ALGORITHMS FOR COMPUTING THE CHROMATIC POLYNOMIAL

D. R. Shier N. Chandrasekharan

College of William and Mary Clemson University

Williamsburg, VA Clemson, SC
Abstract

The chromatic polynomial captures a good deal of combinatorial information about a graph,
describing its acyclic orientations, its all terminal reliability, its spanning trees, as well as its
colorings. Several methods for computing the chromatic polynomial of a graph G construct
a computation tree for G whose leaves are "simple” base graphs for which the chromatic
polynomial is readily found. Previously studied methods involved base graphs which are
complete graphs, completely disconnected graphs, forests, and trees. In this paper we
consider chordal graphs as base graphs. Algorithms for computing the chromatic poly-
nomial based on these concepts are developed, and computational results are presented.

1. INTRODUCTION

In this section we review properties of the chromatic polynomial and various
representations for this polynomial. Throughout, G = (V, E) will be an undirected graph
with vertex set V = I = {1, 2, ..., n} and edge set E, withn = V| and m = [E|. A proper
coloring of G is simply a function ¢ from V into a set of colors such that ¢(v) # $(w)
whenever (v,w) € E. For a given integer A 2 0, the chromatic polynomial P(G;A) is the
number of distinct proper colorings of G using at most A colors. For example, P(K,:A) is
simply the total number of functions from Iy to I),, whereas P(Kg;A) counts the number of
injective functions from I to I. Thus,

P(KpM) =A", (1.1)
P(Kyh) = A = AA-1) - (A-n+1). (1.2)
If my denotes the number of ways to properly color G using exactly k colors, then it is clear
that
P(G:A) = i [X]_ imk)"(k)
e = kaomkk -kﬂo-iT ' -3

showing that P(G;\) is indeed a polynomial. For example, when G = K, then my counts
the number of surjective functions from I, to Iy. Using (1.1), (1.3), and the fact that the
Stirling numbers of the second kind S,y satisfy A" =X S,y AK), we obtain the well-
known result that the number of surjective functions from I; to Iy is my = k! Sy .

Not only does P(G;L) have combinatorial significance as a generalized way of
counting functions, but its coefficients have a number of interesting interpretations. Since

JCMCC 4(1988), pp. 213-222

the coefficients of P(G;A), when expressed as a polynomial in powers of A, are known to
alternate in sign [9), we can write the chromatic polynomial as
n
PGA) =), (D ax, (1.4)
i=l
where all a; 2 0. It is easy to show [9] that a, = 1, a,.) = m (the number of edges), and that
the smallest index k for which a; > 0 is the number of connected components of G.
Recently, it has been demonstrated that a, is the "all terminal domination" of G, a graph
invariant important in network reliability [1). Whitney [18) showed that the coefficient a
also has the interpretation as the number of spanning forests of G with i components and
having "external activity" 0. Another interesting aspect of these coefficients is that Za;
counts the number of acyclic orientations of G [15].
An alternative representation of the chromatic polynomial in “factorial form" is given
by (1.3) or

n o
PGA) =) 52", (1.5)
i=1
where the b; 2 0. It is known that b, = 1, b, ; = n(n-1)/2 - m, and that the smallest index k
for which by > 0 is the chromatic number of G. The coefficient b; has an interpretation as
the number of partitions of V into i disjoint subsets, each of which forms an independent set
[9]. Equivalently, b; is the number of clique covers of G using i cliques, whence Zb;
counts the number of clique covers of G.

A third representation of P(G;A) is the Tutte polynomial form [17], given by

n-
PGA) = 2 "oy, (1.6)
i=1
with ¢; 2 0. As discussed in [3], ¢,.1 = 1, cp.p = m-n+1 (the cycle rank of G), and the
smallest index k for which cy > 0 is the number of blocks in G. Tutte has shown that c; is
the number of spanning trees with external activity 0 and internal activity i. Notice also that
Zc¢j = a is the all terminal domination of G.

2. COMPUTING THE CHROMATIC POLYNOMIAL

Since computing the chromatic polynomial for an arbitrary graph is known to be NP-
hard, effective algorithms for determining P(G;A) are unlikely to be found. However, it is
possible to express the chromatic polynomial of G in terms of the chromatic polynomials of
related graphs. Namely, if G+e, G-e, and G/e represent the graphs obtained from G by
adding, deleting, and contracting edge e, then the following relations can be easily
established [9]:

‘ 214

P(G;\) = P(G+¢;A) + P(Gle;A), 2.1)

P(G;A) = P(G-e;)) - P(G/e;M). 2.2)
Either equation (2.1) or (2.2) can be applied repeatedly as a means of obtaining the
chromatic polynomial. For example, the evaluation of P(G;)) using (2.1) can be viewed as
a certain binary computation tree with G at the root, G+e as its left child, and G/e as its
right child. These two children in turn have left and right children, with the process
continued until all resulting graphs are complete. Thus the leaves of this computation tree
are complete graphs, whose chromatic polynomials are easily found via (1.2). Another
interpretation of the coefficient b; in (1.5) is then the number of leaf graphs on i vertices in
this computation tree, clearly an invariant of the graph G. Alternatively, if the graph is
relatively sparse it might be advisable to delete edges using (2.2), resulting in another
binary computation tree, with each graph H having children H-¢ and H/e. If carried on to
the very end, each leaf of this tree is a completely disconnected graph, whose chromatic
polynomial is known from (1.1). Again, the number of leaves o “size" i (i vertices) in this
computation tree is just the coefficient a; in (1.4). On the other hand, it is not necessary to
carry out the reduction in its entirety; rather one can terminate the process when each leaf is
a forest [6] or a tree [7, 10]. The latter case is computationally more advantageous 3], and
the number of leaves having size i+1 in this computation tree is simply the coefficient ¢; in
(1.6), since the chromatic polynomial of any tree on i+1 vertices is known to be m-l)i.

As suggested in [3], the total number of leaves in a given computation tree for G is a
reasonable measure for the complexity of the associated method of determining P(G;\).
From the previous section, the number of leaves in these three computation trees are (a) the
number of acyclic orientations of G (leaves ¢ disconnected graphs), (b) the number of
clique covers of G (leaves > complete graphs), and (c) the all terminal domination of G
(leaves < trees). For the example graph shown in Figure 1, the associated representations
of P(G;\) are:

(a) P(G:A) = A5 - 6A% + 14A3 - 1502 + 61,

(b) P(GA) = AD) + AW + 300,

() P(G;A) = A(A-1)4 - 20(A-1)% + 2A(A-1)2 - A(A-1).
Thus the respective computation trees have 42, 8, and 6 leaves, and here the last method is
clearly preferred for computational purposes.

Our objective here is to study a reduction method based on (2.2) in which the leaves
are chordal graphs. Since chordal graphs span a range of sparsity from trees to complete
graphs, they may more easily adapt to the sparsity or density of a given graph and thus
might require fewer leaves (a computational advantage). Moreover, the chromatic
polynomial of any chordal graph can be efficiently calculated, as discussed in the next
section.

215

Figure 1 Figure 2

3. CHROMATIC POLYNOMIALS AND CHORDAL GRAPHS

A chordal (triangulated, rigid circuit) graph is one in which there are no induced
cycles of length > 3. The class of chordal graphs includes trees, k-trees [8, 13), interval
graphs (5], indifference graphs [11], and complete graphs, among others. Moreover, they
find application in a number of areas including scheduling, location, evolutionary trees,
acyclic relational databases, and sparse matrices. The last application area is especially
noteworthy since chordal graphs correspond precisely to the zero-nonzero patterns of
symmetric matrices that have a perfect elimination ordering: namely, an ordering so that no
fill-in is introduced during Gaussian elimination [12].

More precisely an ordering of G is a bijection a: I, = V. Relative to this ordering,
the monotone adjacency set of vertex v is defined as MADJ(v) = {w e V: (v,w) € E and
alw)> alv)}. A perfect elimination ordering is an ordering for which MADIJ(v) is
complete for all v e V. Itis well known that G is chordal if and only if it possesses a
perfect elimination ordering [4]. Efficient algorithms for recognizing chordal graphs and
generating perfect elimination orderings have been studied by (5, 14, 16].

Suppose that a is a perfect elimination ordering for G, and let d; = [MADIJ(a(i))|.
Then it can be established that the chromatic polynomial for G is simply

n
rG = a-a. G.1)
ial
This result is proved by induction using the fact that the vertices adjacent to a(1) induce a
complete subgraph in G. Moreover, (3.1) shows that the multiset {d;} is an invariant of
any chordal graph G, independent of the particular ordering , since the integers d; are the
roots of the chromatic polynomial. It is also worth pointing out that the all terminal
domination of a chordal graph can be expressed as I1{d;: i < n}. In the example of Figure
2, the vertices have been numbered so that 1, 2, ..., 6 forms a perfect elimination ordering,
and {dj} = {2, 1, 3, 2, 1, 0}. Thus P(G;\) is readily computed as A(A-1)2(A-2)2(A-3).

If we now apply the reduction formula (2.2) to the graph of Figure 1, we obtain the
bingry computation tree in Figure 3, with only 2 leaves. It is then straightforward to
compute P(G;A) = A(A-1)3(A-2) - A(A-1)(A-2)2. In general, the use of chordal graphs as
leaves of the computation tree may afford a reduction in the number of leaves, and hence the

. 216

computatienal effort in determining the chromatic polynomial. The next section discusses
two implementations of this method and presents empirical comparisons of the new method
with existing techniques.

e

ﬁ/ N g
Figure 3

4, COMPUTATIONAL CONSIDERATIONS AND RESULTS

The major task in implementing the "chordal reduction” method discussed in the
previous section involves determining whether a given graph H (a node in the computation
tree) is chordal or if not what edge e should be deleted for use in (2.2). Efficient methods
for determining if a graph is chordal [5] typically work “backward" and then "forward."
That is, they first generate an ordering in reverse o(n), a(n-1), ..., (1), after which a pass
is made through the vertices in the natural order o(1), &(2), ..., a(n) to check whether this
is indeed a perfect elimination ordering. In our case, however, we wish to determine the
chordality of G as soon as possible (without separate backward and forward passes). The
following algorithm accomplishes the task in a single pass. Here, card(v) records the
cardinality of MADJ(v), relative to the vertices in S (those already ordered by a), and
min(v) indicates a vertex w € MADJ(v) having minimum o (w).

Algorithm CARDINALITY. Given a connected graph G = (V, E) with n = |V}, this
procedure either yields a perfect elimination ordering o (if G is chordal), or an edgee
to be deleted (if G is not chordal).
1. Selectvge V; card(v) « O forall v # vo; min(vy) ¢ vo;
S & {vo}; k & n; ack) & v,
2. m ¢« min(vp);
forallu e S, u# m with (u,vg) € E:
if (u,m) ¢ E then return e = (u,vp).

217

3. forallu e V-S with (u,vy) € E:
card(u) « card(u)+1
min(u) ¢ vq.
4. ifk =1 then return {o(1), a(2), ..., a(m)},elsek e« k-1.
5. Select vg € V-S such that card(vg) = max{card(x): x € V-S};
ok) & vg; S« SuU {vg}; goto Step 2.

Step 5 selects the next vertex to be ordered based on having the maximum cardinality
monotone adjacency set; as shown in [5, 14, 16] this ensures that the resulting order is a
perfect elimination ordering when G is chordal. Step 3 updates the arrays card and min
after vertex v is added to the set S. Step 2 checks whether the ordering generated so far
qualifies as a perfect elimination ordering relative to vertex vg. It is important to note that
we do not need to check here whether MADIJ(vg) is complete; rather it suffices to check
whether each u € MADIJ(vg) other than m = min(vy) is in fact adjacent to m. Using this
fact, the algorithm can be implemented to have a worst-case complexity of O(nA), where A
is the maximum degree of any vertex in G.

In the algorithm above, if the graph G is chordal no edges will be produced for
deletion, and we obtain a leaf of the binary computation tree. When G is not chordal, the
indicated edge will be deleted, giving a smaller graph G”. This graph G’ becomes the left
child of G and is then itself processed by the algorithm, and so forth, until the resulting
(leaf) graph is chordal. There is no assurance that this final chordal graph is in fact an edge
maximal chordal subgraph of G. The following algorithm, adapted from 2], does however
ensure that this leftmost descendant is always a maximal chordal subgraph. Rather than
keeping track of the cardinality of MADIJ(v) at every step, this algorithm explicitly maintains
the current clique MADIJ(v) itself, represented by the set cliq(v).

Algorithm CLIQUE. Given a connected graph G = (V, E) with n = |V, this procedure
either yields a perfect elimination ordering « (if G is chordal), or an edge e to be deleted
(if G is not chordal).
1. Selectvge V; clig(v) « ¢ forallve V; S « {vo};
k& n; o(k) « vy
2. forallu € V-S with (u,vg) € E:
if cliq(u) < clig(vp) then cliq(u) ¢ cliq(u) U {vg}
else return e = (u,vq).
3. Select vg € V-S such that [cliq(vg)] = max{lcliq(x): x € V-S};
kek-1; ok) «vp S e Su{vp}.
4. ifk =1 then return {a(1), 02), ..., a(n)}, else go to Step 2.

218

Figure 4 Figure 5

It should be noted that in contrast to algorithm CARDINALITY, which detects edges
(u,vg) to be deleted among vertices u € S, the algorithm above finds (if possible) an edge
(u,vg) with u € V-S, Using appropriate data structures, algorithm CLIQUE can be imple-
mented to run in O(mA) time. Thus, this second algorithm is not as efficient (in the worst
case) as the first one, but it does guarantee that the leftmost descendant leaf of any graph H
in the computation tree is a maximal chordal subgraph of H. In turn, this might reduce the
total number of leaves generated in the computation tree.

We now report computational results obtained by using both algorithms (to produce a
binary tree with chordal leaves) as well as an existing algorithm TREE that uses trees as the
leaves of its binary tree [3, 7, 10]. All procedures were coded in Pascal and run on the

.NAS AS/XL mainframe at Clemson University. Table 1 shows the number of leaves
generated when the three algorithms were run on circulant graphs on n vertices. In these
circulant graphs, vertices vy, vy, ... ,Vp.1 ar€ numbered along a circle and edges are of the
form (v;,Vi,1)s (Vi»Vis2) With subscripts taken mod n. The corresponding CPU times to
obtain the chromatic polynomial are also shown in Table 1 (in seconds). These results
show that algorithms CARDINALITY and CLIQUE produce considerably smaller binary
trees (fewer leaves) than TREE. Moreover, both algorithms reduce the overall computation
time by a factor of 8-16, when compared with TREE. Algorithm CARDINALITY is seen
to run slightly faster than algorithm CLIQUE on these graphs.

Figure 4 shows another test graph with 13 vertices and 29 edges. For this example,
TREE produced 77,544 leaves whereas CARDINALITY generated 1444 and CLIQUE
generated 629. The corresponding CPU times were 22.49, 1.536, and 0.687 seconds.
The superiority of the chordal-based algorithms is again apparent, with CLIQUE being
twice as fast as CARDINALITY. Figure 5 shows another example, having 16 vertices and
37 edges. TREE was unable to handle this problem in the allocated time and space, but
both of the chordal algorithms were successful. CARDINALITY generated 6904 leaves in

219

8.589 seconds, whereas CLIQUE generated 16,395 leaves in 17.45 seconds. In this
example CARDINALITY was twice as fast as CLIQUE.

Table 1. Comparison of Algorithms for Circulant Graphs on n Vertices

number of leaves
n 7 8 9 10 11 12
TREE 174 426 1028 2388 5466 12,286
CARDINALITY 7 16 27 58 103 196
CLIQUE 7 18 33 69 130 255
CPU time (secs.)
n 7 8 9 10 11 12
TREE 041 .104 .261 .633 1.499 3.487
CARDINALITY .005 .013 .025 .055 .101 .198
CLIQUE) .005 .013 .027 .057 110 222

We have also randomly generated a number of connected graphs on n vertices and m
edges for further study. Two sample graphs were generated for each size (n, m) and
computational results are presented in Table 2. It is seen that either in terms of numbers of
leaves or actual CPU time, the new algorithms completely dominate the TREE algorithm.
Indeed, for some of the larger graphs, TREE was unable to complete its execution in the
allocated time and space (indicated by the entry **¥),

In summary, both algorithms presented here provide substantial improvements in
empirical performance over existing reduction techniques for computing P(G;A). Further
investigation is necessary to delineate those circumstances in which CARDINALITY is
preferred to CLIQUE, and vice versa.

5. ACKNOWLEDGMENT

This research was supported by the US Air Force Office of Scientific Research (AFSC)
under Grant AFOSR-84-0154.

220

Table 2. Comparison of Algorithms on Randomly Generated Graphs

CPU time (secs.) number of leaves
n m TREE CARD CLIQUE TREE CARD CLIQUE
5 6 0.001 0.000 0.000 4 1 1
0.002 0.000 0.000 6 2 2

8 0.003 0.000 0.000 12 1 1
0.003 0.000 0.000 14 2 2

7 8 0.002 0.001 0.001 6 2 2
0.001 0.001 0.001 6 2 2

12 0.018 0.003 0.006 76 4 10
0.018 0.004 0.003 74 7 5

17 0.075 0.002 0.002 312 2 2
0.080 0.001 0.003 336 2 4

9 13 0.014 0.003 0.003 44 3 4
0.026 0.008 0.018 102 10 32

20 0.315 0.005 0.013 1200 4 12
0.345 0.007 0.006 1356 6 5

25 1.644 0.018 0.025 6618 15 20
1.655 0.011 0.030 6714 8 25

30 4.124 0.008 0.009 16800 5 5
4247 0.013 0.007 17280 8 4

11 15 0.044 0.024 0.028 144 26 38
0.027 0.009 0.021 84 10 32

20 0.768 0.137 0.115 2756 157 138
0.567 0.047 0.073 2000 45 84

30 13.195 0.028 0.102 50088 17 74
13.179 0.058 0.330 50148 38 299

40 130.000 0.078 0.198 517200 39 107
140.000 0.101 0.532 526800 52 340

13 15 0.019 0.020 0.023 48 17 28
0.008 0.007 0.004 20 7 4

25 2.835 0.095 0.236 8844 75 237
4331 0.167 0.131 14092 137 110

35 170.000 1.252 1.143 583488 907 849
170.000 1.046 2.293 600156 1239 2351

45 *kk (0,806 1.668 kK 445 937

e 4107 2.544 ***k 2511 1396

15 20 0225 0.159 0.164 580 140 183
0.159 0.086 0.083 416 78 82

25 2.032 0.125 0.110 5316 87 88
3.503 0.427 0.104 10428 390 84

35 400.000 3.556 10.364 1312752 2529 9263
320.000 2.612 0.981 1057740 1949 645

45 *kk 42 977 54.285 ¥k 30013 38911
*k 13,926 35.707 *k 8406 24887

50 ik 38 782 79.456 w6k 23311 50247

k 31536 59.880 ek 18832 39141

17 25 1.996 0.126 1.027 4800 82 1125
1.879 0.610 0.234 4928 509 201

35 610.000 24.040 37.763 1747242 22129 34341
k20,142 68.603 k15149 70342

221

6. REFERENCES

(1]

(2

3]

(4]

[5]

(6]

7

(8]

9

(10

(1

[12]

[13]

(14]

[15]

[16]

(17

(18]

Boesch, F., Satyanarayana, A., and C. L. Suffel, "On Some Alternate Character-
izations of a Graph Invariant Called Domination,” Technical Report, Computer
Science Dept., Stevens Institute of Technology, 1986.

Dearing, P. M., Shier, D. R,, and D. D. Warner, "Maximal Chordal Subgraphs,"
Discrete Appl. Marh., 1988, to appear.

Frank, S., and D. R. Shier, "The Chromatic Polynomial Revisited," Congressus
Numerantium 55 (1986) 57-68.

Fulkerson, D. R., and O. A. Gross, "Incidence Matrices and Interval Graphs,"
Pacific J. Math. 15 (1965) 835-855.

Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

James, K. R., and W. Riha, "Algorithm 24: Algorithm for Deriving the Chromatic
Polynomial of a Graph," Computing 14 (1975) 195-203.

Nijenhuis, A., and H. S. Wilf, Combinatorial Algorithms, Academic Press, New
York, 1978.

Pippert, R, and L. Beineke, "Characterizations of 2-Dimensional Trees,”" in The
Many Facets of Graph Theory, Springer-Verlag, 1968, 263-270.

Read, R.C,, "An Introduction to Chromatic Polynomials," J. Combinatorial Theory

4 (1968) 52-71.

Read, R. C., "An Improved Method for Computing the Chromatic Polynomials of
Sparse Graphs," Research Report CORR 87-20, Faculty of Mathematics, Univ. of
Waterloo, 1987.

Roberts, F. S., Graph Theory and its Applications to Problems of Society, SIAM,
1978.

Rose, D., "Triangulated Graphs and the Elimination Process," J. Math. Anal. Appl.
32 (1970) 597-609.

Rose, D., "On Simple Characterizations of k-Trees,” Discrete Math.7 (1974) 317-
322.

Shier, D. R., "Some Aspects of Perfect Elimination Orderings in Chordal Graphs,"
Discrete Appl. Math. T (1984) 325-331,

Stanley, R., "Acyclic Orientations of Graphs," Discrete Math. § (1973) 171-178.
Tarjan, R E., and M. Yannakakis, "Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, "
SIAM J. Comput. 13 (1984) 566-579.

Tutte, W. T., "A Contribution to the Theory of Chromatic Polynomials," Canad. J.
Math. 6 (1954) 80-91,

Whitney, H., “"A Logical Expansion in Mathematics," Bull. Amer. Math. Soc. 38
(1932) 572-579.

222

