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Abstract. Hartman and Rosa have shown that the complete graph K2 has a cyclic

one-factorization if and only if  is not a power of 2 exceeding 2. Here we consider
the following problem: for which n > 0 and 0 < k < # doés the complete graph
K, admit a cyclic decomposition into matchings of size k? We give a complete
solution to this problem and apply it to obtain a new class of perfect coverings.

1. Introduction.

Letk > 0 and n > O be integers with (3) = 0 (mod k) andk < 3. It
is well-known (see, for example, Folkman and Fulkerson [1, Theorem 4.2))
that the complete graph K, admits an edge-decomposition into matchings of
size k; that is, one can partition the edge set of K, into %371 subsets each
consisting of k vertex-disjoint edges.

We are concerned here with the existence of such a decomposition having an
additional property, namely, that there be a cyclic permutation o of the vertices
of K, which preserves the matchings. That is, o permutes the vertices of K,
in a single n-cycle and also maps matchings onto matchings. We will call a
decomposition of this type cyclic. The case k = 3 was considered and solved
by Hartman and Rosa [2]): '

Theorem 1.1. [Hartman and Rosa] The complete graph K., admits a cyclic
one-factorization if and only if n is even andn# 2%, t > 3.

We will prove the following result in Section 2.

Theorem 1.2. Letn > 0 and0 < k < % be integers with (7) = 0
(mod k). Then the complete graph K, admits a cyclic decomposition into
malchings of size k.

Having established the above result let now m = %5711, Each matching, to-
gether with the n—2 k vertices that it does notcover, constitutes a (0,1)-factor in
K., and there are m of these factors. Now adjoin m new vertices {z1,... , Zm}
to K, to obtain a new graph (denoted K,vK ) where z; is adjacent to each
vertexof K, fori=1,... ,m,and {z1,... ,Zm} is an independent set of ver-
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tices. By making use of the original m (0,1)-factors in K,, we can now form,
in the obvious manner, a decomposition of the edge set of KavK, into edges
(K32)s and triangles (K3 )s in which there are, in all, In(2m —n+ 1) com-
plete subgraphs. This is a perfect covering of K,vK , in the sense that, when
m > n— 1, there does not exist a decomposition of K,vK,, into fewer than
-n (2m — n+ 1) complete subgraphs (see [3], [4] and [5]).

Thus we have

Corollary 13. Letn > 0 and m > n— 1 be integers with (3) =
(mod m), and suppose also that ifm = n— 1 thenn # 2%, ¢t > 3, Hzcn
there is a perfect covering of K ,vK ,, having the following properties:
(i) each vertex z in K, is contained in k = =L\ triangles andn — 2 k
edges in the covering, and
(ii) there is an automorphism of the covering which permutes the vertices
of K, in a single n-cycle.

Proof: Theorem 1.1 and Theorem 1.2. [ |

2. The proof of Theorem 1.2.
We will find the following terminology useful. Let d be a divisor of n. A
d-matching in Z, is a partition P of a subset S C Zy into pairs where
@ |S|<d-1andforeachz,yinS,z—y#0 (mod d);
(ii) the residues {+(z — y): {z,y} € P} are distinct (mod n) and, fur-
thermore, if d is even, include no difference = 0 (mod -zl-d).

A d-malching in which |S| = d — 1 (d odd) or |S| = d — 2 (d even) will be
called a d-starter. Note that when d = = our notion of a d-starter corresponds
to that of odd and even starters in Z,,.

We will begin by proving Theorem 1.2 where n is odd.

Lemma 2.1. Letn beanoddinteger,d adivisorofnandD = {z € Z,:z =
(mod d)}. There is aset(S, Py),.. ,(Sy, Py) ofd-stanemmz,. Wzththe
property that the sets {+(z —y): {z, y} € P} (i=1,...,8) formapartition
ofZ, — D.

Proof: Foreachi=1,...,5 take

R:{{.d___l d+1+( _])d} {d_3'd+_3 ( _])d}

) 2 ' 2
{1, d—14+ (- l)d}}.
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Now let %221 = m. k. Write

m=gn+r, 0<r<n 2.1)

Then, using the usual notation (z, y) to denote the g.c.d. of z and y we have

(";1 _qk),,= rk = (r,W)\k = (m, K. @2)

Clearly, the relation %2711 = mk implies that k- (m,n) =0 (mod n),
since nis odd. Thus, from Equation (2.2) we have

n—1
=l gk _n
5 X =k 2.3)

where each of the two left-hand side ratios is integral. From Equation 2=
< (my SO that we can apply Lemma 2.1 with d = (m,n) t0 construct
aset(Si,P1),... ,(Sx, P) of (m,n)-matchings where |P;| = L (2t —qk)
foreachi = 1,...,\( since k < % Equation(2.3) implies that} (3% —qk) <
gmlvzq—l )

From Equation (2.3) and the definition of a d-matching we can now construct
X matchings M, ... , M, each having k edges, by setting

M;=P;U(P#(m,n)) U(P+2(m,n)) U...U (Pi"’ ('(7"1':;)’ - 1) (m,n))

where by P; + ¢ we mean {{z + a,y + a}: {z,y} € Fi}.

Let now (S, P) be an n-starter in Z.. (Lemma 2.1 with d = n) and remove
from P all pairs {z, y} with +(z—y) € {£(s-t): {s,t} € AUPU.. UR}.
There remain 2% — \- } (%% — gk) = gk pairs in P, which we now simply
partition into ¢ matchings Ny, ... , N, each with k edges.

A (cyclic) decomposition of K into matchings of size k is now obtained by
developing each of the matchings Mi,..., My, N1,..., N, modulo n. Note
that each matching My ,..., My is contained in an orbit of size (m,n) while
each matching N, ... , N, is contained in an orbit of size n. We have, thus,
proven

Theorem 2.2. Letn > 0 be an odd integer and0 < k < 3 with (3) =0
(mod k). Then the complete graph K, admits a cyclic decomposition into
matchings of size k.
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Remark: In our construction there are A + g matching orbits, where ( letting
m=%e=l )y = gnt A(m,m) and0 < A < sy In particular, there
will be one matching orbit when and only when m = n, ( thatis, k = %L ).

We turn our attention now to the case where n is even. We begin with the
appropriate analogue to Lemma 2.1.

Lemma 2.3. Letn be an even integer, d a divisor of n withd =0 (mod 2)
and D={zx€Z,: z=0 (mod§)}. Then there is a set (S, P1), ... ,(Sy, Py)
of d-starters in Z, with the property that the sets {+(z — y) : {z,y} € P}
(i=1,...,%) form a partition of Z,, - D.
Proof: The lemma is vacuously true if d = 2. If d = 4 then for each § =
1,...,3take ;= {{2,3+ (i—1)-4}}. Ford > 6 let s = [ and ¢ = B4,
foreachi=1,... ,3 ke P; = {{1,23—l+(i—l)d},{2,23—2+(i—l)d},
oo {8—1,8+14(i—1)d},{2s,d~ 1+ (i-1)d}, {28+ 1,d—2+ (i — 1)d},
v {t=1,t4 (4 - 1)d}}. |
Now let X221 = y. g and let X% _ k(m, ) = (m—(m, ) k = m'k.
Write
m=¢gn+r, 0<r'<n 24)

Then we have

(g—qk—M)-n= rk=(r, k= (m WAk (2.5
Now (m',n) = (m — (m,n),n), so that (m’, n) is a multiple of (m, n). Let

2* be the highest power of 2 dividing m. Since %1 = mE, 2% js the highest
power of 2 dividing (m,n) and so 2**! divides m — (m,n) = m'. But 2**!

also divides n, whence 2**! divides (m',n). Thus, (m’,n) is a multiple of
2(m, ). Now the relation X510 = mk implies (m,n)- £ = 0 (mod £), so
that by the foregoing we have (m’,n)- k=0 (mod n). From Equation (2.5)
we can, therefore, write

k »
A (m',n)
where each of the two left-hand side ratios is integral.
From Equation (2.5) ) = G"’W < Gy We consider two cases.
Casel: A= zw"w

Here Equation (2.5) and Equation (2.4) imply that (m',n) = =, thatis, \ =
1. Let (S, P') be an (m, n)-starter on the symbols {0,1,... ,(m,n) — 1}

(2.6)
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(Lemma 2.1 and Lemma 2.3) and choose a subset P" C P'of size 5;( k(m,n)—
2) (this can be done since k < %, whence Z(k(m,n) — 3) < {ma) Con-
struct a matching L in Z, as follows:

L=(P"U{{0, 3} U (P"U{{0.51}) + (mm)
U (P" u{{o, -;'-}}) +2(m,n)

u...u (P”U{{O,-;—}}) + ((m’:n) - 1) (m,n).

Recalling that (m’, n) = nisamultiple of 2(m, n), wehave |L| = & (k(m,n)—
Dt mem = k.

Now let (S, P) be an n-starter in Z, (Lemma 2.3) and remove from P all
pairs {z,y} with +(z — y) € {£(s —1) :{s,t} € L}. There remain 3 —
1- :‘.'(k("h n) — %) =(¢g+ Dk pairs in P (Equation (2.6)) which we now
partition into ¢ + 1 matchings N, ..., Ng+1, each with k edges. Develop the
matchings L, Ny, ... , Ng+1 modulo n.

Case2: A< 7wy

Begin by constructing a matching L on Z, exactly as in Case 1. Again |L| =
k since (m',n) is a multiple of 2(m,n) (and, hence, so is n). Now apply
Lemma 2.3 with d = (m’,n) to construct a set (52,P2), ..., (Sxe1, Pas1)
of (m', n)-matchings where P; C P; and [Py| = § (-; — gk - ﬁ"'T“)*-f-) for

eachi=2,...,\+1 (since k < 2 Equation (2.6)implies (% —gk- ﬁ'%ﬂ')

< Sl;ﬂ). Construct A matchings M2, ... , Mas1, €ach having k edges, by set-
ting

M.-=T5,-U(R+(m’,n))u(?,+2(m’.n))U-.-U('E+ (-(—m—',‘;)-—l)(m'm)) :
Note that, by the way L was constructed (see Case 1) theset D = {(z —y)
(mod n): {z,y} € L} is contained in the set {$} U {*(s —1): {s,t} € P}
where (81, Py) is the first (m', n)-starter in Z, referred to in Lemma 2.3; in
particular, D is disjoint from the set {£(s —t): {s,t} € P2 U...U Py}

Now let (S, P) be an n-starter in Z, (Lemma 2.3) and r_e_move_from P
all pairs {z,y} with £(z — v) € {£(s - t):{s,t} ELUP, UP3U...
UPxe1}. By the foregoing there remain 3 — 1 — X- § (% —gk— &"-:);t)
—L(k(m,n) — §) = gk pairs in P, which we can now partition into q match-
ings Ny, ... , N,,eachwith k edges. Develop the matchings L, M2, ... , My1,
M,..., N, modulo n.
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Note that (in both cases) the matching L is contained in an orbit of size
(m, n), while each matching M; is contained in an orbit of length (m', n) and
each matching Nj is contained in an orbit of length n. We now have

Theorem 2.4. Letn > 0 be an even integer and0 < k < 2 with () = 0
(mod k). Then the complete graph K, admits a cyclic decomposition into
matchings of size k.

Remark: In the above construction there are ) + ¢ + 1 matching orbits, where
(etting m = %20 and m’ = m — (m,n) m' = g-n+ M(m',n) and 0 <
S i

Theorem 1.2 row follows from Theorem 2.2 and Theorent 2 4.
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