An Efficient Implementation of the Eades,
Hickey, Read Adjacent Interchange
Combination Generation Algorithm

Tim Hough Frank Ruskey *
Computer Science Department Department of Computer Science
U.C. San Diego University of Victoria
La Jolla, CA 92093 Victoria, B.C. V8W 2Y2

June 7, 1988

Abstract

Consider combinations of k out of n items as represented by bit-
strings of length n with exactly k ones. An algorithm for generating
all such combinations so that successive bitstrings differ by the in-
terchange of a single 01 or 10 pair exists only if n is even and k is
odd (except for the trivial cases where k = n,n —1,0,1). This was
shown by Eades, Hickey, and Read [4] (and others) but no explicit
algorithm was given. Later Carkeet and Eades [3] gave an inefficient,
exponential storage implementation. Here we present an implemen-
tation of the algorithm of [4] that is constant average time, and uses
linear storage.

1 Introduction

Let C(n,k) denote the set of bitstrings of length n with exactly k ones,
and C(n, k) be the number of elements in C(n,k). We are interested in
generating, or listing, the elements of C(n, k) so that successively listed
" bitstrings differ by the interchange of a single 01 or 10 pair. Let G(n, k)
denote the graph whose vertex set is C(n, k) and where an edge connects
two bitstrings if they differ by a single adjacent interchange. Our problem
thus becomes one of finding a Hamilton path in G(n,k). This graph has
two pendant vertices, 1¥0"-* and 0"*1*, and so the Hamilton path must
begin and end at those two vertices.

Three groups, working independently, have shown that G(n, k) has a

*Research supported by the Natural Sciences and Engineering Research Council of
Canada under grant A3379.

JCMCC 4(1988), pp. 79-86

Hamilton path if and only if n is even and % is odd (except for the triv-
ial cases k = n,n — 1,0,1). See Eades, Hickey, and Read [4], Buck and
Wiedemann (2], and Ruskey [5]. In each of the papers the proof proceeds
by decomposing the graph, but a different decomposition is used in each
paper. The only paper to contain an explicit algorithm is that of [5] !,
where a constant average time, linear storage algorithm is given. Carkeet
and Eades (3] gave an implementation of the proof of [4], but the algorithm
is inefficient and uses exponential storage.

We will show that the algorithm implicit in the proof of [4] can be
implemented to use linear storage and take constant average time. This
is listed as an open problem in [4]. There is nothing extraordinary about
the methods that we use. They could be applied to any similar proof. In
comparison with the algorithm of [5), the algorithm of this paper is shorter,
and probably more efficient, but is perhaps not as conceptually simple. The
algorithm, implemented in Pascal, can be obtained from the second author.

The representation of combinations used in [4] was not the bitstring
itself, but rather the sequence of positions that the 1’s occupy. By using
the bitstrings the presentation of the proof is somewhat simplified.

2 Implementation

In order to explain our implementation it is necessary to review the proof
presented in [4]. The proof can be viewed as being based on the recurrence
relation given below. It proceeds by induction on n and k.

n n—2 n—2 n—2
(2)- (75 (520) (1)

First, all C(n—2, k —2) bitstrings with prefix 11 are generated, followed
by those beginning 01 or 10 (of which there are 2C(n—2, k1)), followed by
the C(n — 2, k) with prefix 00. The list starts with the bitstring 1¥0"* and
ends with the bitstring 0"~*1*. Inductively, those beginning 11 or 00 can be
generated. Those beginning 11 are listed from 111%-20"* to 110™-*1%-2,
and those beginning 00 are listed from 001*0"~*~2 to 000"~*-21*. The
complicated part of the proof is in listing those bitstrings that-begin 01 or.
10. A special:kind of tree that is used in this part of the proof.is defined
below.

The authors have recently learned that Buck and Wiedemann’s original report {1]
contained two efficient implementations of their combination generator. However, these
algorithms are presented in a little-known language, IDAL, and are unanalyzed in the
report.

80

DEFINITION: 1 A comb is a tree of maximum degree three where all vertices
of degree three lie along a single path which is called the spine. The paths
that are attached to the spine are called teeth.

Let us consider the specific case of n = 8 and k = 5. There are C(n —
4,k — 2) = C(4,3) = 4 bitstrings with prefix 1010, and similarly there are
4 with prefix 1001, or 0110, or 0101. Inductively, the four suffixes are 1110,
1101, 1011, and 0111. The proof of [4] denotes the list of bitstrings of m =
C(n — 4,k — 2) prepended with 10 by p1, P2, -« - s Pm, and when prepended
with 01 by ¢1,92,..-,gm- In our example, the p list is 101110, 101101,
101011, 100111, and the g list is 011110, 011101, 011011, 010111. Note
that

41,P1,P2,<12,‘13a «+vyDPm—-1) Pmyrdm
is a path in G(n — 2,k = 1). This path is the spine of the comb. - The
bitstrings of C(n — 2,k — 1) that begin 00 or 11 are attached as the teeth
of the comb; those that begin 00 are attached to g vertices, and those that
begin 11 are attached to p vertices. The tooth attached to a g vertex is
obtained by moving its leftmost 1 to the right until it encounters another

aQ 1 P2 q2 @3 P3 P12 G4

%

s
Vv

Figure 1: Path in pair of combs for n = 8 and k = 5.

1. The tooth attached to a p vertex is obtained by moving the leftmost 0 to
the right until it encounters another 0. The following table lists the vertices
of the spine for our example as the leftmost column, and the bitstrings to
the right are the teeth of the comb.

q 011110

py 101110 110110 111010 111100

p, 101101 110101 111001

g 011101

gs 011011

ps 101011 110011

g4 010111 001111

81

There are two combs for C(n, k) depending on whether the bitstring
starts 01 or 10. In other words, we have the product graph of the comb
and an edge. Let us call the comb with prefix 10 the upper comb and the
one with prefix 01 the lower comb. It is a simple matter to find a Hamilton
path in the two combs that starts at the upper vertex 10p,, and ends at the
lower vertex 0lg;. Since p,, = 10" *-11*-! and ¢; = 01*-10"~*-2 the proof
will be finished. The Hamilton path in the pair of combs for our example
is illustrated in Figure 1.

When viewed along the spines the path sequence starts 10p,, 10gm,
01gm, 01p,. Thereafter, the patterns 01p;, 10p;, 10¢;, 01¢;, and 01g;, O1p;,
10p;, 10g; alternate as i decreases from m — 1 to 1. Of course, the teeth
have to be generated along the way as well. This finishes the proof.

In order to implement the algorithm efficiently we cannot store sublists
of bitstrings as was done in [3]. Our approach is to try to write a procedure
Next that will transform the current bitstring into its successor, and only
use a linear (e.g. O(n)) amount of auxiliary information.

From any vertex in the pair of combs there are at most three possible
moves: across the comb, along the spine, or along a tooth. It is also
convenient to keep track of whether we are at a p vertex or a ¢ vertex. This
leads us to the following list of 14 states.

INIT The bitstrings beginning 11.

FINI The bitstrings beginning 00.

PP From a p vertex to a p vertex in same comb.

QQ From a ¢ vertex to a ¢ vertex in same comb.

PQ From a p vertex to a g vertex.

QP From a g vertex to a p vertex.

ULP From a p vertex in upper comb to a p vertex in lower comb.
LUP From a p vertex in lower comb to a p vertex in upper comb.
ULQ From a g vertex in upper comb to a ¢ vertex in lower comb.
LUQ From a g vertex in lower comb to a ¢ vertex in upper comb.
TDP Down a p tooth.

TDQ Down a g tooth.

TUP Up a p tooth.

TUQ Up a q tooth.

Procedure Next is used recursively. In particular, when the INIT FINI,
PP, and QQ moves are made, Next is called again to find the successor
of some smaller bitstring. Procedure Next will have four paramenters n,
k, level, and dir. Parameter level is the current level of the recursion,
and dir is the direction in which the generation is proceeding. The for-

82

ward direction is from 1¥0"* to 0"~*1* and the backward direction is the
opposite. We need to be able to go in both directions because the spine
is recursively traversed in the opposite direction. The basic outline of the
algorithm is given below. The bitstring itself is stored in a global array x.
When moving a single bit, the forward direction means movement to the
left, and backwards means movement to the right.

“Initialize";
ropeat Next(n, k, 1, forw);
until "x is last sequence";

procedure Next (n, kX, level, dir : integer);
begin
if k= 1 then "move 1 one position in direction +dir" else
if k = n-1 then "move O one position in direction -dir" else
case "next move" of
INIT: begin ... end;

TUQ: begin ... end;
end {case};
ond {of Next};

The case statement contains each of the 14 states and, aside from re-
cursive calls, we want there to be a constant amout of computation for
any call to Next. The main complication is how to keep track of where
we are in the recursive construction. This is not straightforward because
the recursive steps along the spine are intermixed with non-recursive steps
along the spine and up and down the teeth. This complication is overcome
by introducing a global stack of records with the appropriate fields. The
stack is indexed by the level of the recursion.

We have now presented the central ideas of our algorithm. The exact
fields in the stack will depend on what other global information is main-
tained. One specific implementation will be described next. In addition to
x and the stack there is another global array p1 which keeps track of the
positions of the 1’s in the bitstring, The adjacent interchanges are done by
moving a specific 1 to the right or to the left.

Each stack record contains four fields spec, side, p, and nm. Field spec
is a boolean that keeps track of whether we are currently in the special
part of the path which is traversing the part of the graph defined by 10p,,
10¢y, 01¢m, 01p,. Field side keeps track of whether we are on the upper
or lower comb. Field p is a counter used to keep track of which 1 is being
moved when traversing a tooth. Field nm keeps track of which is the next
move.

83

With the data structure described above, it is now possible to write
Next so that a constant amount of computation is done, except for the

recursive calls. Thus the running time of the algorithm is proportional to
the total number of calls to Next that are made in generating all elements
of C(n, k).

Let N(n,k) denote the number of calls to Next(n,k) in generating
C(n, k). As will be shown in the following section N(n, k)/C(n,k) is pro-
portional to n and so we do not yet have a constant average time algorithm.
Upon examining the algorithm it seems that many of the calls to Next are
wasted if we already know that the prefix is 11 or 00. By being a little
more intelligent about how those cases are handled we obtain a constant
average time algorithm,

The procedure Gen below (recursively) avoids the calls to Next when
the prefix is 11 or 00.

procedure Gen (n, k : integer);
begin
if k = 1 then "sweep the 1 from right to left" elsa
if k = n-1 then "sweep the O from left to right" else
begin
"set first two bits to be 1";
Gen(n-2, k-2);
"Initialize";
repeat Next(n, k, 1, forw);
until "all bitstrings with prefix 01 or 10 are generated";
"set first two bits to be 0";
Gen(n-2, k);
end;
end {of Gen};

As shown in the next section, by using Gen, we obtain a constant average
time algorithm.

3 Analysis

Recall that N(n,k) is the number of calls to Next(n,k) in generating
C(n, k). The following recurrence relation holds:
N(n,1) = N(n,n —1) = n — 1 and otherwise

n

N(n,k) = ()) =14+ N(n=2,k~2)+ N(n~4,k~2)+ N(n -2,k

To prove the recurrence relation observe that Next is called once for every-

bitstring except the first, and the other terms in the recurrence follow from
the recursive calls.

84

Let M(i, k) be the number of calls to Next(n,k) in the modified algo-
rithm (when Gen is used). The following recurrence relation holds:
M(n,1) = M(n,n — 1) = 0 and otherwise

M(n, k) =2 (’,’c‘:f) —1+M(n—2,k=2)+N(n—4,k—2)+M(n—2,k)

The following Theorem shows that M(n, k)/C(n, k) is indeed bounded
by a constant.

THEOREM: 1
3(n n+2
M(n,k)<§.(k) and N(n,k)<(k+1)
PROOF: An easy induction using the recurrence relations for N and M. =

It would be interesting to determine M and N more exactly. From
the recurrences, for fixed k, we see that N(n,k) is a polynomial in n of
degree k + 1, and M(n,k) is a polynomial in n of degree k. For k =
3 we have N(n,3) = (n — 2)(n® + 2n? + 24n — 120)/48 and M(n, 3) =
(n —4)(n — 2)(n + 3)/6. For fixed odd k >3, numerical evidence indicates
that

N(n, k) n and M(n,k) 5
Cn, %) ~ 2(E+1) Cn. k)~ 1
These limits are known to be true for k = 5,7. If k > 5 then the limits are
approached from above, not below.

References

[1] M. Buck and D. Wiedemann. Gray Codes of Combinations. Technical
Report IDA-CRD Log No. 80503, Institute for Defense Analyses, 1980.

[2] M. Buck and D. Wiedemann. Gray codes with restricted density. Dis-
crete Math., 48:163-171, 1984.

[3] M. Carkeet and P. Eades. A subset generation algorithm with a very
strong minimal change property. Congressus Numerantium, 47:139-
143, 1985.

[4] P. Eades, M. Hickey, and R.C. Read. Some Hamilton paths and a
minimal change algorithm. JACM, 31:19-29, 1984.

[5] F. Ruskey. Adjacent interchange generation of combinations. J. Algo-
rithms, 9:162-180, 1988.

85

