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ABSTRACT

The type of a 3-factorization of 3K, is the pair (¢,3), where ¢ is
the number of doubly repeated edges in 3-factors, and (;) — 38 is the
number of triply repeated edges in 3-factors. We determine the spec-
trum of types of 3-factorizations of 3Ky, for all n > 6; for each n 28,
there are: 43 pairs (t,s) meeting numerical conditions which are not
types and all others are types. These 3-factorizations lead to threefold
triple systems of different types.

1. The 3-factorization problem.

A 9-factor of a multigraph G = (V,E) is a spanning cubic submultigraph of G; a
3-factorization ¥ = {F),..,Fy} is a partition of the edges of G into 3-factors. For a
graph G, the multigraph MG is formed by repeating each edge of G X times.

In this paper, we consider 3-factorizations of 3K,,. Our primary motivation is
that the standard recursive construction for producing a triple system of index three
and order 2v + 1 from one of order v employs a 3-factorization of 3K 4. Dilferent
3-factorizations lead to different triple systems of index 3. Most importantly, any
induced 2K, (doubly repeated edge) in a factor leads to a triple appearing twice in the
triple system, and any 3K, leads to a triple appearing three times in the triple system.
Hence we consider the following question: In a 3-factorization of 3K,,, how many
induced 2K,'s and how many 3K,’s can appear ¢n total in the collection of 3-factors?

Let G be a d-regular graph on 2n vertices, and let ¥ = {F},...,Fy} be a 3-factori-
zation of 3G. The type of ¥ is (t,s), where ¢ is the number of induced 2K,'s, and s is
the number of edges of G not appearing in 3/,’s in factors of F. ¥ is called an
(n.d,t,s) 3-factorization.

Now let T(G) be the set of all 3-factorizations of G, and let §, 4 be the set of all
d-regular graphs on 2n vertices whose complements are 1-factorizable.

We are interested in possible types of 3-factorizations; hence we define
$(G) = {(t.a): (¢,3) is the type of some ¥ € T(G)}, and S(nd)= | S(G). Our

GEef.,
goal is to determine ${n,2n—1). )

In section two, we determine necessary conditions for (t,s) € S(n,d). Let
A(nd) = {(t,s): 0 <t <s <nd} \{(0.1), (0:2), (03), (0.4), (0,5), (0.7), (0.8), (1.1),
1,2), (1,3), (1,4), (1,8), (1,8), (1,7), (1,8), (1.9), (1,10), (1,11), (2.2), (2,3), (2.4), (2.5),
(2,8), (2,7), (2.8), (2,9), (2,10), (3,3), (3,4), (3,5), (3,8), (3,7), (3.8), (3,10), (4,5), (4,7),
(4,8), (5,5), (5,8), (5,7), (5.8), (5,9), (5,10)}.
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Main Theorem: For n > 8, §(n,2n~1) = A(n,2n—1).

We prove the sufficiency by developing recursive constructions in section 3, and
developing a large number of small examples in subsequent sections.

Before proving the Main Theorem, we remark on some related research. Lindner
and Wallis (3] settled the analogous problem for 2-factorizations of 2K,,; in our exten-
sion to A=3, we have chosen the most detailed generalization, by treating doubly and
triply repeated edges separately. The main application of these results on factoriza-
tions is in the construction of triple systems of index \ with prescribed numbers of
repeated blocks. For =2, this problem has been settled by Rosa and Hoffman [5]; for
A=3, two extensions have been considered. Milici and Quattrocchi {4] determined the
possible numbers of triply repeated blocks, and Colbourn and Mahmoodian [1] deter-
mined the possible numbers of distinct blocks. The Main Theorem proved here is a
first step in obtaining a more detailed classification which treats doubly and triply
repeated blocks separately.

The classification of factorizations by numbers of repeated edges is also related to
the neighbourhood problem [2]; in the neighbourhood problem, the isomorphism type of
one neighbourhood is specified completely. Extending current results to more than one
neighbourhood seems hopeless at present; however, relaxing the requirements so that
the numbers of repeated edges in neighbourhoods is specified reduces to the determina-
tion of the possible numbers for repeated blocks. While a still more detailed classifica-
tion may yield information about individual neighbourhoods, we do not attempt to
further complicate the problem addressed here!

2. Necessary Conditions.

In this section, we establish the necessity of the conditions in the main theorem.
Given a 3-factorization ¥, the remainder of ¥ is the graph with edge set {e: ¢ does not
appear in a 3-times repeated edge in ¥}, and is denoted R(¥). Each edge in R(%)
appears either in two or in three distinct factors of 7. Each factor F; of ¥ induces a
(possibly empty) cubic submultigraph G; on the edges of 3R(¥); each G; naturally con-
tains no three-times repeated edges. We call the G;'s portions.

Observation 2.1: A vertex v of R(¥) belongs to precisely deg(v) portions in {G;),
where deg(v) is the degree of v in R(¥). O

We make frequent reference to the following portions; these are the only portions
with fewer than eight vertices:

Cs{ x Cs
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No vertex has degree 1 in R(¥) and, moreover, R(¥) has at least four vertices of
nonzero degree. Furthermore, no portion can have more two-times repeated edges
than singly repeated edges, and hence we have

Observation 2.2: The number of two-times repeated edges cannot exceed the number
of edges in R(¥). O

A lower bound on the number of two-times repeated edges can be determined by
considering vertices of degree 2:

Lemma 2.3: Let T be the subgraph of R(¥) induced on the vertices of degree 2.
Suppose that T consists of ¢ cycles of total length ¢, and p paths of total length e,.
Then the number of two-times repeated edges is at least £, + €, + 2p.

Proof. Consider an edge ¢ incident with a vertex in T. The three copies of this edge
in 3R(¥) must be allocated so that two copies are in one portion and the remaining
copy in a different portion. Hence the pumber of two-times repeated edges in ¥ must
be at least the number of edges incident with vertices of T in R(¥); this number is

¢, +¢,+2.0

Now we can prove necessity:
Lemma 2.4. If (t,3) g A(n,d), there is no (n,d) 3-factorization of type (¢,s).

Proof. We may assume 0 <t < s < nd, from elementary considerations and
observation 2.2. Now let us consider cases for s.

If 8 = 1,2, or 3, there is no graph on four vertices with minimum degree 2 and s
edges. For s = 4, the only graph permitted is Cy, and by lemma 2.3 we must have
¢t = 4 as well. For s = 5, there are three portions each with at least four vertices for a
total of at least 6 > 5 edges.

If s = 6, we may only use two portions of size 6 or three portions of size 4. Since
the only portion of size 6 on at most 6 edges is Cj, this requires ¢ = 6. Otherwise we
must use portions B, and By, and hence ¢ must be even. For ¢t <6, we must use a
portion of B, and hence R(¥) would be K for t <2, we must take two portions of
B,, leaving a third portion which is also By, and hence t = 0. Thus ¢t =2, s =6s
impossible.

For 8 = 7, we must take one portion of size 8 and two of size 4. If either portion
of size 4 is B,, R(¥) contains a K and the seventh edge must conpect to a vertex in
R(¥) which necessarily has degree 1, a contradiction. Hence two of the portions are
B,. The portion of size 8 can have at most 7 distinct edges and hence is Cy, Cs or Cg;
in any case, we must have t = 6 or 7.

For s = 8, we must take either four portions of size 4, or one of size 4 and two of
size 6. In either case, if a portion of size 4 is By, then R(¥)is
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Hence there‘can be no portions of size 6 if B, is a portion. Moreover, if two por-
tions are B,, no portion of B; remains. Finally, if three portions of B, are included,
what remains is two three-times repeated edges. Hence, if B, is a portion, the remain-
ing three portions are B, and we have ¢ = 6. So let all portions of size 4 be Ba. This
leads to ¢t = 8 if all portions have size 4. Moreover, if tie two portions of size 6 are
Cy Cs or Cg, we have ¢ > 6. Thus if ¢ <5, we must have Cj as a portion and hence

R(¥)is

The removal of a portion C, and a portion B, leaves only six distinct edges, and
hence any remaining portion is necessarily Cs, giving t > 6.

Now consider s = 9. We may have three portions of size 6, or one of size 6 and
three of size 4. (By Lemma 2.3, a portion of size 8 necessitates ¢ 28.) To obtain
¢t =1, we must have a portion of Cy; hence R(¥) contains S, with one additional edge
and hence R(¥) cannot contain C, or Cp. Now if R(¥) contains B,,itis

This forces at least one of the portions to be B, and hence ¢ % 1. To obtain ¢ = 2,
the same argument shows that no portion is Cj.

Now if a portion were C; or C,, no portion is B, and so portions of size 4 lead to
t > 6. Moreover, there cannot be a portion of C, and a portion of C,. Finally, two
portions of C, or two of C, force the third to be the same; hence the remaining two
portions are from {C,,C5,Cs}; but then ¢ > 4. At this point, no portion is Cy, C,, or
C3. Hence some portion is C, or Cs, and the other portions are all B,; this requires
that R(¥) contain two K,’s intersecting in at most one edge, and hence s > 9. Thus ¢
cannot be 2.

For ¢t = §, C3 cannot be a portion since our earlier argument shows that R(¥)
must be T, and taking portions C; and B, forces the selection of another portion of
B,.

For s = 10, we may take five portions of size 4, or two of size 6 and two of size 4.
(Portions of size 8 lead to ¢ > 7 by Lemma 2.3.) In the first case, ¢ is necessarily even
since each portion is B or By; in addition, if ¢t = 2, we have 4 portions of B, and
hence R(¥) is K; removing any four K,'s from K, leaves a fifth K, and hence ¢ can-
not be 2.

Now consider two portions of size 8 and two of size 4.

If C; is a portion, R(¥) necessarily has degree sequence 473", If in addition B, is
a portion, R(¥) must contain a K, involving the two vertices of degree 4. It is easily
checked that no such graph exists. Similarly, neither C, nor C, is a portion provided
Cj; is, since R(¥) must have the vertices of degree 4 adjacent if it contains C, or Cy,
but they must be nonadjacent if it contains Cz. Hence including C; leads to ¢ > 6.
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If ¢, or C, is a portion, By is not and hence t = 4 or ¢t 2> 6. Thus we are only
allowed portions of size 6 from {C,,Cs,Co} and hence t 2> 4. To eliminate ¢ =5,
observe that we must have two portions which are B;. If these are on the same four
vertices, neither remaining portion can be Cg and hence ¢ = 4. Otherwise, R(¥) con-
tains

since if the two K 's intersect in two or fewer vertices, more than ten edges are
needed. But then R(F) is either Kg or has a vertex of degree one, and both are con-
tradictions.

Finally consider s = 11, ¢ == 1. If there are portions of size 8, R(¥) must have a
vertex of degree 2 and hence by. Lemma.2.3, ¢ > 1. Thus C3 must be a portion, andi
the remaining portions are all simple; we have either four portions of B,, or one por-
tion of B, and two from {€),C3}.

First consider four portions of By's. If two such portions intersect in only two
vertices, R(¥) is

&

and the centre edge must be taken four times, a contradiction.

Thus there must be two portions of size 6, and hence the degree sequence of R(¥)
is 4132 (since B, is a portion, the degree sequence 4!3% on seven vertices is eliminated).
Now the two vertices of degree 3 in R(¥) must be adjacent if R(¥) is to contain B,.
Then the doubly repeated edge in the Cj portion cannot appear on an edge incident
with one of the degree 3 vertices since each such edge appears in each of the three por-
tions of size 6. Hence the doubly repeated edges appear on the same set of vertices as
does the B,. But then removing the portions of B, and Cj leaves only ten distinct
edges. Hence either both remaining portions are C/'s or both are C,'s. In either case,
both portions be identical since otherwise more than eleven edges are needed. But
then the two edges not in these portions lead to at least two doubly repeated edges.

In all cases forbidden by the necessary conditions, no set of suitable portions
exists and hence the proof is complete. O
3. Recursive constructions.

To prove sufficiency of the conditions in the main theorem, we adopt a three
stage approach. First, some special small 3-factorizations are explicitly constructed.
Second, a rich set of constructions is applied to these initial structures to establish that
for a suitably chosen ng, the theorem holds for all nq <n <21y —1. Third, a stan-
dard recursive construction is then used to establish the theorem for all n 2> ng. The
third stage is the most standard (and the easiest); hence we dispose with it first.

We use one very simple construction.
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Construction A (basic construction). Let G be a d-regular graph on 2n vertices
with 1-factorization F),...,Fy. Then 3G has a 3-factorization ¥ of type (tn,sn) for all
0 <t <3 <d except for (t,s) = (0,1), (0,2), (1,1), (1,2) or (1,3).

Proof. Form permutations ¢ and  on {1,...,d} so that the d sets {{i,(¢),7(i)}:
1 =1,.,d } consist of d — s sets consisting of a number repeated three times, and ¢ of
the sets consist of one element twice and a different element once. This is easily done
with the exceptions listed above. Now the.required 3-factorization has 3-factors

{{Fn U Fé(,') U F,(,')}: t = 1,...,d}. u]

Lemma 3.1. If n >4 and §(n,2n—1) = A(n,2n—1), then
$(2n,4n—1) = A(2n,4n—1) and
S(2n+1,4n+1) = A(2n+1,4n+1).

Proof. Let (t,5) € A(2n+z,4n—1+2z), z €{0,1}. Now write
t =t + ty(n+z) + t3(2n+z)
8 = 8) + 3g(n+z) + s;3(2n+z)
so that ¢; and s, are as large as possible subject to the constraints
0<t) <8y <n(2n-1),
0<t;<8<2n —1, and
0<t; <93<2n + 2z

and (2,82),(t3,83) # (0,1), (0,2), (1,1), (1,2), (1,3). Now if s < n(2n-1), 8, =3 and
8y = 83 = 0. Otherwise we may ensure that 8, > n(2n—1) — 3(n+z), and hence for
n 24, (¢,8,) €EA(n,2n-1).

A commutative Latin square of side 4n + 2z with constant diagonal containing a
subsquare of side 2n yields a 1-factorization. The 1-factors corresponding to the
subsquare induce a disconnected graph Kan U G, where G is a 1-factorizable graph on
2n + 2z vertices; the remaining 1-factors induce a disjoint graph H on 4n + 2z ver-
tices.

Let Fy -+ - Fy,_; be a 3-factorization of type (¢,,8,) of 3Ky,. Let Gy,...,Gpp_, be
a 3-factorization of type (ty(n+z),s,(n+2z)) of 3G, and let H,,...Ho, .. be a 3-factori-
zation of type (t3(2n-+z),85(2n+2)) of 3H. Then

{{F,UG)i=1.2n-1}U {H;: 1 j <2422}
is a 3-factorization of type (¢,5) and hence (¢,5) € §(2n+z,4n—1+2z). O

Lemma 3.1 ensures that the Main Theorem holds once we have established it in
an interval ng <n <2ng — 1. At the same time, we want ng to be "small”, so as to
leave relatively few exceptions; hence we introduce a large set of specialized construe-
tions, primarily designed to settle small cases.

Construction B (addition): If (24,3,) € $(G) and (t,,8,) € S(H), where G and H are

138



6¢1

jousy 91— ug = pJ| ‘1U1-¥yr jo ydeadqns Jendal-p v H JOJ DE 3214019Y)

{*m} s1099€) aqL ‘% U Jeadde fo''a} 1873 SIWLY JO JAQUWNU JWES 7Y {!z**A} a3pa
apnjout pue %y u) sreadde {a‘'a} 187y sowy Jo JaqEINT JWeS oY) (‘Az} pue {216}
sa8pa apnjout “gy uy smofo} se {Py‘--*1 g} s10408j-¢ WI0] fi-uiziestz) O (179018}
795 xa3d94 WO {1~ ¥%at‘labo} 995 X314aA Aty {Pg "V} = £ 397 °jooad

I — ug > p paptaoad (p'1—ug)s S (H)s '4sa0210m

11-Ug'1=US 31 10 ydessqns Jendai-p e H awos 3of (9)§ D (>+(1—uz)-93'P— 12)

uay], ‘se8pa pateadas £|di1y o pue pajeadal A[QROpP p 03 JUIPITL £ JO XA 8 2q00
1277 *(p‘u)s w (s'7) ad£y Jo UOlIEZLIONE]-E © 2q £ 137 :(sjqnop-1) A uolydnIsUO))

‘ 130908)-1
e [ [} = 1"WEIT¥e )y Jo) uoljezI0E] B gM pajuamajddns s| (@ TOIPNIISTOD
o (p'1—ug)s Ul st 9d43 513 pue (o+(1—ug)—te+'s p—F1+17) 81 £ Jo 2dMy
ay3 ‘saBpa pajeadas A|duy 2 pue pajeadal L|qnop p 01 JWIPLU] §100 Ji ‘J9A0ION
aopeg-1e £ {f} N (1T NITN)
jo ydesSqns JenBas-p € D oWOS Joj DE 2LLOPE) sIOPEYE p 3],
.JJ
uy sawy w sseadde {’z**6} a8pa ‘(J4 Wi Jo) [y Wl sWY w sseadde {‘abo} a8pa jt ()
-1 Ut sowny w syeadde {z¢%z} 98pa * Ly W sawyy w sivadde {‘atta} 33pa 1 (q)
+17 Uy somp w sseadde {¥*'A} a8pa 11 Ul sowy w sreadde {‘ata} 33pa ji (e)
ismo|[0) S& pauyap st L asaym { Pyl g} s10308)-g Qam {1-vezietlz) O {17UEAS1A)
495 X2142A UO £ UOIJBZII0}08]-§ © WIIOJ MON ‘54 pus {4 u1 semyy Jo JoquIny
awses o1y sseadde {!abo} a8pa ay3 ‘p S £ S 1 puUE 1-u3 S + 1 goea Joj 9873 pue
{1-Y%a+Tabo} 495 X243 JWeES 373 UO are {fd""‘%d‘gd} = £ pus (Pt T 14} = £
jeqq uoyippe U1 asoddng “Ajaar3dadsas (%s*%3) pue (1s*!7) adfy Jo P’ f ui sqdesd
(1uasagyip £|qissod) Jo SUONBZIIOIE)-E 3] £ PUT £ 13T :(@911ds-1) @ uoIINIYSUOD

~9x9u
s1yy dojoaap am 2+¥¥ 3y Joj A331849s Jejiunis B aIMbal oM +Ub3r jo qdeadqns e jo woljBZ
-140308)-g © WJOJ 07 43419803 UAYE] 2q TED puUE JUIOfEIP I8 £10398)-¢ Burynsad oY) SNy
UTUSy jo gdesdqns € JO UOLIRZLIOIE)-E ® Sp|al4 D TOIIPNIEUOD M YTy N Yoy
jo ydesSqns ® Jo uUOIEzMOYE)-E € Pk U= lu = u QM @ UTOONIISUOD

R IR T P Y (L W O NGl

s10198)-g sey Og Y ¥z1z} N {¥Ae*1A} 995 x9943A UO 9 WIOY] o vzt la}
sas1idoa uo H¢ qdesd e jo (£3) ad£y jo wolIBZlI0I08)-E © 3q {’..-I‘"'“d} j97 ‘Jooad

(p*ug)s D (sz'1g) 9°uay pue +uz'ulys 10 ydesdqns Jen3ai-p
e o awos 10§ (D)§ D (53'15) vy (ptu)s D (1) 31 :(3uriqnop) O uoINIIEUCD

:U2'¥S 3 Bu1z1I0908)-¢ J0] POyl € dOjaAdp 310J3I3YT IM My = N D
aouay ¥y = g = o ‘g uondnlsmo)y ul [ — luz = p pue %um=lu UM

-aqezi1098)-1 81 J N D papiroad (pPutlu)s
S (H N D)8 D (Pe+'9%417) ‘Ajpanrdadsal 53013434 Zu pue 'u uo sydesd Jen3dai-p



1-factorizable; for d <2n ~ 1, G is 1-factorizable and hence
(2t—d,2s—(2n—1)4c) € $(2n—1,d). O

We exploit one further simple construction which is not well sujted as a general
construction because it is difficult to predict its effect on repetition of edges; neverthe-
less it is extremely useful in settling small cases.

Construction F (trade): Let ¥ = (F\,...,F;) be a 3-factorization of 3G for G € Gna
Let M; be a matching in F; and M; be a matching in F; (i # 7), and suppose that M;
and M; are the same size and on the same vertex set. Then replacing [F; by

F;\M; U M; and F; by F;\M; U M; yields a 3-factorization of 3G. O

In most applications of Construction F, we take M; and M; to be perfect match-
ings (= 1-factors); in addition, Construction F is very useful in extending a 3-factoriza-
tion for G € G, 4., to one for (G U F) € G, 4 for F a 1-factor of G. We call such an
application of construction F an f-trade.

Naturally we expect that trading would construct essentially all 3-factorizations of
K,, given any one; howéver, we use the construction sparingly because verification
that a long sequence of trades constructs a desired example can be quite tedious.

Construction D can be generalized to splice factorizations of different sizes pro-
vided they have the same degree. In general, we are left with the task of determining
that the complement of the result is 1-factorizable. For degree 3, however, 1-factoriza-
bility of the complement is guaranteed by a result of Rosa and Wallis [6].

Construction G (cubic expansion): Let G € G n 3 be l-factorizable. A vertex v of
‘G is assigned one of the five types, based on its neighbourhood in the three 3-factors
{F1,Fy,F3} of 3G. The five types are depicted here (the neighbourhood of v is shown

S
i £
L

e s

type 1
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The replacement of v by a triangle, and the obvious extension of the 3-factors produces
factorizations for G' € G413 if (£,8) € S(G), we obtain factorizations of G' of the fol-
lowing types according to the type of v:

type (v)  type of factorization in ${n+1,3)

1 (t,s+3)
2 (t+2,543)
3 (t+3,5+3)
4 (t+2,542)
5 (t,3)

This cubic expansion can be viewed as a 1-splice with K ; although easily general-
ized, it is sufficient for our purposes.

4. Small CasesI: n <3.

With the battery of recursive constructions in hand, we are required to construct
relatively few 3-factorizations explicitly. Nevertheless, a very substantial task remdins.
Using constructions A —G and direct constructions, we establish that
$(n,2n=1) = A(n,2n—1) for 6 <n <11; the smallest of these, 5(6,11) contains 2235
cases to consider. Naturally, we do not consider each case explicitly; rather we
describe starting configurations and assume that constructions A — E, G are applied
to these wherever possible. We do, however, remark explicitly when construction F is
used since the verification here is most difficult.

For n =1 and n = 2, we have $(n,2n—1) = 4(n,2n—1); the basic construction
suffices here. Hence the first cases of interest are $(3,d) for 0 <d < 5. It is an easy
exercise to wverify that $§(n,0) = $(n,1) =:{(00)}. Moreover, §(n.2)=
{(t.t): 0 <t <2n, t even, t # 2,2n—2}, sinee any two disjoint 1-factors in K, can
be completed to a 1-factorization:{6].

The remaining values of d -are ot settled so easily,-even for-n-= 3. There are
nine possible 3-factors:

Py = 3K, U 3K, U 3K,,
P, =C;, 1 = 1,..8,

P; = B, U 3K, and

Py = B, U 3K,.
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By computer, we found 575 3-factorizations of K, each with a distinct subset of
these nine factors. (Remarkably, this means that there are at least 575 nonisomorphic
(11,3,3) designs having a (5,3,3)-subdesign, by applying the v — 2v + 1 construction).
Those with two factors of Py lead to solutions in §(3,3), while those with one factor of
Po lead to solutions in $(3,4). We exhibit representative solutions here for the cases in
which constructions A — E, G fail to provide a solution of that type.

(4,9)€8(3,3)

(6,8)€S8(3,3)

S

N
4

(7.8)€8(3,3)

T

=R UR)

QO

(7,9)€5(3,3)

Next we consider §(3,4):

(1,12)€S(3,4)

(2,11)€8(3,4)

SR%
488

P B
e oh o

(2,12)€5(3,4)

(4,11)€8(3,4)

X £
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Many of the values in §(3,5) are determined by applying Construction A together
with factorizations in S(3,d), d <5. We also apply f-trades to the 3-factorizations
shown above; applying one or two (obvious) f-trades yields the following:

(t,8) € 5(3.4) one f-trade two f-trades
(1,12) (4,15) (1.15)
(2,11) (5,14) (2.14)
(2,12) (2,15)
(4,12) (5,15)

(s,11) (8,14) (3,14),(4,14)
(7,10) (8,13)

(7.11) (7,14),(10,14)

(7.12) (7,15),(8,15)

(8,10) (10,13)

{8,11) (8,14)

(9,10) (9,13),(11,13),(12,13)

(9,11) (9,14),(11,14)

(10,10) (13,13),(14,14)

(11,12) (11,15),(14,15)

We exhibit the eleven remaining values in §(3,5):

o7 S TN
o 5 O 7 2
iy G O 2

o d O 27,
% % Y X% %
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(2.13)63(3»5)®‘ % % % <7/
mmenngf O NS 47 £
(4.13)63(3,5)% % % <V/ %

(5,13)€5(3,5)

- Fe W2

o 40 ) 2

NA

(7,13)€5(3,5) o

VAV A

N\

The sequence of constructions given here shows that A(3,5)\{(0,6), (0,11), (3,9),
(3.11), (4,4), (4,8), (4,10), (8,7), (7.,7), (8,9), (11,11)} C §(3,5). In fact, an exhaustive
computer search shows that equality holds here. This large number of exceptions for
n = 3 makes our problem more complicated since they leave "holes” in the recursion

-4\ 7, £

which must be handled separately.

5. Small Cases II: n = 4.

First we consider $(4,3). From constructions A,B and C, we obtain

{(0,0),(0,6),(0,12),(4,4),(4,8),(4,10),(4,12),

(6.8),(8,12),(8,8),(8,10),(8,12),(10,10),(10,12),(12,12)} C §(4,3).

In addition, applying cubic expansion to a factorization of G € G 3 establishes that

{(8,11),(9,9),(9,10),(9,11),(8,12),(10,11)} C §(4,3).

We also employ some direct constructions:
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We also use f-trades on the factorizations pictured above as follows:

3-factorization in §(4,3) result after f-trades

(6,7) (10,13) € S(4.4)
(4,17) € §(4,5)

(8,17) € $(4.,5)

(12,13) € §(4.4)

(5,14) € 5(4,4)

(6,14) € S(4,4)

(7,14) € S(4.4)

(8.14) € S(4.4)

(5.18) € §(4,5)

(6.9) (9,14) € $(4,4)
. (4,15) € S(4.4)

(5,15) € S(4.4)
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(6,11)

(7.7)

(7.12)

Now (4,14) €5(44) by [f-trades from the solution (0,6) € §(4,3).

(10.11) € §(4,3), as depicted here:

oo O

F-trades from this factorization show
(3,15) € §(4,4)

(14,15) € $(4,4)
(13,15) € S(4,4)
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(6,15) € S$(4,4)
(4,19) € $(4,5)
(4,23) € §(4,8)
(5,19) € §(4,5)
(5,23) € §(4,8)
(8,15) € §(4,9)
(10,15) € $(4,4)
(11,18) € §(4,4)
(3,18) € §(4,4)
(5,16) € §(+4,4)
(6,18) € §(4,4)
(2,15) € §(4,4)
(1,18) € S(4,4)
(1,20) € §(4,5)
(5,20) € 5(4,5)
(1,24) € §(4,8)
(5,24) € §(4,6)
(3,20) € §(4,5)
(3,24) € 5(4,8)
(2,19) € $(4,5)
(2,23) € §(4,8)
(2.27) € S(4,7)
(11,13) € §(4,4)
(13,13) € S(4,4)
(10,14) € §(4,4)
(7,15) € §(4,4)
(9,15) € S(4.4)
(11,15) € §(4,4)
(7,18) € §(4,4)
(2,16) € $(4,4)
(10,16) € §(4,4)
(9,18) € §(4,4)
(2,20) € §(4,5)
(2,24) € §(4,8)




(12,15) € $(4,4)
(15,18) € $(4,4)
(3,19) € 5(4,5)
(7,19) € $(4.5)
(3,23) €5(4,6)
(7,23) € 5(4,8)
(3,27) € $(4,7)
(7,27) € $(4.7)

Consider (8,10) € $(4,3) as depicted here.

7\ <

F-trades from this factorization show

(2,14) € S(4,4)
(2,18) € $(4,5)
(2,22) € $(4.8)
(2,26) € 5(4,7)
(12,14) € S(4.4)

Similar f-trades to show {(11,14), (13,14), (12,16), (14,14), (14,16),
(15,16)} C $(4,4) are easy to find. We require one further “ad hoc" example:

) G B G

All of the solutions in $(4,4) presented thus far are in fact constructions in S(K44)-
Hence we can combine all of them with available factorizations in S(K,U K ). Thisis
our main strategy; we supplement it only with certain small examples, given next.

wen S D )

{(0,17), (1,17), (2,17), (3,17)} C §(4,5): Taking

oF: AR

as partial 3-factors leaves
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to be 2-factorized, which can be done with 0,1,2, or 3 repeated edges.

(3,11)63(4,5)§ § @ )’ _ M/ /

Combining all of the small examples here, and the observations made, we do not
determine §(4,7) completely. However, we have established that A(4,7)\L C §(4,7)
where L is given in the table here.

L]
9,10,11,13,14,25
12,13,14,15,18,19,21,23,25,26,27
11,12,13,19,25
12,13,14,18,23,25
9,11,13,17,25
11,12,13,17,25
8,10
8,9,10,11,25
13
13
12

© 00 VLA W= O

—
—

While many of these could be settled affirmatively, we suspect that
$(4,7) % A(4,7), and hence have determined only those cases most useful in our recur-
sion.

8. Small Cases III. n = 5.

Since there are over five hundred cases for $(5,9), we describe only the basic
methods used. Primarily, constructions D and E are applied to the 3-factorizations of
K¢. F-trades are applied in a few cases as follows:

Input factorization After f-trade
(0,22) € §(5,5) (0,27) € 5(5.6), (0,32) € $(5,7)
(0,23) € §(5,5) (0,28) € $(5,6)
(0,24) € $(5,5) (0,29) € §(5,8)

(1,21) € §(5,5) (1,28) € $(5,6), (1,31) € §(5.7)
(1,22) €5(558)  (1,27) €5(5,6), (1,32) € §(5,7)

(1,23) € §(5,5) (1,28) € §(5,6)
(1,24) € $(5,5) (1,29) € §(5,6)
(2.21) €5(55)  (2,28) € 5(5,6), (2,31) € 5(5,7)
(2,22) € §(5,5) (2,27) € $(5,6)

« 150




(2,23) € $(5,5) (2,28) € 5(5,8)
(2,24) € 8(5,5) (2,29) € §(5,8)
(3,22) € 5(5,5) (3,27) € 8(5,8), (3,32) €5(5,7)

We also construct (3,8) € §(5,4) and (3,11) € $(5,5) similarly to these cases for
n = 4. We employ two additional factorizations.

(440)6(&0@ ‘Q @ @

~ /7 s

To show (11,11) € §(5,5), we depict only the portions; their completion to 3-fac-
tors is straightforward:

X EY =

With these examples and those constructed by f-trades, we have
A(5,9)\M = 5(5,9), where M is given in the table below.

8

11,12,13,14,17
12-17
11-16
12-17
11,12,16
11-16
11,13
10-13,16
11,12
11,12,13
11

S50 ®~Neos W= Ol

7. Intermediate cases: 8 <n <11,

For n = 6, constructions B and C settle the bulk of the cases. We explicitly con-
struct (3,9) € §(6,4) and (3,11) € 5(8,5) by modifying the 3-factorizations for n =5
given earlier. For (0,11)ES$(8,4), we form 2 factorization by completing the following
portions:

S %7
[ ]
For the remaining values, we observe that addition of two factorizations of Kg pro-

duces a factorization of Kg U K. Since (4,4) € $(Kqg), we obtain the following:
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(t,s) ES(Ks U Kg)  (t',8") € $(6,11)

(0,13) (4,17)
(1,13) (5,17)
(1,14) (5.18)
(1,15) (5.19)
(3,12) (7,16)

A similar construction is to form a 1-factorization {F},....Fg} of Kgg so that some
factor F of the 3-factorization of Kg U Kg has two 3-times repeated edges {e,/} so
that Fy U Fy U {e,/} contains a K,. Then triplicating each factor, and replacing the
factorization of the resulting 3K, by a K in each of F|, F; and F accomplishes the
following

(t.s) ES(KgU Kg) (t',s") € 8(8,11)

(0,10) (0,18)
(1,12) (1,18)
(1,13) (1,19)
(1,14) (1,20)
(2,11) (2,17)
(2,12) (2.18)
(2,13) (2,19)
(3.12) (3,18)
(3,13) (3,19)
(3,14) (3,20)

The same strategy applies when e is chosen to be a 2-times repeated edge, giving

(t,8) ES(Kg U Kg) (the') e $(6,11)

(1,12) (0,17)
(2,12) (1,17)
(4,12) (3,17)

These cases, together with constructions A-E,G establish that 4 (6,11) = §(6,11).

Now we turn ton = 7. Although $(4,5) is far from being determined, addition of
values in §(4,5) with those in §(3,5), together with the example (0,11) € $(7.,4), estab-
lishes that A(7,5)\{(1,22),(1,23),(2,22)} C §(7,5). All of these values are realized in
$(Kg U (Kg—f~/")) where f,f' are 1-factors of K g It is an easy matter to 1-factor-
ize the complement in such a way that two of the 1-factors contain a C, in their union.
Appropriate placement of the C, so that it meets a two 3-times repeated edges in a
3-factor of 3(Kg U (Kg—f—/"), or in one two-times and one three-times repeated
edge, yields the following:

(t:8) €S(Kg U (Kg—/—/f") (t's") € 5(7,13)

(2,17) (1,22)
(1,17) (1,23)
(3,17) (2,22)

Applying constructions A-E,G together with these gives A4(7,13) = § (7,13).
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For 8 <n <11, addition alone suffices to show that A(n,5) = S(n,5), with one
exception which is easily constructed: (0,11) € §(8,4). The basic construction then
establishes that A(n,2n—1) = §(n,2n—1) for 8 <n <11

8. Conclusion.

In sections 4-7, we established that A(n,2n—1) = §(n,2n—1) for 6 <n <11
Hence the Main theorem follows directly from Lemma 3.1. Remarkably, our results
also prove the strong statement that A(n,5) = $(n,5) for n > 8; the Main Theorem for
n 2 8 follows easily from this.

A simpler problem than we have solved is to determine the support size of the
factorization, which is the sum over all factors of the number of distinct edges in the
factor. Naturally the support size of a 3-factorization of K, is at least n(2n-1) and
at most 3n(2n—1). A Corollary of our Main Theorem is a complete determination of
support sizes:

Theorem 2. Every s satisfying n(2n—1) < s < 3n(2n—1) is the support size of a
3-factorization of Kj, with the exception for n ® 3 of s n(2n—1) + ¢t for
t €{1,2,3,5}, and the exception of s = n(2n—1) + ¢t for t €{1,2,3,4,5,7} for n =3.0

The complete determination of $(n,2n—1) for n 2> 6 is useful primarily as a step-
ping stone in the classification of triple systems with index 3 according to numbers of
doubly and triply repeated blocks; we explore this problem in a forthcoming paper with
Mathon, Rosa and Shalaby.
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