CYCLIC (0,1)-FACTORIZATIONS OF THE COMPLETE GRAPH

Dedicated to the memory of Edward J. Green

Rolf Rees

Department of Mathematics and Computer Science Mount Allison University Sackville, New Brunswick CANADA

Abstract. Hartman and Rosa have shown that the complete graph K_{2n} has a cyclic one-factorization if and only if n is not a power of 2 exceeding 2. Here we consider the following problem: for which n > 0 and $0 < k < \frac{n}{2}$ does the complete graph K_n admit a cyclic decomposition into matchings of size k? We give a complete solution to this problem and apply it to obtain a new class of perfect coverings.

1. Introduction.

Let k > 0 and n > 0 be integers with $\binom{n}{2} \equiv 0 \pmod{k}$ and $k \leq \frac{n}{2}$. It is well-known (see, for example, Folkman and Fulkerson [1, Theorem 4.2]) that the complete graph K_n admits an edge-decomposition into matchings of size k; that is, one can partition the edge set of K_n into $\frac{n(n-1)}{2k}$ subsets each consisting of k vertex-disjoint edges.

We are concerned here with the existence of such a decomposition having an additional property, namely, that there be a cyclic permutation σ of the vertices of K_n which preserves the matchings. That is, σ permutes the vertices of K_n in a single *n*-cycle and also maps matchings onto matchings. We will call a decomposition of this type cyclic. The case $k = \frac{n}{2}$ was considered and solved by Hartman and Rosa [2]:

Theorem 1.1. [Hartman and Rosa] The complete graph K_n admits a cyclic one-factorization if and only if n is even and $n \neq 2^t$, $t \geq 3$.

We will prove the following result in Section 2.

Theorem 1.2. Let n > 0 and $0 < k < \frac{n}{2}$ be integers with $\binom{n}{2} \equiv 0 \pmod{k}$. Then the complete graph K_n admits a cyclic decomposition into matchings of size k.

Having established the above result let now $m = \frac{m(n-1)}{2k}$. Each matching, together with the n-2k vertices that it does not cover, constitutes a (0,1)-factor in K_n , and there are m of these factors. Now adjoin m new vertices $\{x_1, \ldots, x_m\}$ to K_n to obtain a new graph (denoted $K_n v \overline{K}_m$) where x_i is adjacent to each vertex of K_n for $i = 1, \ldots, m$, and $\{x_1, \ldots, x_m\}$ is an independent set of ver-

tices. By making use of the original m (0,1)-factors in K_n we can now form, in the obvious manner, a decomposition of the edge set of $K_n v \overline{K}_m$ into edges (K_2) s and triangles (K_3) s in which there are, in all, $\frac{1}{2}n$ (2m-n+1) complete subgraphs. This is a perfect covering of $K_n v \overline{K}_m$ in the sense that, when $m \ge n-1$, there does not exist a decomposition of $K_n v \overline{K}_m$ into fewer than $\frac{1}{2}n$ (2m-n+1) complete subgraphs (see [3], [4] and [5]).

Corollary 1.3. Let n > 0 and $m \ge n - 1$ be integers with $\binom{n}{2} \equiv 0 \pmod{m}$, and suppose also that if m = n - 1 then $n \ne 2^t$, $t \ge 3$. Then there is a perfect covering of $K_n v \overline{K}_m$ having the following properties:

- (i) each vertex x in \overline{K}_m is contained in $k = \frac{n(n-1)}{2m}$ triangles and n-2k edges in the covering, and
- (ii) there is an automorphism of the covering which permutes the vertices of K_n in a single n-cycle.

Proof: Theorem 1.1 and Theorem 1.2.

2. The proof of Theorem 1.2.

Thus we have

We will find the following terminology useful. Let d be a divisor of n. A d-matching in \mathbb{Z}_n is a partition P of a subset $S \subseteq \mathbb{Z}_N$ into pairs where

- (i) $|S| \le d 1$ and for each x, y in $S, x y \not\equiv 0 \pmod{d}$;
- (ii) the residues $\{\pm (x-y): \{x,y\} \in P\}$ are distinct (mod n) and, furthermore, if d is even, include no difference $\equiv 0 \pmod{\frac{1}{2}d}$.

A d-matching in which |S| = d - 1 (d odd) or |S| = d - 2 (d even) will be called a d-starter. Note that when d = n our notion of a d-starter corresponds to that of odd and even starters in \mathbb{Z}_n .

We will begin by proving Theorem 1.2 where n is odd.

Lemma 2.1. Let n be an odd integer, d a divisor of n and $D = \{x \in \mathbb{Z}_n : x \equiv 0 \pmod{d}\}$. There is a set $(S_1, P_1), \ldots, (S_{\frac{n}{2}}, P_{\frac{n}{2}})$ of d-starters in \mathbb{Z}_n with the property that the sets $\{\pm (x-y) : \{x,y\} \in P_i\}$ $(i=1,\ldots,\frac{n}{d})$ form a partition of $\mathbb{Z}_n - D$.

Proof: For each $i = 1, ..., \frac{n}{d}$ take

$$P_{i} = \left\{ \left\{ \frac{d-1}{2}, \frac{d+1}{2} + (i-1)d \right\}, \left\{ \frac{d-3}{2}, \frac{d+3}{2} + (i-1)d \right\}, \dots, \left\{ 1, d-1 + (i-1)d \right\} \right\}.$$

Now let $\frac{n(n-1)}{2} = m \cdot k$. Write

$$m = qn + r, \quad 0 < r \le n. \tag{2.1}$$

Then, using the usual notation (x, y) to denote the g.c.d. of x and y we have

$$\left(\frac{n-1}{2}-qk\right)n=rk=(r,n)\lambda k=(m,n)\lambda k. \tag{2.2}$$

Clearly, the relation $\frac{n(n-1)}{2} = mk$ implies that $k \cdot (m, n) \equiv 0 \pmod{n}$, since n is odd. Thus, from Equation (2.2) we have

$$\frac{\frac{n-1}{2}-qk}{\lambda}\cdot\frac{n}{(m,n)}=k$$
 (2.3)

where each of the two left-hand side ratios is integral. From Equation (2.2) $\lambda = \frac{r}{(m,n)} \le \frac{n}{(m,n)}$ so that we can apply Lemma 2.1 with d = (m,n) to construct a set $(S_1, P_1), \ldots, (S_{\lambda}, P_{\lambda})$ of (m,n)-matchings where $|P_i| = \frac{1}{\lambda} \left(\frac{n-1}{2} - qk\right)$ for each $i = 1, \ldots, \lambda$ (since $k < \frac{n}{2}$ Equation (2.3) implies that $\frac{1}{\lambda} \left(\frac{n-1}{2} - qk\right) \le \frac{(m,n)-1}{2}$).

From Equation (2.3) and the definition of a d-matching we can now construct λ matchings M_1, \ldots, M_{λ} , each having k edges, by setting

$$M_i = P_i \cup (P_i + (m, n)) \cup (P_i + 2(m, n)) \cup \ldots \cup \left(P_i + \left(\frac{n}{(m, n)} - 1\right)(m, n)\right)$$

where by $P_i + a$ we mean $\{\{x+a,y+a\}: \{x,y\} \in P_i\}$.

Let now (S, P) be an *n*-starter in \mathbb{Z}_n (Lemma 2.1 with d = n) and remove from P all pairs $\{x, y\}$ with $\pm (x-y) \in \{\pm (s-t) : \{s, t\} \in P_1 \cup P_2 \cup \ldots \cup P_{\lambda}\}$. There remain $\frac{n-1}{2} - \lambda \cdot \frac{1}{\lambda} \left(\frac{n-1}{2} - qk \right) = qk$ pairs in P, which we now simply partition into q matchings N_1, \ldots, N_q each with k edges.

A (cyclic) decomposition of K_n into matchings of size k is now obtained by developing each of the matchings $M_1, \ldots, M_{\lambda}, N_1, \ldots, N_q$ modulo n. Note that each matching M_1, \ldots, M_{λ} is contained in an orbit of size (m, n) while each matching N_1, \ldots, N_q is contained in an orbit of size n. We have, thus, proven

Theorem 2.2. Let n > 0 be an odd integer and $0 < k < \frac{n}{2}$ with $\binom{n}{2} \equiv 0 \pmod{k}$. Then the complete graph K_n admits a cyclic decomposition into matchings of size k.

Remark: In our construction there are $\lambda + q$ matching orbits, where (letting $m = \frac{n(n-1)}{2k}$) $m = q \cdot n + \lambda(m,n)$ and $0 < \lambda \le \frac{n}{(m,n)}$. In particular, there will be one matching orbit when and only when m = n, (that is, $k = \frac{n-1}{2}$).

We turn our attention now to the case where n is even. We begin with the appropriate analogue to Lemma 2.1.

Lemma 2.3. Let n be an even integer, d a divisor of n with $d \equiv 0 \pmod{2}$ and $D = \{x \in \mathbb{Z}_n : x \equiv 0 \pmod{\frac{d}{2}}\}$. Then there is a set $(S_1, P_1), \ldots, (S_{\frac{n}{4}}, P_{\frac{n}{4}})$ of d-starters in \mathbb{Z}_n with the property that the sets $\{\pm (x - y) : \{x, y\} \in P_i\}$ $(i = 1, \ldots, \frac{n}{d})$ form a partition of $\mathbb{Z}_n - D$.

Proof: The lemma is vacuously true if d = 2. If d = 4 then for each $i = 1, \ldots, \frac{n}{4}$ take $P_i = \{\{2, 3 + (i-1) \cdot 4\}\}$. For $d \ge 6$ let $s = \frac{[d]}{4}$ and $t = \frac{[3d]}{4}$; for each $i = 1, \ldots, \frac{n}{d}$ take $P_i = \{\{1, 2s - 1 + (i-1)d\}, \{2, 2s - 2 + (i-1)d\}, \ldots, \{s - 1, s + 1 + (i-1)d\}, \{2s, d - 1 + (i-1)d\}, \{2s + 1, d - 2 + (i-1)d\}, \ldots, \{t - 1, t + (i-1)d\}\}$.

Now let $\frac{m(n-1)}{2} = m \cdot k$ and let $\frac{m(n-1)}{2} - k(m,n) = (m-(m,n)) k = m'k$. Write

$$m' = q \cdot n + r', \quad 0 < r' \le n. \tag{2.4}$$

Then we have

$$\left(\frac{n}{2} - qk - \frac{k(m,n) + \frac{n}{2}}{n}\right) \cdot n = r'k = (r',n)\lambda k = (m',n)\lambda k. \tag{2.5}$$

Now (m', n) = (m - (m, n), n), so that (m', n) is a multiple of (m, n). Let 2^k be the highest power of 2 dividing m. Since $\frac{n(n-1)}{2} = mk$, 2^k is the highest power of 2 dividing (m, n) and so 2^{k+1} divides m - (m, n) = m'. But 2^{k+1} also divides n, whence 2^{k+1} divides (m', n). Thus, (m', n) is a multiple of 2(m, n). Now the relation $\frac{n(n-1)}{2} = mk$ implies $(m, n) \cdot k \equiv 0 \pmod{\frac{n}{2}}$, so that by the foregoing we have $(m', n) \cdot k \equiv 0 \pmod{n}$. From Equation (2.5) we can, therefore, write

$$\frac{\frac{n}{2}-qk-\frac{k(m,n)+\frac{n}{2}}{n}}{\lambda}\cdot\frac{n}{(m',n)}=k$$
 (2.6)

where each of the two left-hand side ratios is integral.

From Equation (2.5) $\lambda = \frac{r'}{(m',n)} \leq \frac{n}{(m',n)}$; we consider two cases.

Case 1: $\lambda = \frac{n}{(m',n)}$.

Here Equation (2.5) and Equation (2.4) imply that (m', n) = n, that is, $\lambda = 1$. Let (S', P') be an (m, n)-starter on the symbols $\{0, 1, \ldots, (m, n) - 1\}$

(Lemma 2.1 and Lemma 2.3) and choose a subset $P'' \subseteq P'$ of size $\frac{1}{n}(k(m,n) - \frac{n}{2})$ (this can be done since $k < \frac{n}{2}$, whence $\frac{1}{n}(k(m,n) - \frac{n}{2}) < \frac{(m,n)}{2}$). Construct a matching L in \mathbb{Z}_n as follows:

$$L = (P'' \cup \{\{0, \frac{n}{2}\}\}) \cup (P'' \cup \{\{0, \frac{n}{2}\}\}) + (m, n)$$

$$\cup (P'' \cup \{\{0, \frac{n}{2}\}\}) + 2(m, n)$$

$$\cup \ldots \cup (P'' \cup \{\{0, \frac{n}{2}\}\}) + (\frac{n}{(m, n)} - 1)(m, n).$$

Recalling that (m', n) = n is a multiple of 2(m, n), we have $|L| = \frac{1}{n} (k(m, n) - \frac{n}{2}) \cdot \frac{n}{(m, n)} + \frac{n}{2(m, n)} = k$.

Now let (S, P) be an *n*-starter in \mathbb{Z}_n (Lemma 2.3) and remove from P all pairs $\{x, y\}$ with $\pm (x - y) \in \{\pm (s - t) : \{s, t\} \in L\}$. There remain $\frac{n}{2} - 1 - \frac{1}{n}(k(m, n) - \frac{n}{2}) = (q + 1)k$ pairs in P (Equation (2.6)) which we now partition into q + 1 matchings N_1, \ldots, N_{q+1} , each with k edges. Develop the matchings L, N_1, \ldots, N_{q+1} modulo n.

Case 2: $\lambda < \frac{n}{(m',n)}$.

Begin by constructing a matching L on \mathbb{Z}_n exactly as in Case 1. Again |L| = k since (m', n) is a multiple of 2(m, n) (and, hence, so is n). Now apply Lemma 2.3 with d = (m', n) to construct a set $(\overline{S}_2, \overline{P}_2), \ldots, (\overline{S}_{\lambda+1}, \overline{P}_{\lambda+1})$ of (m', n)-matchings where $\overline{P}_i \subseteq P_i$ and $|\overline{P}_i| = \frac{1}{\lambda} \left(\frac{n}{2} - qk - \frac{k(m, n) + \frac{n}{2}}{n}\right)$ for each $i = 2, \ldots, \lambda+1$ (since $k < \frac{n}{2}$ Equation (2.6) implies $\frac{1}{\lambda} \left(\frac{n}{2} - qk - \frac{k(m, n) + \frac{n}{2}}{n}\right)$ $< \frac{(m', n)}{2}$). Construct λ matchings $M_2, \ldots, M_{\lambda+1}$, each having k edges, by setting

$$M_i = \overline{P}_i \cup (\overline{P}_i + (m', n)) \cup (\overline{P}_i + 2(m', n)) \cup \ldots \cup \left(\overline{P}_i + \left(\frac{n}{(m', n)} - 1\right)(m', n)\right).$$

Note that, by the way L was constructed (see Case 1) the set $D = \{\pm (x - y) \pmod{n}: \{x, y\} \in L\}$ is contained in the set $\{\frac{n}{2}\} \cup \{\pm (s - t): \{s, t\} \in P_1\}$ where (S_1, P_1) is the first (m', n)-starter in \mathbb{Z}_n referred to in Lemma 2.3; in particular, D is disjoint from the set $\{\pm (s - t): \{s, t\} \in \overline{P_2} \cup \ldots \cup \overline{P_{\lambda+1}}\}$.

Now let (S,P) be an n-starter in \mathbb{Z}_n (Lemma 2.3) and remove from P all pairs $\{x,y\}$ with $\pm (x-y) \in \{\pm (s-t): \{s,t\} \in L \cup \overline{P}_2 \cup \overline{P}_3 \cup \ldots \cup \overline{P}_{\lambda+1}\}$. By the foregoing there remain $\frac{n}{2} - 1 - \lambda \cdot \frac{1}{\lambda} \left(\frac{n}{2} - qk - \frac{k(m,n) + \frac{n}{2}}{n}\right) - \frac{1}{n}(k(m,n) - \frac{n}{2}) = qk$ pairs in P, which we can now partition into q matchings N_1, \ldots, N_q , each with k edges. Develop the matchings $L, M_2, \ldots, M_{\lambda+1}, N_1, \ldots, N_q$ modulo n.

Note that (in both cases) the matching L is contained in an orbit of size (m, n), while each matching M_i is contained in an orbit of length (m', n) and each matching N_j is contained in an orbit of length n. We now have

Theorem 2.4. Let n > 0 be an even integer and $0 < k < \frac{n}{2}$ with $\binom{n}{2} \equiv 0 \pmod{k}$. Then the complete graph K_n admits a cyclic decomposition into matchings of size k.

Remark: In the above construction there are $\lambda + q + 1$ matching orbits, where (letting $m = \frac{n(n-1)}{2k}$ and m' = m - (m,n)) $m' = q \cdot n + \lambda(m',n)$ and $0 < \lambda \leq \frac{n}{(m',n)}$.

Theorem 1.2 now follows from Theorem 2.2 and Theorem 2.4.

Acknowledgement.

The author wishes to thank J. A. Bondy for his helpful assistance.

References

- 1. J. Folkman and D.R. Fulkerson, *Edge colorings in bipartite graphs*, in "Combinatorial Math. and its Applications," eds. R. Bose and T. Dowling, Univ. N. Carolina Press, Chapel Hill, 1969, pp. 561-577.
- 2. A. Hartman and A. Rosa, Cyclic one-factorizations of the complete graph, Europ. J. Comb. 6 (1985), 45-48.
- 3. N.J. Pullman and A. Donald, Clique coverings of Graphs II complements of cliques, Utilitas Math. 19 (1981), 207-213.
- R.G. Stanton, Old and new results on perfect coverings, Lecture Notes in Maths. 952, Combinatorial Maths. IX (1982), 142-149, Springer-Verlag, Berlin.
- 5. R.G. Stanton, J.L. Allston and D.D. Cowan, *Pair-coverings with restricted largest block length*, Ars Combinatoria 11 (1981), 85-98.