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ABSTRACT. It is an established fact that some graph-theoretic
extremal questions play an important part in the investigation
of communication network vulnerability. Questions concerning
the realizability of graph invariants are generalizations of the
extremal problems. We define a (p,q,%,6) graph as a graph
having p vertices, ¢ edges, vertex connectivity x and mini-
mum degree §. An arbitrary quadruple of integers (a,b,c,d)
is called (p, q, &, ) realizable if there is a (p,q, %, ) graph with
p=a,q=>bk =cand § = d. Necessary and sufficient con-
ditions for a quadruple to be (p, g, &, 5) realizable are derived.
In earlier papers, Boesch and Suffel gave necessary and suf-
ficient conditions for (p,q,k),(p,q, ), (,4,6),(p,A,§,)) and
(p, A, 8, k) realizability, where A denotes the maximum degree
for all vertices in a graph and A denotes the edge connectivity
of a graph.

1 Introduction

Here we consider an undirected graph G = (V, X) with a finite vertex set V
and a set X whose elements, called edges, are two vertex subsets of V. The
number of vertices is denoted by p, and the number of edges | X| is denoted
by ¢(G) or q. This paper uses the notation and terminology of Harary [14];
however a few basic concepts are now reproduced.

The edge connectivity of a graph G (denoted by A(G) or ) is the min-
imum number of edges whose removal results in a disconnected graph. A
graph is called trivial if it has just one vertex. The vertex connectivity
(denoted by (G) or ) is the minimum number of vertices whose removal
results in a disconnected or trivial graph. The number of edges connected
to a vertex v of G is the degree of that vertex, denoted by dy(G) or d,.
The minimum degree is denoted by 4 or §(G) and the maximum degree is
denoted by A. If § = A, the graph is called regular. A p vertex graph with
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6 = p—1is called complete and is denoted by K. A set of x vertices whose
removal disconnects G, or makes G trivial, is called a minimum vertex dis-
connecting set. The graph obtained from Cj, (the cycle on p vertices) by
adding edges between all pairs of vertices that are distance at least two but
not greater than A apart is denoted by C;‘.

It is an established fact that some graph-theoretic extremal questions play
an important part in the investigation of communication network vulnera-
bility [1-13]. Harary [15] found the maximum vertex connectivity among all
graphs with a given number of vertices and a given number of edges. Ques-
tions concerning the realizability of graph invariants are generalizations of
these extremal problems. We define a (p, g, &, §) graph as a graph having
p vertices, g edges, vertex connectivity « and minimum degree §. An arbi-
trary quadruple of integers (a, b, ¢, d) is called (p, g, s, §) realizable if there
is a (p, q,%,0) graph with p = a,q = b,k = c and § = d. Necessary and
sufficient conditions for a quadruple to be (p, g, &, §) realizable (or, more
briefly, realizable) are derived. Boesch and Suffel derived necessary and
sufficient conditions for (p, g, x), (p, ¢, A), (, ¢, 9), (p, A, 4, A) and (p, A, 8, %)
realizability in earlier papers [6-8].

2 Preliminaries

We start by reviewing some known results that are pertinent to the realiz-
ability question.

Lemma 1. [7] If a graph is not complete, and p > 2, then p > 26 + 2 — .

Lemma 2. [15] If 2 < § < p — 1, then there is a graph on p vertices with
q9(G) = [ t"_,z—s-l and A = § = k. (This graph is a power of cycle and is usually
called the Harary graph on p vertices).

We now give some new results.

Lemma 3. For all graphs,
1 1
g< 56(6+1)+§(p—6—1)(p—6—2)+n(p—6-— 1).

Proof: If § = p — 1,the result is obvious. Let G be a graph with § <p—1
and S be a minimum vertex disconnecting set of G. The vertex set of G—S
may be partitioned into two sets T and U such that no edges of G — S join
T and U. Let a be a vertex in T. Since d,(G) > 4, we have |T'|+|S| > §+1,
and similarly {U|+|S| > §+1. Therefore |T| > é+1—x and |[U| > 6+1—«.
Let |T| = N, thus |[U| = p — N — k. Noting that T union S has N + &
vertices, it follows that

q(G) < %(N+n)(N+n—1)+-;—(p—N—n)(p—N—n—l)+n(p—N—n).



We wish to maximize the right side of the inequality on
+1-x<N<p-06-1

Since this quantity is a quadratic in N with a leading term of N2, the
maximum must take place at one of the bounds of the interval. It is easily
verified that the value of the right side of the inequality is the same at each
bound and the result follows.

Lemma 4. If k=1 and p = 26 + 2, then q > [%"-I =92§-,

Proof: Let G be a graph with x = 1 and p = 2§ + 2. Since G is not
complete, there exists a vertex (denote it by a) whose removal disconnects
G. Thus the vertex set of G — a may be partitioned into two sets T and
U such that no edges of G — a join T and U. We note that |T| > é and
|U| > 8. Thus, either |T| = & or |U| = 4. Suppose without loss of generality
that |T'| = 6. Therefore, a must be adjacent to every vertex in T. Since G
is connected, it follows that do(G) > & + 1. Thus ¢(G) > 2.

Lemma 5. If k=1 and § = 2, then ¢ > p.

Proof: Since the only connected regular graph of degree two is a cycle,
there is no graph with x = 1,6 = 2 and ¢ = [g‘-] = p. The result follows.

Lemma 6. For all graphs,
pd 1 .
> ?+§max(0,(p—-(5—l)(25+2—p)—K,(n—l)) .

Proof: We note that if (p — § — 1)(26 + 2 — p) — k(x — 1) < 0 the result
is obviously true. Henceforth, we will assume (p — § — 1)(26 + 2 — p) —
k(k —1) > 0.Sincep—6—12>0and k(k —1) > 0, then p < 26 + 1.
It also follows that p > 3and 0 < § < p — 1. Let G be a graph with
P—6-1)(26+2~-p)—r(k—1) > 0. Let S,T and U be defined as
they were in the proof of Lemma 3 (we again have |T| > 6+ 1 —« and
Ul 26+1-k).
We wish to show that

1
q> §[p6+(p—6— 1)(26+2~-p) — s(x—1)],
or equivalently,

Zdj >pd+(p—6-1)(20+2—-p) —r(k—1).
JEG



Let V denote the union of T and U. Since ¥jecd; = Ljesd; + Ljevd;,
we wish to find lower bounds for Zjcsd; and Ljevd;. Since |V|=p — &,
we have Zjcvd; > (p — x)d. Note that

Y dG(C-9)+) di(G) 2 Y di(6) 2 (p-r)S,
Jjev Jjes JjeV
thus ¥;es5d;(G) > (p — k)8 — Zjevd;(G — S). An argument similar to that
used to prove Lemma 3 shows that
Y (G- < (@E-r+1)(F-K)+(-5-1)(p—-5-2),
jev

and we have

Y di(G)2(p-rK)—-(—k+1)(E—K)—(p—-6-1)p—56-2)

j€s
Therefore,

Y- di(G) = di(G) + ) ds(G)

JEG j€s jev
>pP—K)d—(6—r+1)(d—x)
-(p-6-1)(p-5-2)+(p—x)d.

Consequently, if we can show
2p—£K)—(6—k+1)0-K)—(p—8—-1)(p—5-2)
>pd+(p-6-1)(20+2—-p) —r(c-1)

the proof will be finished. In fact, simplifying both sides shows they are
equal and we are done.

The alert reader may wonder if Lemmas 2 and 6 are contradictory. How-
ever, since > 2 and x = § imply

(p—8-1)(20+2-p)—k(k—1)=(p—6-1)(26+2-p)—8(6—1) <0,

there is no contradiction. [To prove the above inequality consider each of
the following four cases (details are left to the reader):

(1) p=>26+2,
(2) p=26+1,
(8) 6+1 <p<25+1 - for this case recall Lemma 1,
4) p=4d+1]



3 The (p, g, %, §) realizability theorem

Theorem . A quadruple of non-negative integers (p, g, &, §) is realizable if
and only if exactly one of the following conditions holds:

(1) 6<|3(p+x—2)],and if x >0 theng>p—1.
(A) 1=x<34,

rp_25 + -;-ma.x(o,(p —§-1)(26+2-p))]

<9< 386+1)+ 5= —6-1),

and ifp=25+2 or § =2, then ¢ > B,
(B) 1#k <& and

[%s+%max(0,(p—6—1)(26+2—p)—n(n—l))]

Sq< L0+ 45—~ 1)p-5-2)+lp—5-1).

(11) 6=n=p—landq=%p(p—l).

Proof: If a graph is not complete, the necessity of § < |3(p+x—2)] in
(I) follows from Lemma 1. The other conditions in (I) are a consequence of
Lemmas 3, 4, 5 and 6, and some obvious facts about graphs. If a graph is
complete the conditions in (II) are obvious.

We now provide constructions to prove sufficiency.
Case 1. Suppose that p > 26+ 2, k iseven, 2 < k < 4, and

[”7&] <g< -;—6(5+1)+%(p—&—l)(p—5—2)+m(p—6—1).
Let H denote the Harary graph on p—§—1 vertices with [3(p — 6 — 1)(6 — 1)]
edges and x(H) = §(H) = 6 — 1. Take the union of H and Ks;, to form a
single graph. We pause to note that H is not complete, and if both p and
§ are even, then H has one vertex of degree §. Let N denote the number
of vertices of degree § — 1 in H. Denote the vertices in Ks;; by A and
denote the vertices in H by B. Recall that £ > 2 and H is a power of cycle.
Therefore if p and § are not both odd it is possible to partition N — « of
the vertices of degree § — 1 in B into pairs, such that in each pair the two
vertices are not adjacent. We now add an edge for each pair, joining the
vertices that belong to the pair. If both p and § are odd it is possible to
partition N — x — 3 of the vertices of degree § — 1 in B into nonadjacent
pairs, with the following being true. We can find three vertices of degree



§ — 1 in B, none of which are members of the (N — & — 3) pairs men-
tioned above, such that at least one of the three vertices is not adjacent to
either of the other two. Now add for each pair an edge joining the vertices
that belong to that pair and add two edges which are incident to the three
vertices mentioned above. Next add « edges joining » distinct vertices in
A to the x vertices of degree § — 1 in B. We now partition the vertices
of degree  + 1 in A into pairs, and for each pair delete the edge joining
the vertices that belong to that pair. Let C denote the set of vertices in
A that were not previously partitioned into pairs. Adding q — |'%5'| edges

which do not join any vertices in C to any vertices in B yields the desired
graph. Since x < § and we deleted an independent set of edges from Kj,
our graph has the desired vertex connectivity. It is easily verified that our
graph has the other desired properties. Thus any quadruple satisfying this
case is realizable.

Case 2. Suppose that p > 26+ 2,k isodd, 3 <k < §, and

|| < 9530640+ 36-5-16-8-2+np-5-1).
This construction is similar to the one used for Case 1. Here we note only
how the two cases differ. In Case 2 we will partition N — (x — 1) of the
vertices of degree § — 1 in B into pairs. In addition, instead of adding «
edges joining vertices in A to vertices in B ( as in Case 1), we wish to add
K + 1 edges joining « + 1 distinct vertices in A to x distinct vertices in B
(denote these « vertices by D) with the following being true. The vertex set
D has the following properties: (1) D contains exactly one of the vertices in
B that was partitioned into pairs (denote this vertex by v ), (2) v is adjacent
to exactly one vertex in A, and (3) the vertex in D which is adjacent to two
vertices in A (denote this vertex in D by v,) is adjacent to v. We pause
to note that it is possible for D to have these properties because § —1 > 3
and H (which is a power of cycle) has at most two vertices which cannot
be included in a partitioning of vertices into nonadjacent pairs. Next we
delete the edge {v,v:} and note that this edge can be replaced by a path
containing vertices in A — giving us the appropriate vertex connectivity. To
achieve the upper bound for g we delete one edge joining a vertex in A to
v and then add edges as we did in Case 1.

Case 3. Suppose that p > 26 +2, k=1,4 > 3,
) 1 1
2] < a< 306+ +36-06-5-1),

and if p = 26+2, then g > &. Let H; denote the Harary graph on p—6—1
vertices with [%(p— 6 —1)8] edges and x(H,) = §(H,) = §. Take the
union of H; and K, to form a single graph. Denote the vertices in Ky,
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by E and denote the vertices in H; by F. If p and § are both odd we pick a
vertex in F which is adjacent to the vertex of degree §+ 1 in F' and denote
it by a. If p and & are not both odd then let a denote an arbitrary vertex
in F. Let e and f denote two vertices in E. Next we delete the edge {e, f}
and add the edges {a, f} and {a,e}. If p and § are both odd, then delete
the edge Jommg a to the vertex of degree § +1in F. But if p = 20 + 2
then q > ’-’— Thus, if p = 28 + 2 our construction is finished except for
adding edges to realize ¢ > 2— + 1. However if p and § are not both odd,

and if p > 20 + 2, then we do the following. Recalling that H; is a power of
cycle let ¢ denote the vertex in F which follows a in the clockwise direction.
Noting that H; is not complete, we let G denote the set of vertices in H;
which are not adjacent to c¢. Let b denote the vertex in G which is closest to
c in the counterclockwise direction. The vertices b and ¢ are both adjacent
to a. Next we delete the edges {e, ¢} and {a, b}, and add the edge {b,c}. To
complete our construction for Case 3 we must be able to realize the upper
bound for q. To accomplish this delete the edge {e, f} and add the desired
number of edges, none of which join vertices of E — {e} to vertices of F.
Since A(H;) = é > 3 and we removed only two edges from H,, we see that
our graph has the desired vertex connectivity. Our construction fulfills the
requirements of this case.

Case 4. Suppose that p > 20 +2, 6 > 2, & < 2,
pé 1 1
5 ng56(6+1)+§(p-—6—1)(p—6—2)+n(p—6—1),

and if x =1 then § = 2 and ¢ > L Let Hy denote the Harary graph on
p — 6 — 1 vertices with [§(p -6 — 1)5] edges and k(Hs) = 8(Hz) = 6. We
now take the union of K4, and Ha. If x = 0 then adding q — [%—] edges
to Hj yields the desired graph. If « =1 then add an edge joining a vertex

in K541 (denote this vertex by a) to a vertex in Hy. Next we add ¢— 52 —1
edges, none of which join a vertex in K5 — {a} to a vertex in Hp.

Case 5. Suppose that 260 +2—x <p <2+ 1,k <4, and
pé 1
[?+—2-max(0,(p—6—1)(26'+2—p)—rc(n.—l))]
qu%6(6+1)+%(p—é‘—l)(p—ﬁ—-Z)-i—n(p—&—l).

Here we note that « > 1. Take a set containing p vertices and partition
the set into three mutually disjoint subsets A, B and C, where |A| =
0+1—k,|Bl=p-d-1and |C|=k. If(p—-6~-1)(26+2—p) > k(x—1)
then construct complete graphs on A and B and join each vertex of A to
each vertex of C. Note that at present the vertices of A have degree §,
the vertices of B have degree p — § — 2 and the vertices of C' have degree
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5+ 1 — k. We wish to show that p > k + 4. First, assume p < & + § which
implies 0 < p—d —1 < x — 1. But the latter inequality together with
0 < 26 +2 —p < & (which is a consequence of 260 +2 -k < p < 25 +1)
contradicts (p — 8 —1)(26 +2 — p) > x(x — 1). Thus we have p > x+4é and
|[Bl=p—-8—-12>&x—1. If |B] > & — 1 then join & vertices of B in a 1-1
fashion to the vertices of C. If |[B| = x — 1 then join the vertices of B in a
1 -1 fashion to x —1 vertices of C. Since § — (p—8-2) =26+2—p < x we
may add edges joining vertices in B to vertices in C so that every vertex
in B will have degree §. We do this in such a way that the degrees of
the vertices in C differ by at most one. We also have p — 6 -2 < 6 -1,
therefore each vertex in B is adjacent to at least one vertex in C. Denote
this graph by G;. Recall that before edges were added joining vertices in
C to vertices in B every vertex in C had degree § — (x — 1). There are
(p— 6 —1)(26 +2 — p) edges joining vertices in C to vertices in B, and since
(p—-86—-1)(26+2-p) > k(x — 1) and |C| = &, we have §(G;) = 4. It is
also true that ¢(G1) = ips+ 3(p— 6 —1)(26 +2—p) — 1k(k —1). Adding
q — q(G) edges each of which joins vertices in C, or joins a vertex in B
to a vertex in C finishes the construction. It can easily be shown that our
final graph has the desired properties.

If(p-6—-1)(26+2—p) < k(k -1) and p > & + J then repeat the
construction that previously gave us graph G;. However, now there is at
least one vertex in C with degree §—1 or less, and there are no vertices with

degree exceeding §. To realize g = [1’2—6] add the appropriate Harary graph

to the vertices of C and/or join pairs of vertices in C. If C has two vertices
of degree 61 then we add the Harary graph so that these two vertices are
adjacent and delete the edge joining the two vertices of degree § 4 1. Next
add edges as we did when (p — 8 — 1)(26 + 2 — p) > &(x — 1) to realize a
graph with gedges. If (p— 6 —1)(264+2-p) <&(x—1)and p< kK +J we
again let A, B and C be sets of vertices with |A| =0+1—k,|B|=p—-§—1
and |C| = k. Now construct a complete graph on A and join each vertex in
C to each vertex in A and B. At this stage of the construction every vertex
in A has degree §, every vertex in B has degree « and every vertex in C
has degree p — k. To make all vertices in B have degree § (except possibly
one vertex, which may have degree § + 1), we add the appropriate Harary
graph to the vertices of B. We now do the same to C. If both B and C
have a vertex of degree § + 1, delete the edge joining the two vertices of

degree 6 + 1. Adding g — ["’2—5] edges each of which joins vertices in C, or
joins vertices in B yields the desired graph.
Case 6. Suppose that § > 2, k=30 <p—1, and

[I’_;] qu‘%6(64‘1)"‘%(]7—6—1)(p—6_2)+,€(p_6_1)'
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Let Hs denote the Harary graph on p vertices with [ ’iﬂ edges and x(H3) =

8(Hs) = 4, and let v denote one of the vertices in Hs. Adding ¢ — [”2—6]

edges to H3 in such a way that none of the added edges are incident to v
yields the desired graph.

Case 7. Suppose that § = 0. Note we then have x = 0,p > 1 and
q < 3(p—1)(p - 2). Let G be the graph on p vertices with no edges and
let v; be one of the vertices in G2. We construct our graph by adding ¢
edges to G2 with no edges incident to v;.

Case 8. Suppose that § = 1. First we assume that k = 0. Thus we have
p=>4and

[Z]<a<i+36-26-9).

If p is even then let G3 be the graph composed of -;-p copies of K5. On
the other hand, if p is odd then let G3 be the graph composed of K 2 and
-;-(p — 3) copies of K2. Take one copy of K in G3 and denote it by A.
Adding q — [B] edges, none of which are incident to either vertex in A4,
finishes our construction.

Next we consider x = 1. Here we have p > 2 and

p-1<4q£< 1+%(P—1)(p—2).

Let G4 be the graph composed of a path on p vertices and let vy be one
of the end-vertices of the path. Adding ¢ — (p — 1) edges so that no added
edges are incident to v, yields the desired graph.

We are done with our constructions and will now show sufficiency. Cases
1, 2, 3 and 4 show the conditions of the theorem are sufficient if we also
have § > 2, p > 26+ 2 and k < 4. If we assume p <25+ 1 and x < § then
Case 5 shows the sufficiency of the conditions of the theorem. ( Recall that
in Case 5 we have x > 1). Similarly, if we assume § > 2 and x = § then
Case 6 is adequate. Cases 7 and 8 show the sufficiency of the conditions of
the theorem for § < 2 and our proof is finished.

4 Conclusion

The (p, g, x, ) realizability theorem in this paper solves several extremal
problems. If any three of the parameters p, g, x and é are given we can find
the range of values for the unknown parameter. Here we will look at the
problem of finding both the maximum value of x among all (p, g, §) graphs
[denoted by max(x, given p, q,6)] and the minimum value of x among all
(p, q,0) graphs [denoted by min(x, given p,g,8)]. The solution is given
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below (the proof is straightforward):

. 0, ifg<p-1
] 16 =
max(x, given p, g, 6) {6, ifg>p—1
204+2—p, f0+1<p<26+4+2
min(x, given p,q,d) = < §, ifp=4§+1
0, otherwise.
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