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ABSTRACT

In this paper the algorithm developed in [RK] for 2-color Ramsey
numbers is generalized to multi-colored Ramsey numbers. All the
cyclic graphs yielding the lower bounds R(3,3,4) >30, R(3,3,5)>45
and R (3,4,4) > 55 were obtained. The two last bounds are apparently
new.

1. Introduction

The classical multi-color Ramsey number R(ry,r3,...,ry) is defined to be the
smallest integer n, such that no matter how the edges of K, are colored with m
colors, 1, 2, 3, ... m, there exists some 1 such that there is a complete subgraph K.,
all of whose edges have color 5. It is said to be a multi-color Ramsey number when
m>3.

The concrete lower bounds are usually established by an explicit construction
of a coloring of K,, the complete graph on n vertices containing no monochromatic
complete subgraph K, ,1<i<m, in the ith color. A coloring of K, that establishes
a lower bound on R (ry,r,. ") is said to an (ry,r3,...,rm)— Ramsey graph.

Only a few exact values and nontrivial bounds are known, and most of them
are for R(k,1), the so called two—color Ramsey numbers. The only known non-
trivial exact value for m—color Ramsey numbers with m >3 is R(3,3,3)=17 [GG].
The only known nontrivial bounds on m —color Ramsey numbers with m > 3 are

51< R(3,3,3,3) <65 [c2,F1],
159< R(3,3,3,3,3) <322 [F2,W],
128 < R (4,4,4) < 254 [HLG],
30 < R(3,3,4) K).

In this paper we establish that R(3,3,5) >45 and R (3,4,4) >55

2. Notation, Concepts and Algorithm

In this section we introduce the necessary notation, concepts, and facts about
incidence matrices belonging to permutation groups used in the construction of our
algorithm for finding multi-color Ramsey graphs. At the end of this section our
algorithm is presented.
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If Vis a set, then Sym (V) denotes the full symmetric group on V. A group G
is said to act on a set V if there is a function VxG — V (usuallz denoted by
(v, g)1>v?) such that for all g, h€G and ve V: v' =vand v(#)'= (v9)". We denote
an action by G | V. Thus G may be thought of as being mapped homomorphically
onto a permutation group of V, and v7 is the image of v€ V under g&G. I veV, the
stabilizer in G of v is the subgroup G,={g€G:v9=v} and the orbit of v€ V under G
is vé={v%:gcG}. We note that |G| = lvG|-|G,|. If |v®|=|V]| then the
group action G |V is said to be transitive. A group action G |V induces an action
on the collection (Y) of t-subsets of V. For, if TCV, and g€G, then we define T
by T/={v?:veT}.

For even a relatively small number of vertices, an exhaustive computer search
among all (ry,...,r,;)-Ramsey graphs is infeasible. However, if symmetry is
imposed on the colorings, then exhaustive searches do become practical for
moderate values of m and n.

A graph T' with vertex set V={0,1,2,..,n—1} is cyclic if the mapping
g:z—z+1 is an automorphism of T, addition performed modulo n. Note that any
cyclic graph I' must have as an automorphism group at least the dihedral group
D, =<g,h>, where h:z— —z, since g{*~%~?); {v,v} = {-v,~u}. It is easy to
show that D, acting on the edges of K, has exactly |n/2]| orbits. Observe that if
we define the distance function dist(e) = min{|i-j|,|i-i|}, then two edges e, and e,
of K, belong to the same orbit if and only if dist(e;) = dist(e;). Thus an orbit of
edges is completely determined by a single number k, where k is the difference of
the pairs in the orbit. For example, a cyclic 3-color Ramsey graph tan be com-
pletely specified by sets of distances, say Red, Green and Blue. That is k€Red
means every edge e with dist(e)=k is colored red.

Let V be an n-element set. If G is a subgroup of the symmetric group of per-
mutations of V, G<Sym(V), and r is an integer, 2<r<n, the pattern matriz P,
belonging to the group G is defined as follows:

() the rows of P, are indexed, by the G-orbits of 2-subsets of V;

(b) the columns of P, are indexed by the G-orbits of r-subsets of V;

(c) Pr[LJ]=1if there are F;€I and F;€J such that F;C F; and is O other-

wise.

K Vis thought of as the vertex set of the complete graph K, then the pattern
matrix P, describes the incidence between the orbits under G of edges and com-
plete subgraphs of size r;. Thus P, [I,J]=1 means that every K. in orbit J contains
at least one edge in orbit I. Hence, if we are to avoid the inclusion of a mono-
chromatic K, of color #, then the rows corresponding to the orbits of color i must
be chosen so that no column of all 1’s appears among them.

Our first theorem follows immediately from the above discussion and is a gen-
eralization of theorem 1 of [RK].

THEOREM 1. There is a bijection between the m—color Ramsey graphs I with vertez
set V, having G<Sym(V) as an automorphism group and the (0,1)-vectors
U;,1<i<m, indezed by the G-orbits of 2-subsets of V, solving simultaneously the



tnequalities:
(E'P,'.)[J] >0 for all G—orbits J labeling a column of P,,1<i<m, (1)

m - -
¥ Ui=1, where 1=[1,1,..,1]7, (2)
i=1
UpU;=0, for1<i<j<m, (3)
where P,, for 1<i<m are patiern matrices belonging to the group G.
The equations-in theorem 2 can be interpreted as follows:
(1) says that for each i the coloring has no monochromatic K,, in color 1,
(2) ensures that every edge is colored, and
(3) guarantees that no edge is colored twice.

In particular, to search for a (3,3,4)-Ramsey graph on n points, we need to consider
the pattern matrices P, P3 and P, for colors red, green, and blue, respectively. If
we let U, be the vector for color red , U for .green,and U, for blue, then the equa-
tions and inequalities we have to solve are

(U,-P3)[J]>0 for all G—orbits J labeling a column of Pj, (L1)
(7,-1’3)[.1 ]>0 for all G—orbits J labeling a column of Ps, (1.2)
(Uy*P4)[J] >0 for all G—orbits J labeling a column of Py, (1.3)
U+ U+ Up=1, (2.1)
U, U,=0, (3.1)
U, Uy =0, (3.2)
U, Uy =0. (3.3)

The pattern matrices for large n are still too large for a computer search. The
absorption law a*(a+b) = a of Boolean algebra can be used to reduce the sizes of
pattern matrices, making computer search possible.

Let G<Sym(V). With each color §, 1<i<m and with each orbit I; of pairs
associate a Boolean variable z;;. The assignment of true to z; will mean that jth
orbit of edges is assigned color i. Also, in order to have no monochromatic K,-
subset of color i, we associate with each column A of the pattern matrix P, of G,
the clause ¢z given by ¢x = ¥ {Z;:Py,[5,]=1}. Whence, if B; = II ¢i, then B; is

j A
satisfied if and only if there ’is no monochromatic r;-subset of color i. Thus the
absortion law when applied to the clauses in B; produces an equivalent Boolean

expression B =]J ¢y with in general far fewer clauses. We call the pattern matrix
o

that reflects the incidence of Boolean variable and clauses in B} the reduced pattern
matriz.

Although this reduction may not be significant for small matrices, for big
matrices it does make a difference. For example, the pattern matrix Ps for an
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(3,3,5)-Ramsey graph on 44 points with dihedral group D, has 12,446 columns.
After applying the absorption property, only 1395 columns remain.
From the above discussion, theorem 1 can be rephrased as theorem 2 below.

THEOREM 2. There is a bijection between the m—color (ry,rs,...,r,)-Ramsey
graphs T with vertez set V, having G<Sym(V) as an automorphism group and the
(0,1)-vectors U;,1<i<m indezed by the G-orbits of 2-subsets of V, solving simultane-
ously the inequalities:

('LT,--P,.'.)[J ]>0 for all G—orbits J labeling a column of P,,,1<i<m, (R1)
z')n U,-=I, where i=[1,1,...,1]T, (R2)
i=1
UpUj=0,for 1<i<j<m, (R3)

where P, 1<i<m are reduced pattern matrices (by Boolean absorption laws)
belonging to group G.
The algorithm that naturally follows from the above discussion is

ALGORITHM
Step 1:  Input a chosen group G, G<Sym(X), |X|=n, as a candidate for
an automorphism group of an (r;,rs,...,r,,)—Ramsey graph.
Step 2:  Construct pattern matrices P, for each i, 1<i<m.

Step 3:  Apply the absorption law to obtain reduced pattern matrices Py, for

each #, 1<f<m, and their corresponding Boolean expressions B;,
1<i=m.
m
Step 4:  Find all assignments satisfying the Boolean expression a= g By,
i=l
where § expresses conditions (R2) and (R3). Each such assignment
(if any) yields a (ry,rz,...,rm)—Ramsey graph with automorphism
group G; furthermore all such graphs are obtained.

3. Results and analysis of the new Ramsey graphs

3.1. New lower bounds of some 3-color Ramsey numbers

Using the algorithm described in section 2 and the authors’ experience with a
similar algorithm for 2-color Ramsey numbers [RK], the three 3-color cyclic graphs
given in Table I were constructed.

These three graphs give the three lower bounds on three 3-color Ramsey
numbers below,

R(3,3,4)>30; R(3,3,5)>45; R(3,4,4)>55.

Furthermore, these are each maximal cyclic Ramsey graphs, and consequently,
these lower bounds can only be improved by non-cyclic Ramsey graphs. The lower



TaBLE ]
Edge Orbits (Differences)

New Bound n Red Green Blue
R(3,3,4)230 29 141012 25614 37891113
567811
R(3,3,5) >45 44 149121522 2310141819 13 16 17 20 21
78131416 235610

R(3,4,4) 255 54 14915202227

17 18 19 23 26 11 1221 24 25

bound R (3,3,4)>30, was found by J. G. Kalbfleisch at the University of Waterloo
in his doctoral dissertation [K], but otherwise does not appear in the literature. The
other two lower bounds are apparently new.

3.2. Analysis of the Graphs

In order to enumerate the non-isomorphic cyclic graphs with the above param-
eters we introduce the group theory notion of primitivity.

A subset w of Vis called a block of imprimitivity (b.i.) of the transitive group
action G |V, if for each g€G, the set w7 either coincides with w or is disjoint from
w. Obviously V and the singleton subsets are b.i.’s and these are called the trivial
blocks of the group action. A transitive group action G | Vis said to be imprimitive
if it has at least one nontrivial b.i. w, otherwise it is primitive. In particular, it is
easy to see that a transitive group action G | V is primitive whenever |V|=pisa
prime. In this case either G is isomorphic to a subgroup of AF(p) =
{z— az+B:a,fEX,, a0}, or G is 2-transitive.

In searching for a cyclic (3,3,4)-Ramsey graph on 29 vertices, the pattern
matrix P3 had 126 columns and the pattern matrix P, had 819 columns. After
applying the absorption laws, only 56 columns in P3 and only 63 columns in P,
remained. The search of the remaining columns led to 14 cyclic Ramsey graphs and
these appear in Table II. It will be shown that these give only two nonisomorphic
solutions. The two classes of solutions are represented by No. 1 and No. 8 in Table
II. Furthermore they are isomorphic if interchanging colors red and green is
allowed.

THEOREM 3. There are, up to isomorphism, only two cyclic (3,3,4)-Ramsey graphs
on 29 vertices. Furthermore, the full automorphism group of each 1is
G=<z—z+1,z—w > where wE Ly 15 a primitive root of unity.

Proof: Let (V,T) be a cyclic (3,3,4)-Ramsey graph. Then G|V is transitive and
since | V| =29 is prime G acts primitively. Moreover, G cannot be 2-transitive for
then there is only one orbit of edges and 3-color Ramsey graphs require at least
three. Whence, G must be one of the 6 transitive subgroups of AF(29)=
{z—az+P:0,fE€ Ly, aF#0}. These 6 subgroups are Hy=<z—z+ 1,15 w'z>
where d |28 and w is a primitive root modulo 29. Whence, H; is an automorphism
group of a cyclic (3,3,4)-Ramsey graph if and only if multiplication by w? preserves
the coloring. A complete list of all cyclic (3,3,4)-Ramsey graphs was generated by
the algorithm in section 2 and is given in Table II. It is easy to check that
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TABLE IT

14 cyclic (3,3,4)-Ramsey graphs on Kag

No. Red Green Blue

1 6111314 3789 12451012
2 3789 4101113 12561214
3 4101113 2589 13671214
4 13712 61113 14 2458910
5 2589 141012 367111314
6 141012 25614 37891113
7 25614 13712 489101113
8 3789 6111314 12451012
9 4101113 3789 12561214
10 2589 4101113 13671114
11 61113 14 13712 2458910
12 141012 2589 367111314
13 25614 141012 37891113
14 13712 25614 489101113

multiplication by -1 and by w’ preserves each of these 14 colorings. Also, it can be
seen that the other multiplications permute the 14 colorings into two orbits
A;={1,2,3,4,5,6,7} and A, ={8,9,10,11,12,13,14}. Thus up to isomorphism there
are only two cyclic (3,3,4)-Ramsey graph as claimed. o

COROLLARY 4. There s, up to isomorphism and interchange of colors, a unigue
cyclic (3,3,4)-Ramsey graph on 29 vertices. Furthermore, its full automorphism
group is G=<z—z+1, 2w z> where wE Ly is a primitive root of unity.

Proof: We note that the mapping induced on the colorings by interchanging the
colors red and green swaps rows in Table II according to the permutation
(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14). Thus without fixing colors, there is a
unique cyclic (3,3,4)-Ramsey graph as claimed. o

In searching for cyclic (3,3,5)-Ramsey graph on 44 vertices, the pattern matrix
Pj3 has 161 columns and the pattern matrix P4 has 12446 columns. After applying
the absorption laws, there are only 141 columns in P; and 1395 columns in P,. In
this situation 260 cyclic graphs were found with the algorithm presented in section
2. These graphs may be obtained from the 13 graphs listed in Table III by multi-
plying modulo 44 by numbers « relatively prime to 44 and/or interchanging red and
green edges.

THEOREM 5. There are, up to isomorphism and interchange of colors, ezactly 13
cyclic (3,3,5)-Ramsey graph on 44 vertices.
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TabLE III

13 non-isomorphic cyclic (3,3,5)-Ramsey graphs on K44
No. Red Green Blue
1 149121522 2310141819 5678111316172021
2 14121522 2310141819 5678911131617 2021
3 14101621 2561518 22 378911121314171920
4 1311161820 2691417 22 4578101213151921
5 1311161820 2691417 4578101213 1519 21 22
6 13101418 258111215 4679131617 192021 22
7 137111520 2891213 45610141617 18 19 21 22
8 13101418 22 2891213 456711151617192021
9 131014 22 2891213 456711151617 18192021
10 138121722 291013 14 456711151618192021
11 138131519 47122122 2569101114 16 17 18 20
12 1381519 4712132122 2569101114 1617 18 20
13 1381519 47122122 256910111314 16 17 18 20

Proof: To see that these 13 graphs are non-isomorphic, fix vertex 0 in each of the
graphs, and call the subgraphs which are induced by the vertices adjacent to vertex
0 by red edges, the red subgraphs. Similarly define the green subgraphs. By count-
ing the number of vertices and blue edges in each of these subgraphs it is easy to
distinguish between the 13 graphs except for possibly numbers 8 and 10. In the red
subgraph of graph 8 there are, however, vertices with green degree 2, while graph 10
has no such vertices. Consequently, they are also non-isomorphic. Hence there are
13 non-isomorphic cyclic (3,3,5)-Ramsey graphs.

In searching for a cyclic (3,4,4)-Ramsey graph on 54 vertices, the pattern
matrix Pa has 243 columns and the pattern matrix P, has 1807 columns. After
applying the absorption laws, there are only 196 columns in P3 and 950 columns in
P,. Here the algorithm presented in section 2 found 18 solutions. These 18 solu-
tions are listed in Table IV.

Similarly to the proof of theorem 3 we have the following theorem.

THEOREM 6. There are, up to isomorphism, ezactly two cyclic (3,4,4)-Ramsey graph
on 54 vertices. They are listed in Table V.

Also, it is again easy to see that interchanging green and blue swaps these two
graphs.

COROLLARY 7. There is, up to isomorphism and interchange of colors, a unique
eyclic (3,4,4)-Ramsey graph on 54 vertices.
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TABLE IV

18 cyclic (3,4,4)-Ramsey graphs on Ky,

No. Red Green Blue

1114915202227 |781314161718192326| 2356 10 11 12 21 24 25
2 2589202127 [7111314161819222326 13461012151724 25
3 1291013162127 | 45781417 18202325 13611121519222426
41291415192227| 14581017 18202325 3671112131621 2426
5134910112627 | 78141617 18 19 20 23 25 1256121315212224
6 3789222627 1245101117182025 |6 121314 15 16 19 21 23 24
7138910142527 | 1271113161819 2226 45612151720 21 23 24
8 1491415161727 | 1251011 13 18 19 22 26 3678122021232425
9 19162021232627| 12451011 13182225 3678121415171924
10| 14915202227 2356101112212425 | 7813141617 18 19 23 26
11| 2589202127 1346101215172425 |7 1113 14 16 18 19 22 23 26
121291013162127( 13611121519 2224 26 4578141718 202325

131291415192227| 3671112131621 24 26 1348101718 202325
14| 34910112527 1256121315212224 | 78141617 18 19 20 23 25
15| 3789222627 |6121314151619212324] 124510 11 17 18 20 25
16| 38910142527 | 4561215 17 20 21 23 24 12711131618 192226
17 1491415161727 | 3678122021232425 125101113 18192226
18 19162021232627| 3678121415 17 19 24 1245101113182425
TaBLE V
two non-isomorphic cyclic (3,4,4)-Ramsey graphs on K 54
No. Red Green Blue
1 14915202227 | 781314161718192326| 2356 1011 12 21 24 25
10 (14915202227 | 23561011 12212425 7813141617 18 19 23 26
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