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1. Introduction.

Determination of the number of non-isomorphic Balanced Incomplete Block
Designs with a given parameter set (v,b,r.k,A) is a problem of considerable
importance and even greater difficulty. Probably the case that has been most
studied is that of a Steiner Triple System (15, 35, 7, 3, 1); cf. Fisher 41,
Mathon and Rosa [7]. It is well known that there are eighty possible solutions
for this set of design parameters, and the different designs are a fruitful
source of examples and constructions. Since [4], there have been various
papers devoted to similar problems in Balanced Incomplete Block Designs
on a small number of varieties; cf., for example, [2], [3], [6], [14].

Stanton, Kalbfleisch, and Mullin [13] discussed the more general concept of
a covering design; in such a design, every variety pair occurs at least once
and we normally impose a minimality condition by demanding that the
cardinality of the design be as small as possible. It is clear that, in a covering
design, we may have to permit the repetition of a small number of pairs in
order to ensure that all pairs do appear. The analogue of the BIBD identity
bk =rv is the inequality

k N(tk,v) 2 v N(t-1, k-1, v-1),
where N(t,k,v) is the minimum cardinality of a family of k-sets that cover
every t-set from a given set of v elements (t <k < v). In this paper, we shall
only be concerned with pair coverings by sets of size 4, that is, the design

will contain N(2,4,v) blocks. It is well known (see, for example, Mills [9],
[10]) that, provided v is not contained in the set {7, 9, 10, 19}, then

N2,4,v) =V (v-1)/3) V41,

For various general results on covering designs, we refer to [13].
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Relatively little has been done in considering the number of non-isomorphic
solutions for covering designs. The case of quadruples on 9 symbols (one of
the four exceptional cases) was discussed in [12]; see also [1] for a small
correction. Other results for small values are given in [10] and [11]. In this
paper, we wish to consider the analogue of the case discussed in Fisher's
1940 paper; we have a variety set of 15 elements, but we wish to determine
the number of designs that cover all pairs (minimally) by quadruples. Since
N(2.4,15) = 19, we shall have a total of 19 quadruples in the design.

In a certain sense, 15 seems to be about the break point for manageable
designs. If we look at the case of triples and take v less than 15, then the
discussion is relatively simple. For example, if v is equal to 4, then N =3,
and the unique design may be taken as 123, 124, 134, with 3 repeated pairs.
If v=>5, then N = 4, and the unique design may be taken as 123, 145, 245,
345, with 2 repeated pairs. If v = 6, then N = 6, and the unique design may
be taken as 123, 145, 126, 245, 346, 356, with 3 repeated pairs. It is well
known that there are unique solutions for the case v = 7 (the Fano geometry
generated cyclically from the block 124) and for v = 9 (the affine geometry
found by deleting points 0, 1, 3, 9, from the projective geometry on 13
points generated cyclically from the block 0139). There are two solutions
for v = 13 (both are given in Marshall Hall's book or in [7]). We have
already noted that there are 80 solutions for v equal to 15. Forv greater than
15, the number of solutions climbs astronomically; the number for v = 19 is
not known, but Stinson and Seah [16] have shown that the number of triple
sytems S(2,3,19) that satisfy the additional very powerful constraint that they
contain both a subsystem S(2,3,7) and a subsystem S(2,3,9) is 13,529 (the
number containing a subsystem S(2,3,9) is 244,457). The total number of
systems on 19 points is well into the millions (cf. [17], where 2,395,687 are
found, and where it is estimated that the total number is of the order of 109).

2. Preliminary Results.

Since N(1,3,14) = 5, it is clear that any symbol i in a covering design on 15
elements has frequency at least 5. Since 19 quadruples only contain 76
elements, we immediately have

Lemma 1. The covering design with v = 15, k = 4, b = 19, has 14 elements
of frequency 5 and a single element of frequency 6.

Onc might be tempted to assign valence 6 to node E and to conceatrate on E,
together with its four neighbours A, B, C, D, in the excess graph (all the
repeated pairs form the edges of the excess graph). However, this leads to a
rather cumbersome array of subcases, namely,
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(1) EABC, EAD, EBD, EC, E, E;
(2) EABC, EA, EB, EC, ED, ED;
(3) EABC, EAD, EB, EC, ED, E;
(4)EAB, EAC, EBD, ECD, E, E;
(5) EAB, EAC, EBD, EC, ED, E;
(6) EAB, EBC, EA, EC, ED, ED;
(7) EAB, ECD, EA, EB, EC, ED;
(8) EAB, EBC, EAC, ED, ED, E.

Here we have written the blocks omitting all symbols other than A, B, C, D,
E. We shall adopt an alternative approach that makes use of the repeated
pairs that occur in the excess graph.

If we look at the repeated pairs, we see that every element of frequency 5
occurs in only one repeated pair; the element of frequency 6 must occur in
four repeated pairs. So the number of repeated pairs is (14(1) + 1(4))/2=9;
this is, of course, the same as 19(6) - 105. If we consider the excess graph as
comprising the repeated pairs, we see that it is made up of four disjoint edges
and one star with four rays.

We thus see that there are 18 pairs that occur in repetitions (two occurrences
for each of nine-pairs). We call these "repeating pairs". Since there is a total
of 19 blocks in the design, we have

Lemma 2. There is at least one block in the design that is free of repeating
pairs.

Suppose that we designate the block in Lemma 2 as 1234; then none of the
pairs 12, 13, 14, 23, 24, 34, is repeated. We wish to show that we may take
f(i)=S5forallofi=1,2,3,4.

There are two possibilities; either f(i) is equal to 5 forall of i =1, 2, 3, 4, or
£(4) = 6. Suppose, if possible, that this second situation does arise. Then
there are four other blocks containing 1, four other blocks containing 2, four
other blocks containing 3, and five other blocks containing 4, as well as one
block disjoint from 1234. Now there must be repeats 1a, 1a, 2b, 2b, 3c, 3c,
4d, 44, 4e, 4e, 4f, 4f, 4g, 4g. This accounts for 14 of the 18 possible repeats,
and so there are only four other repeating pairs. But there are seven other
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blocks that contain none of the 14 repeating pairs, namely, 1xxx (twice),
2xxx (twice), 3xxx (twice), and xxxx; hence there is one of these blocks that
contains no repeating pair and it also does not contain the element 4 of
frequency six. Thus we have shown that there is a block in the design that
contains no repeating pair and does not contain the element of frequency 6;
we now merely rename this block as 1234, and thus have

Lemma 3. We may take the block 1234 to have all elements of frequency 5
such that no pair of elements in the block is repeated.

Now there are two cases. We designate the points of the designas 1,2, ..., 8,
9,a,b,c,d,e, f. Wemay take the first 17 blocks of the design as: 1234; four
blocks of each of the forms 1xxx, 2xxx, 3xxx, 4XXXx.

Case (1). The two blocks disjoint from 1234 are 5678, 59ab.

Case (2). The two blocks disjoint to 1234 are 5678, 9abc, and the
element of frequency 6 appears in these blocks.

Case (3). The two blocks disjoint to 1234 are 5678, 9abc, and the
element of frequency 6 does not appear in these blocks.

Note that, in Case (1), the element 5 must occur with 1, 2, 3, and 4. Hence
f(5) = 6 (this incidentally shows that the two disjoint blocks can not have
more than one element in common, since every common element would have
to possess frequency 6).

3. Dissection of Case 1.

In Case 1, we have blocks 1234, 15xx, 25xx, 35xx, 45xx, 5678, 59ab; three
blocks of each of the forms 1xxx, 2xxx, 3xxx, 4xxx.

Suppose that we now delete the elements 1, 2, 3, 4, 5. We are left with four
pairs and fourteen triples; these blocks contain a total of 4 + 14(3) = 46 pairs.
Since we have deleted all the repeating pairs containing 1, 2, 3, 4, 5, we see
that this derived design contains only a single repeating pair (46 - 45 = 1).

Now the packing number D(2,3,10) is the maximal number of triples on ten
elements such that there is no repeated pair. It is given by (see [15], for
example)

D(2,3,10) =110 D(1,2,9)/3]) =1 40/3] = 13.
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Hence the fourteen triples in the derived design of 14 triples and 4 pairs just
obtained must contain both instances of the repeated pair (otherwise, we
would have 14 triples on 10 elements, with no pair repeated, and this is not
possible). We now delete one of the triples that contains the repeating pair,
and are left with 13 triples that form a maximal (2,3,10) packing design.

Consequently, as a preliminary result, we shall need to construct the packing
designs consisting of triples on ten elements. For future convenience, we
shall designate these ten elements as 6, 7, 8,9, a, b, ¢, d, e, f.

4. The Packing Designs on Ten Elements.

We first note that, since the packing design contains 13 triples and since
D(1,2,9) = 4, there must be nine elements of frequency 4 and one element of
frequency 3 (we designate this singular element as element 9). Each element
occurs in one missing pair, except for the element 9 which occurs in three
missing pairs; this gives a total of 6 missing pairs. We assign 96, 97, and 98
to be the pairs that do not occur with 9. Then there are two cases.

Design A: The elements 6, 7, 8, occur together in a block.

The design is then 9xx (thrice), 678, 6xx (thrice), 7xx (thrice), 8xx (thrice),
and the missing pairs are 96, 97, 98, and F;, where F is a 1-factor on the

elements a, b, ¢, d, e, f. We observe at once that each of 9, 6, 7, 8, must occur
with a 1-factor on a, b, ¢, d, e, f. Since K¢ has a unique 1-factorization, we

can write down Design A as follows.
9ab, 9cf, 9de; 6ac, 6bd, 6ef; 7ad, 7bf, 7ce; 8ae, 8bc, 8df; 678.

The defect graph, which consists of the missing pairs, contains 96, 97, 98, af,
be, cd.

Design B: The pairs 67, 68, 78, all occur in distinct blocks. Hence
there are three blocks 9xx; 2 blocks of each of the forms 6xx, 7xx, 8xx; three

blocks 67x, 68x, 78x; one block abc. We first fill in the letters a, b, ¢, to give
the design in the following form.

9ax, 9bx, 9cx; 67a, 68b, 78¢; 6¢x, 6xx; Tbx, 7xx; 8ax, 8xx; abc.

We next fill in the pairs de, ef, df, in the three available places and can then
complete the design as

9ad, 9bf, 9ce; 67a, 68b, 78c; 6¢f, 6de; Tbd, Tef; 8ae, 8df; abe.
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Again the missing pairs are 96, 97, 98, af, be, cd.

These two designs, A and B, will be used in the next section.

5. The (2,4,15) Coverings that are Extensions.

We now take the two (2,3,10) packing designs of the last section and see
whether or not they can be extended back to give (2,4,15) covering designs.
We first look at Design A, which is made up of the 13 triples

9ab, 9cf, 9de; 6ac, 6bd, 6ef; 7ad, 7bf, Tce; 8ae, 8bc, 8df; 678.

The missing pairs are 96, 97, 98, af, be, cd. We first need to construct the
derived design consisting of 14 triples and 4 pairs; with no loss of generality,
it can be taken as the 13 triples just listed, the extra triple 967, and the pairs
98, af, be, cd.

With no loss of generality, we may assign the quadruples as 1234, 1598,
25af, 35be, 45cd. Now we note that the symbol 2 must occur in 3 further
blocks and it still must occur with the four numbers 6,7, 8,9. Hence 2 must
occur in a block that contains 2 or more of these symbols. This shows that 2
must either appear in the block 678x or in the block 967x. The same
argument holds for the symbols 3 and 4. Since there are only two triples,
967 and 678, to accommodate extension by the three symbols 2, 3, 4, we have
established

Theorem 1. The (2,3,10) packing design A can not be extended to a
(2,4,15) covering design.

The situation with Design B is different. Here the triples are

9ad, 9bf, 9ce; 67a, 68b, 78c; 6¢f, 6de; Tbd, 7ef; 8ae, 8df; abc.
with omitted pairs 96, 97, 98, af, be, cd.
Just as before, we can form a "fourteenth triple" 967 and then assign
quadruples 1598, 25af, 35be, 45cd, 1234. We now try to extend the other
triples to give a (2,4,15) covering design. We shall proceed by successively
trying symbols 1, 2, 3, 4, 5, with the triple 967.

First we try the block 9671; then 1 must appear in two more blocks with
symbols a, b, c, d, e, f, and this is clearly impossible. So we have
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Lemma 4. An extension of Design B containing the block 9671 is not
possible.

Next we try the block 9672. Then 2 must occur in two more blocks with the
five symbols 8, b, c, d, e (there is a sixth symbol which produces the repeated
pair containing 2). We successively try the four triples containing 8,
namely, 68b, 78c, 8ae, and 8df. Since the remaining symbols in each case
(cde, bde, bed, and bee, respectively) are not triples, we can not have an
extension of this type. We have thus established

Lemma 5. An extension of Design B that includes the block 9672 is not
possible.

Next we try the block 9673. Then 3 must occur in two more blocks that
contain the five symbols 8, a, ¢, d, f. These can indeed occur with 3 if we
take the blocks 38df and 3abc (3b is then the repeating pair containing 3).

Now we must place 2 in three blocks that contain 6,7, 8,9, b, ¢, d, e. Since 2
must occur with 68b, with 78¢c, or with 8ae, it is easy to find that there are
only two possibilities, namely,

278c, 29bf, 26de,
or 268b, 29ce, 27bd.

The second extension is impossible because it would have 2b as a repeated
pair (but 3b is the repeated pair containing b). Thus we take the first
possibility; it has the repeated pair 2f.

Now we must place 4 in three blocks with 6,7, 8,9, a, b, e, f. We simply try
468b and 48ae, and find that the only possibility is 468b, 49ad, 47ef (4d is a
repeated pair).

We next must place 1 in three blocks with 6, 7, a, b, ¢, d, e, f. Our only
possibility is to have the blocks 16¢cf, 17bd, 18ae; this leaves the two final
blocks as 59ce and 567a. We have thus proved

Theorem 2. Design B can be extended to a (2,4,15) covering design with
the following blocks (we call this design B3).

1234 9ad4 78¢c2 8ael
1598 9bf2 6¢f1 8df3
25af 9ce5 6de2 abc3
35be 67a5 Tbdl 9673
45cd 68b4 Tef4
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Next we consider assignment of the block 9674; then 4 must appear in two
more blocks with 8, a, b, e, f. So these blocks have to be 48ae and 49bf. We
then find that 2, 3, and 1 can be successively placed uniquely, just as in the
last case, and we end up with

Theorem 3. Design B can be extended to a (2,4,15) covering that contains
the following blocks (call this design by the name By).

1234 9ad3 78c3 8aed
1598 obf4 6¢f3 8dfs5
25af 9ce2 6del abcl
35be 67a5 7bd2 9674
45cd 68b2 Tefl

Our final trial must be with the block 9675. We first try to place 2 in three
blocks with 6, 7, 8, 9, b, c, d, e, and find that there are two possibilities,
namely,

268D, 29ce, 27bd,
and 278c, 29bf, 26de.

Both of these cases can be completed by successive placement of 3, 4, 1, and
we end up with

Theorem 4. There are two extensions of Design B that contain the block
967d. Both designs contain the common blocks

1234, 1598, 25af, 35be, 45cd, 9675.

Design Bg, contains the additional blocks

9ad3 68b2 Tbd2 abcl
9bf4 78¢c3 Tefl
9ce2 6cf3 8ae4
67a4 6del 8df5

Design Bgy, contains the additional blocks

9ad4 68b4 7bdl abc5s
9bf2 78¢c2 Tefd
9ce3 6¢cfl 8ael
67a3 6de2 8df3
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We now examine the four designs obtained so far and use the "Groups &
Graphs" package described by Kocay [5] which works by converting each
design to a bipartite graph with 15 "point vertices" and 19 "block vertices".
Designs B3 and Bgy, are isomorphic, both having an automorphism group of
degree 4. Also, Designs B4 and B, are isomorphic, with an automorphism

group of degree 2. In both cases, the isomorphism is achieved by use of the
permutation (12)(67)(be)(8)(9a). Thus we may state

Theorem 5. There are exactly two (2,4,15) covering designs that are
extensions of a (2,3,10) packing design.

6. The Non-extension (2,4,15) Coverings.
We now consider the second case from Section 2. For convenience we alter
the notation slightly and write the design on elements 1,2, 3,4,5,6,7, 8, a,
b, ¢, d, e, f, g. We take the two blocks disjoint to 1234 as 5678 and abcd; the
three additional elements are e, f, g. We designate 5 as the element of
frequency 6.
Clearly e, f, and g will have frequencies of 5, since they will be the repeated
elements with three of the elements 1, 2, 3, 4; the fourth element (say 4) will
be repeated with the element 5).
We now split our discussion into five subcases by looking at the repeated
pairs (other than the pair 54) that involve elements from the last two blocks
5678 and abcd..

(a) The repeated pairs are 5a, 5b, 5c¢, 67, 8d.

(b) The repeated pairs are 56, 5a, 5b, 7c, 8d.

(c) The repeated pairs are 56, 5a, 5b, 78, cd.

(d) The repeated pairs are 56, 57, 5a, be, 8d.

(e) The repeated pairs are 56, 57, 58, ab, cd.
Lemma 6. Case (a) is not possible.
Proof. We must have element 5 occurring in blocks 15xx, 25xx, 35xx, 45xx
(twice), 5678. This gives us only 5 blocks in which we may place the 7 pairs

5a, 5a, 5b, 5b, 5¢, 5¢, 5d, none of which can occur together. Clearly this can
not be done.
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Lemma 7. Case (b) is not possible.

Proof. Again we consider the blocks that contain S, namely, 15xx, 25xx,
35xx, 45xx (twice), 5678. There are only five blocks available to contain the
six pairs 5a, 5a, 5b, 5b, 5c, 5d, none of which can occur together. So Case
(b) is also impossible.

Now we consider Case (c) in which the repeated pairs are 5a, 5b, 56, 78, cd.
Since we need 5a, 5a, 5b, 5b, 5c, 5d, we see that the "triples” that occur with
the elements 1, 2, 3, 4, must contain Scd. We write down these triples as the
following array:

axx axx axx axx
bxx bxx bxx bxx
CXX CXX CXX cd5
dxx dxx dxx XXX

Now 6, 7, 8, must occur in these 4 sets and each must occur with a, b, c,d. So
the last set can be taken as a6x, b78, cd5, xxx. Since 5 must occur twice with
a and b, this shows that the last four blocks are a56, b78, cd5, efg. We now
fill in 6, 7, and 8 with ¢ and d to give the array

axx axx axx a56
bxx bxx bxx b78
c8x c7x cbx cdS
déx d8x d7x efg

This determines the array

a7x asSx a8x a56
b5x b6x b5x b78
c8x c7x cbx cds
déx d8x d7x efg

We now must place e, e, f, g, in the first column. We tryeand e in all 6
possible positions and find that only two positions are possible; both of these
immediately lead to completions and so we have

Theorem 6. In Case (c), there are two solutions. We call these solutions
Design C; and Design C,. They are set out as follows.
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Design C;

aZe asf a8g a56
bSe b6f b5g b78
c8f c7g cbe cd5
dég dge d7f efg
Design Cy

a7f aSg a8e a56
bSe bbg b5f b78
c8g ce c6f cds
dée dsf d7g efg

In Case (d), the repeats are 56, 57, 5a, bc, 8d. The discussion is along the
same lines as that used in Theorem 6. One first establishes the composition
of the fourth set of triples; then one places 5, 6, 7, 8 (two ways); then one
completes each case (two ways).

Theorem 7. There are 4 solutions in Case (d), as listed under the headings
D;(i=1,2,3,4).

Design D¢

a8g a7f aSe as6
b7e b5g b6f bc8
c5f cbe clg d75
dég d8e dsf efg
Design Dy

a8g a7f aSe a56
b7e bSg b6f bc8
c5f cbe c7g d75
dég dsf d8e efg
Design D3

a8g asf ale a56
bSe b7g b6f bc8
c7f cbe c5g d7s
dég d8f dse efg
Design Dy

a8g asf aTle as6
bSe b7g bo6f bc8
c7f cbe cS5g d7s
dég d8e ds8f efg
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The final case is Case (e) in which the repeated pairs are 56, 57, 58, ab, cd.
We first try the array

axx, bxx, cxx, dxx (three times each); aby, cdx, Xxx, Xxx.

Then element y must appear with three more of {a,b,c,d}, and this is not
possible.

In Case (e1), we put ab and cd in the last two columns of the array, and

suppose that 5 occurs with ab. Then we may fill in the other occurrences of
5. If we have cde, then we would get a repeat on Se and so we must take cd6;
this position the pair 56 and so we may fill in the element 6.

Next we fill in symbols 7 and 8; the remaining elements in the fourth column
have to be e, f, and g. This allows us to fill in the pairs fg, eg, ef. The array
now has the form

abx a8x a7x ab5s
b7x b6x b8x c7f
c58 ceg cd6 d8g
def ds7 5fg 56e

The choice a6f leads to a contradiction; hence we must have aég and this
determines b6f. Completion of the design is immediate.

Theorem 8. There is one design E; as given below.

abg a8f ale ab5
b7g b6f b8e c7f
c58 ceg cd6 d8g
def ds7 5fg 56e

We now pass on to Case (e,) in which e occurs with ab. We can immediately

fill in the occurrences of e in the array. Since cdf would give a repeat on ef,
we may take cd6 and fill in 6. This permits us to fill in 7 and 8, and the array
takes the form

a6 a8 a7 abe
b7 b6 b8 c7
ce8 c cdé ds
d de7 e eb
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In Case (ep,), we put €65 in the last column; then f and g go in the last

column; this forces the block efg. We now place 5 and the array is uniquely
completable. In Case (epp), we put e6g in column 4 and likewise obtain a

unique completion. This gives us

Theorem 9. There are two designs possible in Case (e5).

Design E,,

a6g a8f a75 abe
b7g b6f b8S c7f
ce8 c5g cd6 d8g
dsf de7 efg e65
Design E2b

a6f a85 alg abe
b7f b6s - b8g c75
ce8 cfg cd6 dsf
dgs de7 ef5 ebg

In Case (e3), we start with ab6 in column 4, c¢d7 in column 3 (note that we

have already considered the case when either pair occurs with 5 or with e). It
is fairly easy to reach a contradiction. Consequently, we have

Theorem 10. We obtain a total of three designs in Case (e).

So far, we have constructed nine designs from Case (2); we now have to
consider Case (3).

7.The Third Case.

In the final case, we take e as the element of frequency 6. Then e is repeated
with two of the elements from {1,2,3,4}, whereas each of f and g is repeated
with only one element from {1,2,3,4}.

Case (3a). Element e repeats with 5 and 6; the other repeats are 7c, 8d, ab.
Then we must have blocks containing 7c, 7c, 7d, 7ab, as well as blocks
containing 8d, 8d, 8c, 8ab. Thus 78ab is a block, and this gives an
unacceptable repeat on 78. Thus we have
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Lemma 8. Case (3a) is not possible.

Case (3b). Element e repeats with 5 and 6; the other repeats are 78, ab, cd.
Then we look at the four sets of "triples" that appear with 1, 2, 3, 4, and
write them as

Sxx 5xx 5xx 5xx
6xx 6xx 6xx 6xx
7xx Txx Txx 78x
8xx 8xx 8xx XXX

If 78f is a triple, then f occurs 3 more times in the first 3 columns; this gives
a repeat on f5 or f6. A similar argument rules out 78a. So we may take triple
78e; then e must occur twice with 5 and twice with 6, and so we must have a
triple exx that contains none of {5,6,7,8}. So the array takes the form

Sex Sex 5xx 5xx
6xx 6ex 6ex 6xx
Txx Txx Txx 78e
8xx 8xx 8xx exx

There must be a pair from {a,b,c,d} appearing in the last column, If eab is a
triple, then a can not appear with all of 5,6,7,8. Thus we may take the triple
Sab, and the last column can be taken as comprising Sab, 6¢f, 78e, edg. Then
f has to appear 4 times in the first three columns and this gives a repeat on
one of f5, 6, f7, f8. We have thus obtained

Lemma 9. Case (3b) is impossible.

Case (3¢). Element e repeats with 5 and with a; the other repeated pairs are
6b, 7c, 8d. But then we need distinct blocks containing 6b, 6b, 6a, 6d, and
6¢, and this is not possible. Hence we have

Lemma 10. Case (3c) is not possible.

Case 3(d). Element e repeats with 5 and a. The other repeated pairs are 6b,
78, and cd.

As before, we place elements 5,6,7,8; the same argument as in Case (3b)
shows that 78a and 78f are not possible; hence 78b or 78e must be a triple. In
either case, we can place the element a in the array as follows.

Sxx Sxx 5xx Sax
6xx 6xx 6ax 6xx
Txx Tax Txx 78x
8ax 8xx 8xx XXX
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If 78e is a triple, then we get 5ae and 6ae. But then we can not find three
more positions for e.

If 78b is a triple, we get the array in the form

5xx 5xx 5bx Sax
6bx 6bx 6ax 6xx
Txx Tax Txx 78b
8ax 8xx 8xx XXX

Then the last column must contain 6cd and so we get the array

Scx 5dx 5bx Sax
6bx 6bx 6ax 6cd
7dx Tax Tex 78b
8ax 8cx 8dx XXX

We now place efg in the fourth column. If we take 5af, we immediately get a
contradiction (e must appear in 5 positions in the first 3 columns and appear
with elements 5, 5, 6, 7, 8, a, a, b, ¢, d). Hence we take Sae and get the array

Scx S5dx Sbx Sae
6bx 6bx 6ax 6cd
7dx Tax Tex 78b
8ax 8cx 8dx efg

The first 2 columns are equivalent under (78)(cd). So there are two
possibilities for placing e; the first is to take Sbe and then get

Design F
S5cg 5df Sbe Sae
6bg 6bf 6ae 6cd
7de 7ag Tcf 78b
8af 8ce 8dg efg

The second possibility is to take Sce, 5df, Sbg, and get

Design G
Sce 5df Sbg Sae
6be 6bf 6ag 6cd
7dg Tae Tef 78b
8af 8cg 8de efg
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Thus we have

Theorem 11. We obtain a total of two designs in Case 3.

7. Isomorphisms of the Non-extension Designs.

We have thus constructed eleven designs that are not obtained as extensions
of a (2,3,10) packing design. It remains to investigate how many of these
designs are not isomorphic.

As before, we apply the "Groups & Graphs" package [5]; the results are
perhaps not what we might have expected. All of the designs have groups of
orders 2 and 4, and the following isomorphisms hold.

Design C; is isomorphic to Design Bs.
Design C, is also isomorphic to Design Bs.
Designs E; and G are isomorphic to Design By.

Designs Dy, Dy, F, and Ejp, all have a group of order 2 and are isomorphic
to one another.

Designs Dy, D3, and E,, all have a group of order 4 and are isomorphic to
one another.

We can sum up all of these results in

Theorem 12. There are four distinct (2,4,15) covering designs. Two of
these (B3 and By ) can be obtained by extension from a D(2,3,10) packing

design. Two of them (D 1 and Dy) can not be thus obtained.

It is worth noting that the designs D; and D, are identical except for two
blocks.
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