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ABSTRACT

Let V be a finite set of v elements. A covering of the pairs of V by
k-subsets is a family F of k-subsets of V, called blocks, such that every
pair in V occurs in at least one member of F. For fixed v and k, the
covering problem is to determine the number of blocks of any minimum
(as opposed to minimal) covering. Denote the number of blocks in any
such minimum covering by C(2k,v). Let B(2,5,v) = [v [(v—-1)/41/5). In
this paper, improved results for C(2,5,v) are provided for the case v =1
or 2 (mod4). For v=2(modd), it is shown that
C(2,5,270) = B(2,5,270) and C(2,5,274) = B(2,5,274), establishing the
fact if v =6, and v =2 mod 4, then C(2,5,v) = B(2,5,v). In addition, it
is shown that if v = 13 (mod 20), then C(2,5,v) = B(2,5,v) for all but 15
possible exceptions, and if v =17 (mod 20), then C(2,5,v) = B(2,5,v) for
all but 17 possible exceptions.

1. Introduction

Let V be a finite set of v elements. A covering of the pairs of V by k-subsets is 8
family F of k-subsets of V, called blocks, such that every pair in V occurs in at least
one member of F. For fixed v and k, the covering problem is to determine C(2,k,v),
the number of blocks in any minimum (as opposed to minimal) covering.

Let B(2,k,v) = [v[(v—1)/k—1)]/k]. It is well known that C(2,k,v) 2 B(2:,k,v)-
We are interested here in the case k =5. Gardner (8) bas shown that if
v ?]13 (mod 20), then C(2,5,v) = B(2,5,v)}+1. For convenience, let C(v) = C(2,5,v),
and let

B(v) = B(2,5,v}if v % 13 (mod 20),
B(2,5,v)+1 if v = 13 (mod 20).

In [9] it is shown that if v =2 (mod4) and v ¢ 270,274, then C(v) = B(v), and if
v =1 (mod4) and v is moderately large, then C(v) = B(v). It is the purpose of this
paper to show that C(v) = B(v) for v = 270 and 274, and to show that C(v) = B(v)
for several new values of v = 1 (mod4).

2. Constructions for v = 270 and 274

In this section we show that C(270) = B(270) and C(274) = B(274). These two
values are those remaining to establish in order to show that C(v) = B(v) for all
integers v > 6, v =2 (mod 4). For definition of balanced incomplete block design
(BIBD), group divisible design (GDD), resolvable balanced incomplete block design
(RBIBD), pairwise balanced design (PBD); flat, and transversal design TD, the reader is
referred to [13]. It is also assumed that the reader is familiar with Wilson's fundamen-
tal construction for group divisible designs {18). Further, since there exists a
BIBD(v,5,1) for all positive integers v =1 or 5(mod20), v>21 (see [7]), there are
group divisible designs of type 4 and 4% with blocks of size § obtained by deleting 2
point from the first two members of this series. For the existence of other BIBDs and
RBIBDs, the reader is referred to [10] unless other references are given.

Theorem 2.1. The covering numbers C(v) are equal to the bound B(v) for v = 270
and v = 274.
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Proof. There exists a resolvable BIBD(85,5,1). By adjoining s new points to this
design (s = 2,3), one obtains a GDD of type 5" with blocks from {5,8}. By applying
Wilson's fundamental theorem, giving every point weight 4, a GDD, say D, of type
20'%(4s)" with blocks of size 5 is created. Let the groups be G|,G,,...,G 4, With G|,
being the group of size 43. Let W denote the set of points of D, and let oq and oo be
points not in D. Then a minimum covering of V = W U {o0;,00,) is formed as follows.

First take the blocks of size 5 of D.. Then take copies of the BIBD(21,5,1) one on
each of the sets G; U {oq }, ¢ = 1,2,...,13 to obtain 13X21 more' blocks of size 5. To
these, adjoin 65 more blocks of size 5, these blocks being obtained by partitioning the
260 points of U = U,-‘f,G,- into blocks of size 4, and adjoining oo, to-each such block.
The set of blocks of size 5 is completed by adjoining blocks of a minimum covering of
the set G4 U {oo,00}. It is easily verified that the resulting configuration is a
minimum covering of v points which contains B(v) blocks. o

3. Some results for v = 1 (mod4);

We begin this section with some general constructions for coverings for
v =1 (mod4). Since there exists a BIBD(v,5,1) for all v =1 or 5 (mod?20), v > 21,
C(v) = B(v) for these values.

For the definition of an incomplete transversal design T(k,n)—TD(k,a), the reader
is referred to (3].

Lemma 3.1. Let n and a be non-negative integers satisfying @ <4n+1. If there
exists a TD(5,12n+4+a)-TD(5,a), and if' C(4n+4a+1) = B(dn+4a+1), then
C(64n+4a+21) = B(64n+4a+21).

Proof. See [9, Lemma 3.1). o

Lemma 3.2. Suppose there exists a resolvable BIBD(20m +5,5,1). Suppose t is an
integer  satisfying 0<t<6m such that C(4t+1) = B(4t+1), then
C(80m+21+4t) = B(80m +21+4t).

Proof. By adjoining ¢ points to the resolvable BIBD, one obtains a group divisible
design of type (5)**1(¢)! with block sizes in {5.8). By applying Wilson’s fundamental
theorem [13] with all points baving weight 4, a group divisible design of type
20*"*1(4¢)! with blocks of size 5 is obtained. Adjoint a new point coto each of the
groups, replacing each block of size 21 by a copy of PG(4,1) (the BIBD(21,5,1)) and the
block of size 4t+1 by a minimum covering of 4t+1 points, a minimum covering of
v* = 80m +21+4¢ points with B(v*) blocks is obtained. a

Lemma 8.3. If C(4m+1) = B(4m+1), then C(16m +5) = B(16m+5).

Proof.. It is well known [7] that there exists a resolvable BIBD(12m +4,4,1). The
result is obtained by adjoining 4m+1 new points, and replacing the block of size
4m+1 by a minimum covering of 4m+1 points. (w]

Gardner [6] has shown that C(100m+13) = B(100m+13) for m >1 and
C(100m +93) = B(100m +93) for m 20.

To extend this work, incomplete transversal designs will be required below. Vari-
ous constructions for these are cited below.

Lemma 3.4. If TD(6,t) and ID(8,m+m ;)=TD(5,m;) all exist and if a = Lhaimk;
where k; are positive integers satisfying ¢t = Ef_,kj, then there exists
ID(5,mt+a)—T(5,a). Further if there exists a ID(5,a), and if some m; =0or 1'in
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the above, then there exists a TD(5,mt+a)—TD(5,m+m;), and if there exists a
TD(5,a), then there exists a TD(5,mt+a)—~TD(5,t).

Proof See [3, Corollary 1.3). It is easily verified that the TD(5,mt+a)—TD(5,a) con-
tains a copy of a TD(5,t). If the "hole” of size a is “filled", and a copy of the TD(5,t)
is deleted, a TD(5,mt+a)—TD(5,t) is obtained. =]

Lemma 3.5. If there exists 2 TD(7,m), and TD(S,r) where 0 <r < m, then there
exists & TD(5,7m+r+a) for all a satisfying 0 < a Sm.

Proof. See [3]. m]

It was shown in [9] that C(100m+33) = B(100m+33) for m > 7. We note also
that C(533) = B(533). This follows from Lemma 3.1 with n =7, ¢ = 16, where a
TD(5,104)—TD(5,18) is required. Brouwer [4] has shown that a TD(5,10)-TD(5,2)
exists, and a TD(6,11) and TD(5,8)—TD(5,0) exist. Therefore by Lemma 3.4, there
exists a TD(5,104)—TD(5,18), since 104 = 11.8+8.2.

For the existence of specific transversal designs mentioned henceforth, the reader
is referred to [2). For the existence of resolvable BIBD(v,5,1), see [7].

Lemma 3.6. Let X = {373, 453, 473, 553, 653, 673, 773, 853, 873, 953, 973, 1053,
1073, 1153, 1173, 1253, 1273, 1253, 1353, 1373, 1453, 1573, 1953}. If v EX, then
C(v) = B(v).

Proof. By applying Lemma 3.3, the result is established for v € {373, 453, 773, 853,

873, 1173, 1253}.

For v 6{473, 553, 653, 673, 753, 873, 953, 973, 1053, 1073, 1153, 1273, 1373, 1453,
1573, 1953} we apply Lemma 3.1 with the following parameters.

v n a 12n44+a Incomplete TD
473 8 17 93 (i)
553 7 21 109 5.21+4 (Lemma 3.4)
653 9 14 126 7.16+14
673 9 19 131 7.18+1.5 (Lemma 3.4)
853 12 16 164 9.16+5.4 (Lemma 3.4)
873 11 37 173 37.4+25 (Lemma 3.4)
953 14 ] 181 7.23+11+9
973 14 14 186 7.23+11+14

1053 14 34 206 43.4+34 (Lemma 3.4)

1073 16 7 203 7.29

1153 17 11 219 7.204+5+11

1273 19 9 241 . 7.32+8+9

1373 21 2 258 7.32+32+2

1453 22 8 274 7.37+9+6

1953 29 19 371 7.49+9+19

Case (i) above requires a little more detailed explanation.

A TD(5,93—TD(5,17) is required. Since there exists a BIBD(21,5,1), by the well
known PBD construction for transversal designs, there exists a TD(5,16+5)—TD(5,5).
Also there exists a TD(5,16)-TD(5,0), a TD(5,1641)-TD(5,1), a TD(6,5), and a
TD(5,13). Therefore by Lemma 3.4, there exists a TD(5,93)-TD(5,17), since
93 = 5.16+13. (w]
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In order to eliminate further cases, Lemma 3.2 can be generalized. To do so, we
require some more group divisible designs. Since there are a TD(5,8) and a TD(5,16)
there exist GDDs of type 8% and 16° with blocks of size 5. Also Brouwer [1] has shown
that there is a group divisible design of type 8% with blocks of size 5. Also by applying
Wilson's fundamental construction, using all weights 4 with the GDD of type 6* with
blocks of size 5, one obtains a GDD of type 16% and blocks of size 5. With these obser-

_vations the following is easily established.

Lemma 3.7. Suppose there exists a resolvable BIBD(20m+5,5,1). Suppose that ¢ is
an integer satisfying 0 <t < 5m such that C(2°¢+1) = B(2°t+1) for s = 3 or 5 = 4.
Then C(2°.20m +2° 5+142°) = B(2°.20m +2° 5+1+2°).

Proof. The proof is that of Lemma 3.2, mutatis mutandis. o
The following lemma is also useful for eliminating further small cases.

Lemma 3.8. Suppose there is a BIBD(v,5,1) which contains a flat of order w. Let a
be an integer satisfying 0 <a < w. If there exists a TD(5,v—a)—TD(5,w—a), and if
C(5(w~a)+a) = B(5(w—a)+a), then C(5(v—a)+a) = B(5(v—a)+a).

Proof. As shown in |11}, by an application of the singular indirect product, there
exists a PBD(5(v—a)+a,{5,5(w—a)+a}) which contains precisely one block of size
5(w—a)+a. By replacing this block by a minimum covering of 5(w—a)+a points, the
required covering is obtained. o

Theorem 3.9. Suppose that there exists a BIBD(v,6,1) which contains a flat of order
w. Let ¢t be an integer satisfying O <t <w-l. Suppose that s =23 or 4,
C(2°t+1) = B(2°t+1). Then C(2*(v—w)+2°t+1) = B(2°(v—w)+2°t +1).

Proof. Let cobe a distinguished point of the flat F of the BIBD, which we denote by
D. By deleting oq a set G of blocks of size 5 in D\{od is generated, namely from
those blocks of D which contain cobut do not lie in the flat. If (w—1—t) other points
of F are also deleted, then the remaining ¢ points of F, together with the blocks of G
form the groups of a GDD of type 5/%! with blocks of sizes from {5,6). Since there
exist GDDs of type (2°)° and (2°)® with blocks of size 5 for & = 2,3 and 4, an applica-
tion of Wilson’s fundamental theorem yields a GDD of type (2‘5)'C"'(2't)l with blocks
of size 5. Adjoin a new point oq to all the groups, and replace all blocks of size 2°5+1
by the blocks of a BIBD(2°5+1,5,1) and the block of size (2°t+1) by the blocks of a
minimum covering of 2°t4+1 points. The result is a minimum covering of
v = 2°(v—w)+2°t +1 points with B(v*) blocks. o

Lemma 3.10. Suppose that v €{573,1353,1473). Then C(v) = B(v).

Proof. Since there is a TD(5,24), there exists a BIBD(121,5,1) which contains a flat of
order 25. (This is obtained by adjoining a point to each group of the transversal
design, and replacing blocks of size 25 by copies of a BIBD(25,5,1). Apply Lemma 3.8,
noting that 573 = 5(121—8)+8, and that there exists a TD(5,113)~TD(5,17) since
113 = 7.16+1 (Lemma 3.4). Then C(573) = B(573).

For v = 1353, proceed as follows. Since there is a TD(6,31), there is a
BIBD(186,6,1) which contains a flat of order 31. Taking & =3 and noting that
C(113) = B(113), an application of Lemma 3.9 with ¢ = 14 establishes the result. For
v = 1473, apply Lemma 3.7 to a resolvable BIBD(85,5,1) with s =4 and t = 7. a

Lemma 3.11. Suppose that v is a positive integer such that v = 53 (mod 100). If v
does not belong to S = {53, 153, 253, 353, 753}, then C(v) = B(v).
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Proof. It is shown in [9] that if v = 53 (mod 100) and v > 2753, then C(v) = B(v). It
was shown in Lemmas 3.6 and 3.10 that if v = 53 (mod 100), and if 0 < v < 1453 and
v € 8, then C(v) = B(v). The interval 1553 < v < 2653 is treated below.

80m+42144t m t 20m+5 4t+l

1553 18 23 365 93
1653 18 48 385 193
17563 18 73 365 293
1853 19 98 385 313

(By Lemma 3.8, C(1953) = B(1953).)

2053 24 28 485 113
2153 24 53 485 213
2253 24 78 485 313
2353 24 103 485 413

(By Lemma 3.3, C(2453) = B(2453).)

2553 27 23 545 373
2653 27 118 545 473
This establishes the lemma. (9]

Lemma 3.12. Suppose that v is a positive integer such that v =73 (mod100). If v
does not belong to {73,173,273}, then C(v) = B(v).

Proof. It is shown in [9) that if v =73 (mod100) and v > 2273, then C(v) = B(v).
For v <1473, the result is true by Lemmas 3.8 and 3.10. The remaining cases are
covered by Lemma 3.2 according to the following table.

80m+421+4t m t 20m+5 4t+1

1573 18 28 365 113
1673 18 53 365 213
1773 18 78 365 313
1873 22 23 445 93
1973 22 48 445 193
2073 22 73 445 293
2173 22 98 445 393
This establishes the lemma. 8]

The foregoing can be summarized as follows.

Theorem 3.13. Let v be a positive integer such that v =13 (mod20). Let § = {13,
33, 53, 73, 133, 153, 173, 233, 253, 273, 333, 353, 433, 633, 753}. If vg S, then
C(v) = B(v).

Next we consider the case of v == 17 (mod20). Gardner [6] bas shown that if
v = 100m+17, m >1 or v = 100m+97, m >0, then C(v) = B(v). It was shown in
6] that C(100m+37) = B(100m +37) for m > 7. We note also that C(537) = B(537).
This follows from Lemma 3.1 with n = 7, @ = 17. A TD(5,105)=TD(5,17) is required.
As noted in the case of v = 533, there exists a 7D(5,10)—TD(5,2), a TD(5,8)—TD(5,0),
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and a TD(6,11). There is also a TD(5,8)~TD(5,1). Therefore since 105 = 11.848.2+1,
a TD(5,105)—TD(5,17) also exists.

Lemma 3.14. Let S = {477, 557, 657, 677, 857, 877, 957, 977, 1057, 1077, 1257, 1277,
1357, 1377, 1477, 1957, 2557, 2757, 2777, 2857, 2877, 3157, 3257}. If v €S, then
C(v) = B(v).

Proof. Apply Lemma 3.1 with the following parameters.

v n a 12n44+a Incomplete TD
477 8 18 94 19.4+18 (Lemma 3.4)
557 7 22 110 5.22 (Lemma 3.4)
657 9 15 127 7.18+15 (Lemma 3.4)
877 9 20 132 *7.16+4.5 (Lemma 3.4)
857 12 17 165 *9.16+4.5+1 (Lemma 3.4)
877 11 38 174 37.4+26 (Lemma 3.4)
957 14 10 182 7.23+11+10
977 14 15 187 7.23+11+15

1057 14 35 207 43.4435

1077 16 8 204 7.27+7+8

1257 19 5 237 7.324+8+5

1277 19 10 242 7.32+8+10

1357 19 30 262 7.32+8+30

1377 21 3 259 7.324+32+3

1477 21 28 284 7.324+32428

1957 29 20 372 7.49+9+20

2557 39 10 482 7.61+45+10

2757 42 12 520 771411412

2777 41 33 529 7.87+27+33

2857 44 5 537 7.73+21+5

2877 44 10 542 7.73+21+10

3157 49 0 502 3TD(5,5902)

3257 49 25 617 7.83+11+25

*(These incomplete transversal designs use a TD(5,21)~TD(5,5) as ingredients).
This establishes the lemma. a

The following lemma is useful in creating balanced incomplete block designs with
k = 6 and A = 1 which contain large flats.

Lemma 3.15. If there exists D, a BIBD(v,8,1), then there exists a BIBD(5v+1,8,1)
which contains a flat of order v.

Proof. By deleting a point from PG(2,5) (the BIBD(31,6,1)), a group divisible design,
of type 5% and blocks of size G is obtained. This design, G, contains a block which
meets every group in one point (that is, a transversal). A group divisible design of
type v! and blocks of size 8 js obtained by considering each point of D as a group. By
inflating D by a factor of 6 (using G, which contains a transversal), then adjoining an
ideal point ooto each group, the required BIBD(5v-+1,6,1) is obtained. (]

Lemma 3.18. If v = 577 or v = 2457, then C(v) = B(v).
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Proof. For v =577, proceed as follows. Let T be a TD(5,24) with groups
G1,Gg,.-,Gs. Let cobe a point not in T. By replacing G; by a copy of a BIBD(25,5,1),
for 1 = 1,2,...,5, a BIBD(121,5,1) which contains a flat of order 25. Further, there is a
TD(5,114)—TD(5,18) since 114 = 4.24+18 (Lemma 3.4). Since 577 = 5(121—7)+7, then
C(577) = B(577). For v = 2457, note that there exists a BIBD(331,6,1) containing a
flat of order 68, by Lemma 3.15. Apply Lemma 3.9 with s = 3 and ¢t = 42, noting that
2457 = 8.265+-8.42+1. a

Lemma 3.17. Let S = {v:v =57 or 77 (mod100), 1557 v < 3277} and T = {777,
1157, 1177, 1457} If v €S U T, then C(v) = B(v).

Proof. For v = 777, we use Lemma 3.7. There is a resolvable BIBD(85,51). Using
s = 3 and t = 12 yields the result. For v = 1457, we use the resolvable BIBD(85,5,1)
and Lemma 3.7 with s =4 and ¢t = 6. The remaining cases follow from Lemma 3.3
with the following parameters.

80m+421+4 m t 20m+5 4t+1 [80m4214+4t m t 20m+5 4t+1
1157 13 24 265 97 2377 27 49 545 197
1177 13 29 265 117 2457 (see Lemma 3.16)
1557 18 24 365 07 2477 27 74 545 297
1577 18 29 365 117 2557 (see Lemma 3.14)
1657 18 49 365 197 2577 27 99 545 397
1677 18 54 365 217 2657 27 119 545 477
1757 18 74 365 297 2677 27 124 545 497
1777 18 79 365 317 2757 (see Lemma 3.14)
1857 19 79 385 317 2777 (see Lemma 3.14)
1877 2 24 445 97 2857 (see Lemma 3.14)
1957 (see Lemma 3.14) 2877 (see Lemma 3.14)
1977 22 49 445 197 2957 30 134 605 537
2057 24 29 485 117 2077 30 139 605 557
2077 22 74 445 297 3057 31 139 625 557
2157 24 54 485 217 3077 37 24 745 97
2177 22 99 445 307 3157 (see Lemma 3.14)
2257 24 79 485 317 3177 37 49 745 197
2277 27 24 545 97 3257 {see Lemma 3.14)
2357 24 104 485 417 3277 37 74 745 207
This establishes the lemma. o

Since it is shown in [9] that if v =57 or 77(mod 100) and v > 3277, then
C(v) = B(v), the preceding results can be summarized as follows.

Theorem 38.18. Let S = {17, 37, 57, 77, 137, 157, 177, 237, 257, 277, 337. 357, 377,
437, 457, 637, 757}). If v is a positive integer such that v =17 (mod20) and v € S,
then C(v) = B(v).

Let us consider the case of v =9 (mod20). Applying Lemma 3.3 to an integer
congruent to 17 (mod 20) yields a result for an integer congruent to 9 (mod20). We
observe that the results of the previous theorem, together with Lemma 3.3, show that
for v =69 (mod80) and v > 3109, then C(v) = B(v). It is also shown in [9] that if
v =9 (mod20) and v > 13469, then C(v) = B(v). The following lemma is useful in
improving these results.
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Lemma 3.18. Let u =20m+17 where m >4 and C(u)=B(u). If
v =20m+29 (mod60), and v satisfies 320m+329 <v <1280m+1109, then
C(v) = B(v).

Proof. Let n be an integer satisfying 4m+4 <n <u, and let @ = u—n. Apply
Lemma 3.1. Since C(u) = B(u), then C(4u+1) = B(4u+1) by Lemma 3.3. The con-
dition n > 4m+4 and n < u guarantees that 0 < a < 4n+l.

First consider the set of n satisfying 5m+4 <n <u. Since m >4, then
3n+1 > 52, and there exists a TD(6,3n+1). Since n >'5m+4, then a < 3n+1. Apply
Lemma 3.4 (using the fact that there exist a TD(5,4)—TD(5,0) and a TD(5,5)=TD(5,1))
to obtain a TD(54(3n+1)+a)~TD(5,a). Then Lemma 3.1 states that for
v = 20m+29 (mod 60) and v lying in the interval 380m+329 < v < 1280m+1109, we
have C(v) = B(v).

Now consider n satisfying 4m+4 <v <5m+4. Let z = 12n+4~3a. For v in
this range, we have 0 <z <a; and since m >4, then a > 52, so there exists a
TD(6,a). Since 4a+z = 12n+4+a, there exists a TD(5,12n+4+a)—TD(5,a) provided
that there is a TD(5,z). However, there exists a T7D(5,z) for all non-negative integers z
except for z in {2,3,6,10). (The existence of a TD(5,13) was shown by Todorov, [12)).
But by definition, z = 1 (mod3). Hence we need only consider the case of z = 10. In
this case, 4n—a = 2. However n+a = 20m+17, so 5n = 20m+19, so no such integer
n exists. a

Lemma 3.20. Let v be an integer satisfying v = 49 (mod 60). If v > 1609, then
C(v) = B(v).

Proof. For v > 13469, the result is established in [9]. For the remaining values we
“use Lemma 3.18 with parameters as in the following table.

u values covered

97 1609-6229
217 3529-13909

This establishes the lemma. o

Lemma 8.21. Let v be an integer satisfying v =9 (mod60). If v > 1929, then
C(v) = B(v).

Proof. For v > 13467, the result is established in [0). For the remaining values we
use Lemma 3.18 as in the following table.

u values covered

117 1929-7509
207 4809-19029

This establishes the lemma. n}

Lemma 38.22. Let v be an integer satisfying v =29 (mod60). If v > 3209, then
C(v) = B(v).

Proof. For v > 13469, the result is established in [9]. For the remaining values, we
use Lemma 3.19 with the parameters in the following table.
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u values covered

197 3209-12629
317 5129-20309

This establishes the lemma. u}
As a result of the above, we have the following.

Lemma 3.23. Let v be an integer congruent to 9 (mod20). If v > 3209, then
C(v) = B(v). Values below 3209 are treated below.

Theorem 3.24. Let S = {389, 469, 789, 869, 1189, 1269, 1589, 1809, 1669, 1729, 1789,
1849, 1809, 1920, 1969, 1989, 2009, 20209, 2049, 2069, 2089, 2109, 2149, 2169, 2209, 2229,
2269, 2289, 2309, 2349}. Then C(v) = B(v).

Proof. If v # 2009, then the results follow from Lemmas 3.3, 3.20 and 3.21. For
v = 2009, we use Lemma 3.2, noting that there is resolvable BIBD(405,5,1), and
C(389) = B(389). O

Theorem 3.24. Suppose v is congruent to 9 (mod20) and v >2369. Let S = {2369,
2429, 2669, 2729, 2849, 3029, 3149}. Then C(v) = B(v) with the possible exception of
vin S.

Proof. In [9), it is shown that if v = 89 (mod 100) and v > 2389, or if v =9 (mod 100)
and v > 2509, or if v = 69 (mod 100) and v > 2869, then C(v) = B(v). These results,
together with Lemmas 3.20, 3.21 and 3.23 establish the result for all v except for
v = 2549, This case is treated by Lemma 3.8. Since there exists a TD(5,104), there
exists a BIBD(521,5.1) which contains a flat of order 105. Note that by Lemma 3.4,
there is a TD(5,507)—TD(5,01) since 507 = 104.4+01. Also 469 = 5(105—14)+14, and
since C(460) = B(469), then C(2549) = B(2549), as required. o
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