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Abstract. The minimum cardinality of a pairwise balanced
design on nineteen points is determined; a minimal design is
exhibited containing 13 triples and 22 quadruples.

1. Introduction.

The quantity g(4)(v) is the minimum number of blocks required to cover
exactly all pairs from a set of v elements using blocks of sizes 2, 3, and 4 (see,
for example, [1] and [2]). In other words, g )(v) is the minimum
cardinality of a pairwise balanced design on v points in which the block sizes
are restricted to the set {2,3,4). This quantity was determined in [3] for all
values of the parameter v with the exception of 17, 18, 19. In this paper, we
shall discuss the case v = 19.

It is not difficult to construct an exact covering of all 171 pairs from 19
elements by a set of 36 blocks. We take a single block 1234 and then take the
seven resolutions R; i=1, ... ,7) of a Kirkman triple system on 15 points.

We adjoin i to each triple of R; (i = 1,2,3,4); this gives twenty additional

quadruples for a total of 21 quadruples. The remaining blocks are the 15
triples from Rg, Rg, R7. Clearly this covering is exact; so we have

Theorem 1. gY(19) < 36.
The upper bound provided by the covering obtained in Theorem 1 will be

very useful in our discussion; however, we must now investigate whether
this covering is optimal.
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2. Coverings with No Blocks of Length 2.

Suppose that we have an exact covering with b; blocks of length i (i=2,3,4)
and a total of B blocks. We know that by <25, since Stinson [4] has shown
that the packing number D(2,4,19) = 25. From the relations

¢)) by+b3+by =B,
(2) by+ 3b3 +6bg =171,

we obtain
(3) 5by+3b3=6B-171.

If by = 0, there are 4 solutions of (3) with B less than 36, namely,
Case (1) B=35,b3 =13, by =22;
Case (2) B=34,b3 =11, by = 23;
Case (3) B =33, b3 =9, by =24;
Case (4) B=32,b3=7,by =25.

There are two solutions of (3) with by = 3, namely,
Case (5) B=35,by =3,b3=8,by = 24;
Case (6) B=34,by =3,b3 =6,by =25.

There are no solutions of (3) with by > 3, by <26, B < 36. In this section we

shall consider the first 4 cases, which involve no blocks of length 2. We let
the element i (i = 1, ... ,19) have frequency q; in the quadruples and

frequency t; in the triples. Then we have
3q; +2t; =18,

and the only solutions for (g.t;) are (6,0), (4,3), (2,6), (0,9). Suppose that
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there are a elements with the pattern (6,0), b elements with the pattern (4,3),
¢ elements with the pattern (2,6), and d elements with the pattern (0,9). Then
we have the equations

a+b+c+d=19,

6a + 4b + 2c = 4by,

and can deduce
Lemma 1. There are no elements with pattern (0,9), that is, d =0.

Proof. If d > 0, there is an element x that appears in 9 triples (this
immediately rules out Case (4) in which there are not 9 triples). In Cases
1,2,3, the element x must appear with all 18 other elements in these 9 triples;
hence a=0. Also ¢ =0, since any element y that occurred in 6 triples would
be forced to have a repeat xy (the number of triples is at most 13 in all three
cases). Also, d =1 (if d > 1, there would be a repeated pair in the triples), and
thus we have the solution d = 1, b= 18. It follows that b =by =18, and this is

a contradiction.

We now suppose that d = 0, ¢ > 0; then there is an element x that occurs 6
times in the triples, and it must therefore occur with 12 other elements in the

n, "

triples. These 12 elements can not be "a" elements with the pattern (6,0).
Hence we must have

b+c=1+12=13.
From the equations
a+b+c=19,

6a + 4b + 2c = 4by,

we deduce that

b+2c =57 - 2by

In Case (4), b + 2¢ = 7 (impossible, since b + ¢ > 13); in Case (3),b+2c=9,
and this is impossible; similarly, in Case (2) b + 2¢ = 11, and this is also
impossible. In Case (1),b+2c=13; thenb+c= 13, and so ¢ must be equal
to 0 (this contradicts the fact that the element x occurs in the triples). We thus
have established
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Lemma 2. There are no elements with pattern (2,6), that is,
Cases 1, 2, 3, 4, now satisfy the relations

a+b=19,3a+2b=2b,,
Thus a=2by-38, b=57-2b,.

In Case (4), there are 7 triples and 7 "b" elements. So the 7 triples form a
Fano Geometry. But each of these 7 elements occurs 4 times in the
quadruples; since all pairs from these 7 elements already appear in the
triples, there are at least 28 quadruples. This contradiction shows that Case
(4) does not occur and so we have established

Theorem 2. g(4)(19) > 32,
In Case (3) there are nine "b" elements occurring in the nine triples. So the
quadruples contain ten "a" elements having frequency 6 and nine "b"
elements having frequency 4. We suppose there are u quadruples of the
form aaaa, w quadruples of the form aaab, x quadruples of the form aabb, y
quadruples of the form abbb, and z quadruples of the form bbbb. Counting
of the pairs aa, ab, and bb produces the relations

u+w+x+y+z=24,

6u + 3w + x =45,

X+3y+6z2=36-27=09,

3w + 4x + 3y = (10)(9) = 90.

The third equation shows that x = 9 - e, where e is not negative; then the
fourth equation shows that w + y = (54 + 4e)/3. This gives a contradiction in
the first equation. So we have

Theorem 3. Case (3) does not occur, that is, g(4)( 19) > 33,

In Case (2), there are 11 "b" elements; hence there are 55 - 33 = 22 pairs of
“b" elements that occur in the quadruples. Proceed as before; we find that

u+w+x+y+z=23, X+3y+62=22,

6u + 3w + x = 28, 3w+4x+3y =88,
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These equations do have solutions, namely,
Case (A):x=22,u=1;
Case (B):x =19,y=1,w=3.

In Case (A), let the elements of pattern (6,0) be 1, 2, 3, 4,5,6,7,8; then
there is a block 1234. But then 5 occurs in blocks containing 51, 52, 53, 54,
56, 57, 58 (a contradiction, since 5 has frequency 6).

In.Case (B), w=3. If any of the "a" elements occurs twice in these three "w"
blocks, then it must appear in the block of the form abbb. Hence there can be
only one repeated element in these three blocks, and they must thus have the
form 123x, 145x, 678x. Look at the specific block 123p. The element p must

occur with five more "a" elements in three blocks; this is not possible. Thus:
we have

Lemma 3. Case (2) does not occur, that is, we can not have a design in 34
blocks that comprises only quadruples and triples.

We finally consider Case (1) in which there are six "a" elements (1,2,3,4,5,6)
and thirteen "b" elements (p.q..s.t.c.d.e.f,g.h5k). We proceed as before to
obtain the equations

u+wHx+y+z=22,
6u+3w+x=15,
x +3y+62=39,
3w +4x+3y=78.
Again, there are two solutions of these equations, namely,
Case (A): x=15,w=0,y=6,z=1;
Case (B): x=12,w=1,y=9.

In Case (A), there are 15 blocks containing two "a" elements and 6 blocks
containing a single "a" element. Let the single "b" block be pqrs. Then the
quadruples containing 1, 2, 3,4, 5,6,p,q, T, S, can be written as:

1,2,3,4,5,6,12p, 34p, 56p, 13q, 26q, 45q, 14r, 25r, 36r, 15s,
23s, 46s, 16, 24, 35,
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where we omit occurrences of the other letters in the quadruples.

The remaining nine "b" elements are t, c, d, e, f, g, h, j, k, and each must
occur in four quadruples. Hence each must occur in two quadruples of the
form aabb and in two quadruples of the form abbb, and there are six
quadruples of this latter type.

Look at these last six quadruples as regards the b triples. The triples take the
form tcd, txx, cxx, dxx, xxx, xxx. There are only two possible completions
for these triples. These are:

(a) tcd, tef, cgh, djk, egj, fhk;
(b) ted, tef, ceg, dhj, khf, kjg.

In Case (a), these six blocks form two resolutions. Since the block containing
16 (a similar argument holds for 24 and 35) contains two elements not in
Ixxx and 6xxx, we see that the blocks 1xxx and 6xxx must contain triples
from different resolution classes. Hence the triples may be taken as:

(7) 1tcd, 6tef, 2egj, 4cgh, 3fhk, 5dik.

The quadruples that contain 16, 24, and 35 may now be considered. In order
to avoid repeated pairs, we must the following selections:

16hj or 16gk; 24tk or 24df; 35¢ce or 35tg.

This results in eight possible assignments for the blocks that contain 16, 24,
and 35. Of these assignments, seven immediately produce contradictions and
can not be completed. The exception is the asssignment 16hj, 24df, 35¢ce. It is
somewhat astonishing that this case can be completed, but this is easily done
in a unique fashion to produce a pairwise balanced design The easiest
procedure is to draw six intersecting lines in the plane and label these lines as
1,2, 3, 4, 5, 6. Their fifteen points of intersection are then represented by
the pairs 12, 13, ..., 56. Each line is assigned a triple as in the list (7)
previously given; when we assign hj to 16, df to 24, and ce to 35, we find that
the other letters can be strung out along the six lines in only one way (of
course, all nine letters must appear once and only once along each line). The
resulting set of quadruples is then

pars; ltcd, 2egj, 3fhk, 4cgh, 5djk, 6tef; 12pk, 13qg, 14re, 15sf, 16hj,
23st, 24df, 25rh, 26qc, 34pj, 35¢ce, 36rd, 45qt, 46sk, 56pg.

If one lists the pairs not covered by these quadruples, they fall into the
following set of thirteen triples.
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pth, pef, pde, qfj, ghd, gke, 1tj, rck, rfg, seh, sgd, sjc, tgk.

The block tgk plays a special role, since it is the only triple that does not meet
the quadruple pqrs.

At this time,we are not attempting to determine all non-isomorphic solutions
of the problem; hence the fact that we now have a design in 35 blocks relieves
us of the need to discuss Case (5) at all. Also, we do not need to complete the
discussion of Case (1). We may thus state

Theorem 4. g{¥(19) < 35.

In order to establish that g(4)(19) = 35, we shall have to exclude Case 6 in
which there are 3 pairs, 6 triples, and 25 quadruples.

3. Discussion of Case 6.

We let q;, t;, and p; be the frequencies with which a particular element occurs
in the quadruples, triples, and pairs, respectively. Then we have

3q;+ 2t +p; =18

The solutions for (q;t;,pj) in which t; <6, p; < 3, are (5,0,3), (3,3,3),

(1,6,3), (4,2,2), (2,5,2), (5,1,1), G4, (6.0,0), (4,3,0), (2,6,0). Several of
these possible pattemns can be excluded at once.

Lemma 4. Patterns (2,6,0) and (1,6,3) are not possible.

Proof. If element 1 has pattern (2,6,0), then there are six blocks of the form
1xx. The twelve elements that occur with 1 in these blocks must all have
pattern (5,1,1). This means that they must all occur in the pairs, and there is
room for at most six elements in the pairs.

If element 1 has pattem (1,6,3), there are again six triples 1xx; however, in
this case, the three pairs have the form 1x as well. Any element that occurs
with 1 in the triples must again have pattern (5,1,1), and this gives an
immediate repeat in the pairs.

Lemma 5. Pattern (2,5,2) is not possible.
Proof. In this case, we have pairs 1x, 1x, xx, and triples 1xx (five times) and

xxx. Consider the triple 1rs. The element r can not have the pattern (4,2,2)
or we would have a repeat of 1r in the pairs. Hence the element r has pattern
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(5,1,1). Thus we must have the pairs 1x, 1x, rx. Now the element s must also
have the pattern (5,1,1), and this leads to a repeat in the pairs (either on 1s or
on rs).

Lemma 6. Pattern (3,4,1) is not possible.

Proof. In this case, we have blocks 1x, xx, xx, 1xx (4 times), xxx (twice).
Consider a block 1rs.

If r has pattern (4,2,2), then the blocks can be written as 1x, rx, rx, Irs, 1xx
(three times), rxx, xxx; then s can not appear in the pairs and so s must have
pattern (4,3,0); but this gives an immediate repeat of 1s in the triples. So the
only possible patterns for r are (5,1,1) and (4,3,0).

If r has pattern (4,3,0), then the triples may be taken as 1rs, Itu, Ivw, 1xy,
XX, rxx, and the pairs are 1x, sx, xx. Clearly s, t, u, v, w, x, y, all have
pattemn (5,1,1) or there would be a repeat in the triples. But then there is no
room in-the, pairs for all of these elements.

We conclude that all the eight elements that occur with 1 in the triples must
have pattern (5,1,1). This is again impossible, since at most six distinct
elements can appear in the pairs. This completes the proof of Lemma 6.
Lemma 7. The pattern (3,3,3) is not possible.
Proof. Suppose there is an element 1 with pattern (3,3,3). Let the triples be
Irs, 1xx, 1xx, XXX, XXX, XXX. Clearly both r and s must have pattern (4,3,0).
This forces another occurrence of rs in the triples, and so we can reject the
pattern (3,3,3).
We thus have to consider only the pattemns (5,0,3), (4,2,2), (5,1,1), (6,0,0),
and (4,3,0). We suppose that the frequencies of these patterns are u, w, x, y,
and z, respectively. Then we have

u+w+x+y+z=19,

2w+x+3z=18,

3u+2w+x=6.
In order to avoid a repeated pair, we must have u = 1 or 0. If u = 1, we must

have w = 0 (or there would be a repeated pair). So we have the possible
solutionu=1,w=0,x=3,z=5,y=10.
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However, if z = 5, we have 5 elements that appear in the six triples three
times each. This is not possible without having a repeated pair. So we have

Lemma 8. Pattern (5,0,3) can not occur.

The other possibility is when u = 0. Then 2w + x = 6, z = 4. If z =4, the six
triples must take the form 12x, 13x, 14x, 23x, 24x, 34x; consequently, the
quadruples have the form 1xxx, 2xxX, 3xxx, 4xxx (six times each), and one
other block that does not contain 1, 2, 3, or 4. If any element in the triples
has pattern (4,2,2), it must be an element r that occurs in two blocks of the
form (say) 12r, 34r; hence it is not able to appear the necessary 4 times in the
quadruples. Consequently, there are six elements in the triples that have
pattern (5,1,1). But then, if we take a triple 12r, we find that r can appear in
only three quadruples (with 3, with 4, and with none of 1, 2, 3, 4). Hence we
must reject this possibility also, and thus have

Theorem 5. Case (6) can not occur, that is, g(4)(19) > 34,
We may now combine Theorems 4 and 5 to obtain the final result, namely,

Theorem 6. g(19) = 35.
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