a subgraph isomorphic to the cartesian product of
C, with Cp, if ¢ #2. In both cases, G is clearly hamiltonian. If s # %1, then one can construct
a hamiltonian cycle of G which uses all but one edge in each of the graphs G [X], X e V(o) and

q edges of (G ,a). H

We believe that Theorem 4.4 can be generalized to the class of all connected vertex-
transitive gp-graphs. In Section 5 we prove this for ¢ =3. Therefore the four imprimitive 15-
graphs which are not metacirculants, given in the previous section, are hamiltonian. Hopefully,
Theorems 3.4 and 3.5 will prove useful in generalizing Theorem 4.4. In fact, Theorem 4.4 and
Theorem 3.5 together imply that for p £1 (mod q) a connected non-hamiltonian imprimitive
qp -graph would have valency greater than p-1. Itis unlikely that such a graph exists.

" To conclude this section we remark that O4 and 054, both primitive 35-graphs, are also
hamiltonian. The proof that O 4 is hamiltonian is given in [16) and it also implies the hamiltoni-

city of 0§.

5. HAMILTONIAN CYCLES IN VERTEX-TRANSITIVE 3p-GRAPHS

A number of fairly deep group-theoretic results will be needed to prove that every con-

nected vertex-transitive 3p -graph is hamiltonian.

Let T be a transitive permutation group on a finite set V [20, Theorems 2, 5], [20, Theorem

10] and [21, §11] contain the following three propositions respectively.

PROPOSITION 5.1. Let T" be primitive with subdegrees ng<ny< --+ Sn. If ny=1,
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then I is regular of prime degree and order. If n; > 1, then n; S(ny-)n;_, foralli 22. W

PROPOSITION 5.2. If |V|=3p and I is primitive, then the rank of T" is at most 4 and

either
) p=32+3r+1forsomere Z*or

(i) p=192r2+60r +5 forsomer € Z* U (0). W

PROPOSITION 5.3. If p >3 and I"is (p,3)-imprimitive and nonsolvable, then its subde-

grees are
(i 1,2,3(p-1)or
() 1,2,p-1,2(p-1)or
(i) 1,1, 1,3(p-1)or
(v ,1,1,p-1,p-1,p-lor

(v) 1,2,2,4,4,8withp=7. 1

Let p 23 and r,s,t € Z;. Any graph isomorphic to the graph with the vertex set
(xi:ieZ)u fy:ie Z)o (wiie Z,} and the edges [x;,x; ), i, yiud, [x;, Wil
xis Wi ), 50 Wise 1 i Wi, 1 G € Z,) will be denoted by G (p, 7, 5, 1).

It is easily seen that

Gp,r,s,t)2G(,r’,s",t)if'r'=4r,s'=ts and ¢’ = 4« 4

and

G, s, 7, Y26, r, 5, 1) ®)

LEMMA 54. Let p 23 and a be a (2,p)-semiregular automorphism of a graph G, let W
and X be:the orbits of o such that d(X) > 0, dW,x)22and letw € W. Then G[W,X] hasa
hamiltonian wW -path.

108




Proof. Clearly d(X) is even and thus at least 2. Let x € N(w) nX where N(w) is the neigh-
borhood of w. Then there ae Pe{o)\ (I} and reZ, suwh that

{w, B(w), B (x), B (x)} € N(x). This implies that
wx B )BG) <+ BB e B T on )P A WP 2w) - BTGP (w)

is a hamiltonian wW -path of G with the desired property. W

B. Jackson [9] proved that every 2-connected k-regular graph of order not greater than 3k
is hamiltonian. Since every connected vertex-transitive graph is 2-connected, Jackson’s result

implies

PROPOSITION 5.5. If a vertex-transitive n-graph G is connected and valG 2 n /3,then G
is hamiltonian. B

We can-now;prave the main result of this section.

THEOREM 5.6. A connected vertex-transitive 3p -graph is hamiltonian.

Proof. The assertion of Theorem 5.6 is trivially true when p = 2, 3 by Proposition 5.5. We
may thus assume that p 25. Let G be a connected vertex-transitive 3p-graph. If G is 3p)-

imprimitive, then it is hamiltonian by Theorem 4.4. Therefore we can assume that
G is not (3,0 )-imprimitive. (6)

By [14, Theorem 3.4] G has a 3p )-semiregular automorphism & with orbits W, X .and Y
(say).:Let dg=valG. Since |V(G)| =3p and W] = |X]| =[Y|:=p are odd numbers, it fol-

lows that

dg, d(W),d(X), d(Y) are even numbers. @)
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If dg=2, then G is a cycle. We may therefore assume that dyp24. Since G is connected,

Glois either K5 or P4,

Case I. G/G=K3.

By Lemma 2.2 we may assume that d(W,X)=d(X,Y)=d(Y, W) =1 and that there is a
cycle C =wxyw such thatw € W,x € X,y € Y and (G, @) is the sum of p cycles of length 3,

viz.
G, a)y=C +aC)+ - +&}(C). ®

Since dg 2 4, it follows that 2Sd(W)=d(X)=d(Y) =d, say. Suppose that d =2. Then,
G[W), G[X) and G[Y] are p-cycles. From this and (8) we see that every edge in
WoOx)ux aryvury ow) lies in a 3-cycle and no edge in
WaOw)u X OX)u( OY) lies in a 3-cycle. Hence every automorphism of G maps
G[W]+G[X]+ G[Y] onto itself and so maps each of W, X, Y into one of W, X, Y. Therefore
{W,X,Y} is a complete (3,p)-block system of AwiG and so G is (3.p )-imprimitive which con-
tradicts (6). Therefore d 2 4 by (7). By Proposition 4.3 there are hamiltonian paths Py, Py, Py
in G[W], G[X), G[Y], respectively, whose origins and termini are w and a(w), a(x) and o.z(x )

a*(y) and y, respectively. Then Py Py Py is a hamiltonian cycle of G.

Case2. Gla=P,.

By suitable choice of notation we may assume that

d(X,Y)=0, 9)

dW,X)21, dW,Y)21, (10)
and

d(Y)2d(X). an
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It follows from (9) that
d(X)+d(W,X)=d(Y)+d(W,Y)=d(W)+d(W,X)+d(W,Y)=do. (12)
By (7) and (12), d(W, X ) and d(W, Y) are even and so by (10)
dWw,X)22,dW,Y)22 (13)
Subcase2.a. dy26.
By (12) and (13),
dX)=dW)+dW,Y)2d(W,Y)22. 14)
By (13) and (14) and Lemma 5.4 there exists 2 hamiltonian ww’-path P in G[W UX]
where w, w’ € W. By (13) there are distinct y, € Y such that w ~y, w’~y’. By (11) and
(14), d(Y)2d(W,Y)andso 2d(Y) 2d(¥) + d(W,Y) =dg26, by (12) and therefore dy)z4

by (7). Therefore by Proposition 4.3, there is a hamiltonian y’y-path Q in G[Y] and hence
PQw is a hamiltonian cycle inG.

Subcase 2.b. dy S 4.

By (11), (12), (13) and (14), d(X) =d(¥)=dW,X)=d(W,Y)=2andd(W)= 0. There-
fore there are w € W, x € X,y € ¥, Be (@)\ {1} and r, s, ¢ € Z, such that G has the edges
Wi Xiatds Dis Vierh i Wiae ]y [is Wiceds Do Wins)s 0o Wicg)s (6 € Z,) where w; =pw),
x =P (x)andy; =B () (i € Z,). ThusG =G (p,r,s,1).

Suppose first that AwG is imprimitive. Then AutG is (p, 3)-imprimitive by (6). More-
over, by Theorem 3.4, AutG is nonsolvable and thus (since valG = 4) it follows, by Proposition
5.3, thatp € {5,7).

Suppose now that AwG is primitive. Then it has rank at most 4, by Proposition 5.2. Let
ng<n < -+ Sny (k £3) by the subdegrees of AwtG . Then clearly ng=1and n; Sdg=4and

since the degree of AwG is not prime, it follows, by Proposition 5.1, that a;>1 and
x

n; S (n=1)n;_ for2Si Sk. Therefore 3p = [V(G)| = T Sl+ng+(n=Hny+ (n1=1)%n,
i=0

<1 +4+ 12 + 36 = 53 which implies that p <17 and therefore, by Proposition 5.2, p € {5,7).
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Suppose that ¢ € {1,-1). Let j =(2s)"!. Since Y2ps =¥0~¥1 = Y25, it follows that
WestXearst¥ser42 ** " XoaroXssrWsY 2 WasYasWssYae "0 ° Y @j-2sW(2j-1)sY 2js Y 2ps
Wp-1sY 2p-2sWizp-3)s- " Y(2j+21Wj+1)s iS @ hamiltonian cycle of G. We may therefore
assume thatr ¢ {1, ~1).

If p =7 it follows from.(4) and (5) that G is one of the following nine graphs: G (7,1,1,2),
G(1212), G(1322), G(7332), G(1222), G(1,1,3,2), G(1.1,22), G(713,1,2), or
G(7,2,3,2). Among these graphs G(7,2,3,2) is the only one in which any two vertices lie in the
same number of 3-cycles, 4-cycles and 5-cycles. Therefore, since vertex-transitivity of G
implies that any two of its vertices lie in the same number of n-cycles for all n, we deduce that
G.=G1(7,2;3,2) and therefore it has a hamiltonian cycle
FIWIESX WX WYY 1V 6 Y 4 2Y 0F sW 1 X 3WsK WX WX ).

If p =5, it follows from (4) and (5) that G is either G(5,1,2,2), G(5,1,1,2) or G(5,2,1,2).
The same cycle: argument as in the case P =7 implies that G =G (5,2,1,2) and it has a hamil-
tonian cycle xgx \wqy 5y 1WQX3X W4y 3y Y oW 1 X 4woXg. This completes the proof of Theorem 5.6.

n

In fact, it can be proved that G (5,2,1,2) is the only vertex-transitive graph among the

graphs G(p,r,s,t) and it transpires that L(04) = G (5,2,1,2).

It is possible that a more self-contained proof of Theorem 5.6 could be obtained by showing

that each graph G (p,r 5 ,¢) is hamiltonian, which we believe is the case:
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