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1. Introduction

A balanced incomplete block design (BIBD) is a pair (V, B) where V isa v-set
and B is a collection of b k-subsets of V, called blocks, such that each element of V is

contained in exactly r blocks and any 2-subset of V is contained in exactly A blocks.
The parameters of a BIBD are denoted by (v, b, 1, k, A). Trivial necessary conditions for
the existence of a BIBD (v, b, 1, k, A) are

1. vr=bk

2. rk-1)=A(v-1).

Although (22,33, 12, 8,4) are parameters satisfying the above two conditions, it
is not known at present whether or not there are any designs with these parameters. For
any smaller number of elements the existence or non-existence of such a design is known.
For this reason, the existence or non-existence of a (22, 33, 12, 8, 4)-BIBD is a
challenging problem. If methods can be devised to settle this particular problem, it is to be
expected they will have a wider impact.

A few concepts will now be defined. The incidence matrix, A, of a BIBD (v, b, r,

k,A) is the matrix whose element in the ith row and jth column is 1 (or0) if element i
is (or is not) in block j. (The elements and blocks are usually numbered 1,2,3,....) A
pairwise balanced design (PBD) is a pair (V, B) where V isa v-set and B isa
collection of subsets of V such that any 2-subset of V is contained in exactly A blocks.
A sub-PBD of a BIBD is a PBD whose incidence matrix is a submatrix of the incidence
matrix of the BIBD. Two designs (V1,B1) and (V2, B2) are isomorphic if there exists

a bijection o V1 — V2 such that Bjo=B2.
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Hamada and Kobayashi [3] have made a study of the block structure of these
designs. Another detailed study, using coding theory, was made by Hall, Roth, Van Rees
and Vanstone [2]. In the sequel we will again use coding theory to study these designs.
However, we will use it in a different way than in the four author paper. We will use the
techniques of Stinson [5] to get a short list of parameters of PBD's, some of which must be
sub-PBD's of any (22, 33, 12, 8, 4)-BIBD. In section 3, a special PBD studied by Hall
[1] will be examined with the aid of computers and it will be determined that no (32, 33,
12, 8, 4)-BIBD contains this special PBD.

2. The Code Over Fz

The code C of a (22, 33, 12, 8, 4)-BIBD over GF(2) i the subspace of F3°
spanned by the rows of the incidence matrix A. In A, every column has eight 1's and

every row has twelve 1's. As A =4 any two rows are 1's in exactly four columns. It
follows that every codeword has weight a multiple of four and that C is self-orthogonal.

As in Hall {0], we define the orthogonal code Cl as consisting of the vectors y
orthogonal to all of C,

Cl={yl(x,y)=0forall xe C}.

Here the inner product (x, Y)=X1y1 +X2y2 +... + x33y33 modulo 2. Also CLloC
and CL contains the vector of all I's, since every codeword in C has even weight.
Since dim C +dim CLl = 33, dim C < 16.

Following Stinson [5), we can state that since A has 22 rows and the dim C < 16,
there must be at least 6 independent dependencies of the rows of A. A linear dependence

canbe written ' rj =0 for some I a subsetof {1,2, ..., 22} where 1j is the ith
iel
row of A. In terms of the design we have a subset Y = {xj:ie I} such that IBj NYlis

even where Bj is the jth block of the design, 1 <j < 33. Thus there are at least 26
dependencies in any (22, 33, 12, 8, 4)-BIBD.

We now switch to combinatorial terminology. If Y= (rjlie I) corresponds to a

dependence relation, we will call (Y, {YNBjl1<i<33)}) an even sub-PBD. We
use the word even as all the blocks of the sub-PBD have even length. Suppose an even
sub-PBD has m points and bj blocks of size i. Then by simple counting we get the
following so-called B-equations.

116



zbi =b
Y ibj =r1m

2Bn -26).

The vector solutions are called B-vectors.

For the (22, 33, 12, 8, 4)-BIBD case, there will be at least six independent

dependencies in the rows of A. Solving the associated B-equations give the following for
the m elements of the dependency.

b + be + bg =33+12m2-8m

b2 - 3bg - 8bg =10m - m2
bg+3bg+6bg  =12m(m-4).

Since the design is an even sub-PBD itself, the B-vectors come in pairs. One for
m elements and the other for 22-m elements. Here we list the 12 B-vector solutions in
non-negative integers for m<11.

CASE by b2 b4 be bg m
1 9 24 0 0 0 4
2 3 24 6 0 0 6
3 2 27 3 1 0 6
4 1 30 0 2 0 6
5 0 32 0 0 1 6
6 1 16 16 0 0 8
7 0 19 13 1 0 8
8 3 0 30 0 0 10
9 2 3 27 1 0 10

10 1 6 24 2 0 10
11 0 9 21 3 0 10
12 0 8 24 0 1 10

Case 5 can immediately be eliminated as bg must equal 0 if m= 6. Case 4 can
also be eliminated. Since m = 6, the two bg blocks intersect in at least six elements.
From [3], we know that intersections can be at most 4. Therefore we can state the
following theorem.

Theorem 1. There are at most 10 different B-vectors for the even sub-PBD's of the (22,
33, 12, 8, 4)-design.
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3. Case 8

Hall [1] has studied a particularly nice subcase of Case 8. In Case 8, the even sub-
PBD is a (10, 30, 12, 4, 4). Hall has considered the (10, 30, 12, 4, 4)-design formed
when a tenth element has been adjoined to a Steiner Triple System on nine elements and
extended to a three design, i.e. all triples of elements occur exactly once and block size is
four (sometimes denoted by 3-(10, 4, 1)-design). There is only one such non-isomorphic
design. Next Hall attempted to extend this design to a (22, 33, 12, 8, 4)-BIBD by
adjoining additional elements. It turns out that there are several sub-cases of which Hall
eliminated two.

In this section, we describe the computer results which determined that this
extension was impossible. This was done twice independently to ensure comrectness. We
will provide some of the partial results of the first program so that the results may be
verified.

An important aspect of this work is to eliminate isomorphic duplicates. This was
done using Kocay's [4] algorithm and program for finding isomorphisms between graphs.
The program was run on an Amdahl 350. A design is made into a bipartite graph by letting
all elements and blocks be represented by points. Two points are joined only if the
corresponding element occurs in the corresponding block. Two designs are isomorphic if
and only if their corresponding graphs are isomorphic. The program also gives the
automorphism group of the graph.

Using this program, we found that the following three-design that we used has
automorphism group size 1440,
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Bl : 10123
B2 : 1045 6
B3 : 10 7 8 9
B4 : 101 47
B5 : 10 2 5 8
B6 : 10 3 6 9
B7 : 10159
B8 : 10 2 6 7
B9 : 10 3 4 8
B10: 10 1 6 8
Bll: 102 4 9
Bl2: 10 3 5 7
B13: 1248
Bl4: 1279
B15: 1256
Bl16: 1367
B17: 1345
B18: 1389
B19: 14609
B20: 1578
B21: 2346
B22: 2359
B23: 2378
B24: 2457
B25: 2 689
B26: 3479
B27: 3568
B28: 45829
B29: 4678
B30: 56729

(10, 30, 12, 4, 4)-BIBD

Let us consider what the remainder of the (22, 33, 12, 8, 4)-BIBD must look like
if this 3-design is a sub-PBD of it. Each remaining element must occur in 10 of the first 30
blocks to ensure the pair count is correct. The remaining two occurrences must occur in the
last three empty blocks. There is only one way to do this. If the new elements are labelled
from eleven, the last three blocks may be taken as:

B31: 11 12 13 14 15 16 17 18
B32: 11 12 13 14 19 20 21 22
B33: 15 16 17 18 19 20 21 22

Let group 1 or Gl = (11, 12, 13, 14}, group 2 or G2 = {15, 16, 17, 18}, and group 3
or G3 = (19, 20, 21, 22}. Clearly the elements within a group must intersect each other
twice in the first 30 blocks whereas the elements from different groups must intersect each
other three times in the first 30 blocks.
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So the first thing we did was to find the 900 ways to adjoin an element onto the
sub-PBD. From this point on, we only work with the list of 900 sets of blocks. Using
Kocay's program, we showed that there are only 8 non-isomorphic sets of blocks.

Non-Isomorphic Extensions

Case Blocks
1 1 2 3 4 13 19 22 23 27 30
2 1 2 3 4 14 17 22 25 27 29
3 1 2 3 7 13 16 21 23 28 30
4 1 2 3 7 13 16 24 25 26 27
S 1 2 3 7 19 20 21 22 23 29
6 1 2 4 S 18 20 21 25 26 30
7 1 2 4 8 14 18 22 27 28 29
8 1 2 4 12 13 18 22 25 29 30
TABLE 2

We note that Hall [1] has already proven that Cases 4 and 6 are not possible to complete to
a (22, 33, 12, 8, 4)-BIBD.

Recall that each of the 900 sets of blocks represent one way of adjoining a block to
the sub-design. So the program must find G1, G2 and G3 with the correct intersection
pattern. It tried to do this by letting the first set of blocks of the case be in G1. Then all
sets that intersected it in 2 or 3 varieties were recorded. Then all possible G1's were tried.
Then all sets which intersected the sets of a particular G1 in 3 blocks were listed. Then
G2's were formed out of these lists. Then a list of sets which intersected the sets of a
particular pair, G1 and G2, were recorded. Finally, G3 was formed from this list. The
results of the program are presented in the following table.
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Program's Progress

Case 2i 3i P2G 2G 3G
1 189 215 16 NO NO
2 174 255 41 YES YES
3 224 168 36 NO NO
4 120 320 40 YES NO
5 186 240 40 YES NO
‘6 335 0 0 NO NO
7 180 260 24 YES NO
8 155 280 132 YES YES
2i = no.of sets that intersectiihe first set in 2 blocks.
3i = no.of sets that intersect the first set in 3 blocks.
P2G = the size of largest number of sets that intersect eachsetin Gl in3
blocks.
2G = Thereisa group 2 whose members intersect the sets of G1 in 3
blocks and the other sets of G2 in 2 blocks.
3G = Thereisagroup 3 whose members intersect the sets of Gl and

G2 in 3:blocks.

Unfortunately, the sets of group 3 do not intersect themselves in the correct
number of blocks. So the following theorem can be stated.

Theorem 2. No (22,33, 12,8, 4)-BIBD contains the 3-(10, 4, 1)-design as a sub-PBD.
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