Sorting with powerful primitive operations

M. D. Atkinson
D. Nussbaum

School of Computer Science, Carleton University
Ottawa, Canada K1S 5B6

Abstract. The cost of a sorting algorithm is the number of primitive operations used in a

N

worst case execution of the algorithm. In the standard model the primitive operation is a
binary comparison, which sorts a pair of keys. Cost measures based on other primitive
operations are considered. A general lower bound for the cost of a sorting algorithm is
given which is valid for a wide class of possible primitives. For several special primitive
operations sorting algorithms are given. The primitive operations studied are: sorting k
keys, finding the largest among k keys, and merging lists of lengths i,j.

AMS Classification numbers: 06A 10, 68C05
1. Introduction

The standard comparison based model for the problem of sorting n keys into order assesses
the cost of an algorithm as the number of (binary) comparisons of keys used in the
algorithm (see 2] for the theory and practice of such algorithms). We may view this
operation as one which discovers, in a subset of two keys, more order than was previously
known. In this particular case the comparison operation begins with a subset about which
(presumably) no order information is known and ends with complete information about the
order relations of the subset. This paper investigates the power of more general primitive
operations. Informally, we shall be considering operations which work in the following
way: they are applied to subsets of some fixed size which already possess some order
structure (perhaps, trivial structure) and their effect is to produce a fixed amount of
additional order information (perhaps a total ordering of the subset). A more precise
definition of such a primitive operation is given below. For the most general operation of
this type we give a lower bound on the number of them required to sort n keys (in the
worst case). We go on to consider some special cases of these operations and derive
algorithms for sorting which attempt to utilise the particular operation as effectively as
possible. For the classical case when the primitive operation is the binary comparison
every sorting algorithm requires at least logan! operations. Itis traditional to use Stirling's
approximation, neglect lower order terms, and express this as n logan; since both binary
merge and insertion sort achieve this lower bound (again, apart from lower order terms) we
can regard the classical case as essentially solved. For other types of primitive operation

lower bounds of the form Q(n log n) and upper bounds O(n log n) can be obtained without
difficulty; the main interest is in the implied constant factors. While we are able to narrow
the gap between upper and lower bounds for the worst case complexity, only in a few
cases can we find the actual constant which multiplies the n log n factor. This work is
reminiscent of various models for sorting on parallel machines [1] but also contains
elements of sequential computation.

We now give a formal definition of a primitive sorting operation. Suppose that P is an
abstract poset with k elements and that Y is a set of k keys which has, because of

This research was supported by the National Science and Rescarch Council of Canada under Grant No. A4219

JCMCC 4(1988), pp. 29-36

previously discovered order relations, a partially ordered set structure. If there is an order

monomorphism a:P—Y (that is, a one-to-one map o such that x<y implies o(x)<0(y))
then we say that Yhas the structure of P.
Suppose now that P,Q are two abstract posets each with k elements and that Y is a set of k

keys which, by virtue of an order monomorphism «:P—Y, has the structure of P. A
(P—Q) operation is an operation whose outcome is a function decomposition o=y where
B:Q—Y and v:P—Q are both order monomorphisms. The mapping y gives Y the structure
of Q (the (P—Q) operation has thereby discovered new order relations within Y) and the

mapping B shows the precise way that, in Y, the structure of P corresponds, element by
element, to the structure of Q.

Example

°
o %G
[}

P Q Y

We take o to be o:(a,b,c)—(g,h,i). The P=Q) operation is essentially the operation of
identifying the maximum among 3 keys. Two of the possible outcomes are

(i) B:(d,e,H—=(g,h,i) and ¥:(a,b,c)—>(d,e,f) (here the operation determined that g was the
maximal element), and

(ii) B:(d,e,N)—(i,h,g) and y:(a,b,c)—&(f,e,d) (here the operation determined that i was the
maximal element)

In this terminology an ordinary comparison is a (P—Q) operation with P and Q being the
posets

P Q
Other examples of this concept (all of which will be studied in more detail in later sections)
are

1. The operation of sorting a set of k keys (k fixed); here the poset P would be an anti-
chain of size k while Q would be a chain of length k,

2. The operation of finding the maximum among k keys (k fixed); again, P would be an
anti-chain and Q would be the poset whose Hasse diagram is

3. The operation of merging two sorted subsets of sizes i,j together (i,j both fixed); P
consists of two disjoint chains of lengths i,j while Q is a chain of length i+j.

A (P—Q)-algorithm is one which accomplishes its result (sorting or merging a set of n
keys) by a succession of (P—Q) operations. After each (P—Q) operation the algorithm

30

examines the information it has discovered and chooses another subset on which to apply
the next (P—Q) operation. It is assumed implicitly that no other order revealing operations
(such as binary comparisons) can be used in a (P—Q)-algorithm. The execution cost of a
(P—Q)-algorithm is the number of (P—Q) operations that it uses. Usually in what follows
the particular (P—Q) operation is clear from the context and we shall refer to "algorithm"
rather than "(P—Q)-algorithm”. Before going on to study upper bounds on the worst case

execution time algorithm costs for particular (P—Q) operations we give a general lower
bound result.

Theorem 1 For any posets P and Q (defined on sets of the same size and such that order
monomorphisms from P to Q exist) the number of (P—Q) operations required to sort n

keys is, neglecting lower order terms, at least Tos L(np;o_ : 2 L(Q)y 1 where L(P)
denotes the number of linear extensions of the poset P.

The proof is a generalisation of the standard information theoretic argument and requires
the following simple lemma.

Lemma A Let aj2aj2...2ap be n numbers with sum s, and suppose that 1Sm<n. Then
aj+ag+...+am 2 ITI:"S
Proof. Consider the sum zMzie M where the outer sum is over all subsets M of

{1,2,...,n} of size m. In this sum each aj occurs exactly n-1C,. ; times and so the value of
the sum is ™1Cp, 1.5s. However if the lemma is false then every subset of {a1,a2,...,.an}

m
would have value less than 7= .s and so the value of zMzie M would be less than

m
“Cm.F.S = MIC s

Proof of Theorem 1. We shall show that each (P—Q) operation reduces the number of
possibilities for the sorted order by a fraction at most equal to ®) in the worst case. The

theorem will then follow since the number of (P—Q) operations required to reduce the n!
initial possible orderings down to exactly one will be at least

log n! nlogn .
1t = =
198, o1 " = g LEVLIQ) - Tog L(P) - Tog L(Q) > "eElecting terms of

lower order than n log n, by Stirling's approximation.
Let s be the number of possibilities for the sorted order at some general step in a sorting

algorithm and let Y be a set with partial order structure P to which the next primitive
(P—Q) operation is to be applied. These s possibilities fall into L(P) classes one for each

linear extension of P. The effect of the (P—Q) operation is that only those classes which
are consistent with Q can remain possibilities for the final ordering. There are L(Q) such
classes. In the worst case these L(Q) classes are the largest and, by the lemma, their union

LQ)

has size at least ﬂ%s

1 Here, and subsequently, all logarithms are to the base 2

31

We now consider upper bounds for the worst case complexity of sorting and merging with
various types of (P—Q) operation. When merging several lists together we can avoid any
difficulties caused by one of the input lists becoming exhausted by adding a dummy

element -oo to each list. Our sorting algorithms are mostly based on merging algorithms
and we obtain their execution costs by the following well known result.

Lemma B Let M(r,n) be the worst case (P—Q) cost of merging r lists of total length n,
and suppose that M(r,n) satisfies M(r,n/r) SM(r,n) for all n. Then, except for small

. . M(r,n
order terms, the worst case sorting cost S(n) satisfies Sm) < ml.]og n.

Proof. The execution cost of the recursive sorting algorithm based on r-ary merge satisfies
the recurrence S(n) < rS(%) + M(r,n) and this has the solution given in the lemma.

2. The operation of computing the largest, next largest,

Theorem 2 Suppose that the primitive operation is that of finding the largest, second
largest,, t th largest in a set of k elements. Then M(k/t,n)<n/t.
Corollary With this primitive operation then, except for smaller order terms,

nlogn nlogn . o _nlogn
Tog k! - Tog(k-07 = S(M) < foor In particular, if t=1, S(n) ‘ToEgE‘-
Proof. For simplicity we shall take k to be an exact multiple of t. Each step of the merging
algorithm applies the given primitive operation to the union of the sets of t largest keys
from each of the k/t lists being merged. The t largest elements returned by the operation are
necessarily the t largest elements in the whole set of remaining keys. They are then

removed from the set of keys and placed in an output buffer. Clearly, n/t such operations
suffice to complete the merge.

This proves the theorem. The corollary follows from Theorem 1 (lower bound) and from
Lemma B (upper bound). The corollary is optimal when t=1. Moreover, Stirlings formula
shows that, when k is large compared to t, the upper and lower bounds are fairly close.

3. The operation of sorting k elements
In this section we consider the operation 6y which sorts a set of k elements into order.

Theorem 3 When the primitive operation is oy then M(2k-1n) < n+O(2k).
Corollary With the primitive operation oy then, except for smaller order terms,
nlogn nlogn

Tog k1 = S(n) € —=75—
Proof The merging algorithm begins by defining the structure of a set of complete binomial
heaps on the set of maximal elements of the 2K-1 lists to be merged, one heap of each size

2,4,8,...,21"2, and two heaps of size 1. As shown in the following figure, the partial
order structure so obtained has a diagram which consists of several components. We shall
say that a component has rype 2/ if it involves 2i of the lists being merged.

32

J
J
To create the binomial heap structure the standard algorithm for creating binomial heaps is
used. This algorithm uses O(2k) binary comparisons and so O(2k) of the oy operations.
Once the binomial heap structure is established each step of the algorithm applies the ok
operation to the k maximum elements of each component. Suppose that it is discovered
that the largest element is found in the component of type 2i. This element is output and the
component then splits into connected components which involve, respectively,
1,1,2,4.8,....,2i"! lists; moreover the maximum elements remaining in these lists have the
structure of complete binomial heaps of size 1,1,2,4.8.....,2-1. However the Ok operation
has had another consequence: the original components of types 1,1,2,4,8,....,2-1 have

been given the structure of a component of type 2). This is because the two components of
type 1 become (through their maximal elements being ranked) a component of type 2; this
component taken together with the original component of type 2 yields a component of type

4, and so on. In other words, at the cost of one Oy operation, one more output element has
been identified and the remaining elements continue to be structured into components of

types 1,1,2,4,8,...,2k'2. After n-k of these operations only k elements remain and then
one final oy operation completes the merge.

4. The operation of merging

In this section we consider the primitive operation j(i,j) to be that of merging two sorted
lists of lengths i,j.

Theorem 4 Suppose that the primitive operation is p(k.k). Then M(2i,n) < (U-1)n/k.

Proof. We perform a balanced binary merge taking initially pairs of lists of total length
n/2i-1, continuing with pairs of lists of length n/2i-2, and so on. When two lists are being
merged we repeatedly apply the operation to the k largest elements in the first list and the k
largest in the second list. This yields the next k elements to be output, in order, they are
now deleted from the input and the operation is repeated. Since k elements are output at

j-1
every stage the number of stages is “Ier 02"

Corollary With this primitive operation then, except for smaller order terms,
n logkn <Sm) < n l(l)cg n

33

Proof. The lower bound follows from Theorem 1 and the upper bound follows from
Lemma B. :

The result of the Corollary has an alternative proof which allows a generalisation to the
H(i,j) operation.

Theorem § Suppose that the primitive operation is u(i,j). Then, except for smaller order
terms,

n log n 2nlog n
log(H-'J) < S(n) < (1+)) log(1+)) -ilogi-jlogj
J

Proof. First we observe that two lists of lengths m,n may be merged in ? + ']I-Operations

of type u(i,j). The algorithm is the natural one: it continually applies (i,j) to the i largest
elements ay,a,....,a; of the first list and j largest elements by,bs,....,b; of the second list.
If aj<bj then i elements of the first list at least may be output to the resuft list, and otherwise
j elements of the second list at least may be output to the result list.
We now use this merging result in a binary merge sorting algorithm. The merge is,
however, not a balanced merge: whenever a sorted list of length k is required it is created
by splitting the set of k keys into subsets of sizes in the ratio i:j, sorting recursively, and
merging as above. The execution time T(n) of this algorithm therefore satisfies
ni n ni nj

Tm =TqH + T(ﬁlf) T A T)
and the obvious inductive proof then establishes the claimed upper bound. The lower
bound follows from Theorem 1.

In Theorem 5 the Stirling approximation indicates that the lower and upper bounds differ
by a multiplicative factor close to 2 (although some caution should be used in applying this
approximation since Stirling's formula is an asymptotic formula and i and j are constants).
Next we consider an algorithm which brings the lower and upper bounds closer together
when j is very much larger than i. For convenience we shall take j to be an exact multiple
of i.

Theorem 6 Suppose that the primitive operation is u(i,j) where j=qi. Then, except for
terms of lower order,

n loE n nlogn
o (xﬂ) < S(n) < 1log(i+)) - ilog i
B\ j

Proof. The lower bound is given in Theorem 5. For the upper bound an algorithm similar
to insertion sort is used. This algorithm inserts i elements at a time into a sorted list of
length m (m=0,i,2i,....). The cost of such an insertion step is logg+1m + constant (as
shown below) and hence the total cost is

.1 1)} 1
2%”:'}) mod i 1°gq+lm = k(z/!"gqﬂk‘ = og(n/i) 0 ogn
<n/i

logq+l =~ Tlog(/i+ 1)
(where the equalities in the equations above neglect terms of lower order than n log n) as
required.
All that remains is to describe a typical insertion step. Let L = {y1,y2,...,ym} be a sorted
list of length m and let x1,x2,...,Xj be i keys to be inserted into L. We maintain i sets Iy,
I,...., Ij, initially all defined as [1..m+1], such that each Iy is the range of candidate

positions where xx should be inserted: in other words, for some je Iy, Yj<xk<yj+1. To
begin with we sort x1,x2,...,xj Of course, this must be done with the K(i,j) operation
which is not very well suited for this task; however, with a Ju(i,j) operation we can perform

34

an ordinary comparison by introducing dummy keys with value oo and the sorting can be
done with cost bounded by a constant.

Next, logg+1m of the u(i,j) operations are performed; each one reduces the sizes of 11,

I2,...., Ij by a factor of g+1. A typical p(i,j) operation is applied as follows. We select q
equally spaced points from each distinct set Ix (thereby dividing Ix into q+1 subsets of
equal size); let yk1,Yk2,.--Ykq be the keys indexed by these points. The set of (distinct) yir

is a sorted set of size at most gi=j. The j(i,j) operation is now applied to the list of all ykr
and the list X1,X2,...,xj. From the result of the operation we can determine which of the
q+1 equally sized subsets of each Iy contains the insertion point for xy; this subset becomes
the new Ik, and the desired effect has been achieved.

An elementary calculation shows that
n log n < 2nlogn
TTog(i+)) -1logi ~ (i+)) log(i+)) - 1 log i-jlogj-1
Thus, when j is large compared to i, the upper bound in Theorem 6 is almost twice as good
as that in Theorem 5.

References
1. S.G. Akl, Parallel Sorting Algorithms, Academic Press (Orlando, London), 1985.

2. D.E. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming,
Addison-Wesley (Reading, Massachusetts),1973.

"35

