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Abstract

A 3-regular graph G is called a 3-circulant if its adjacency ma-
trix A(G) is a circulant matrix. We show how all disconnected 3-
circulants are made up of connected 3-circulants and classify all con-
nected 3-circulants as one of two basic types. The rank of A(G) is
then completely determined for all 3-circulant graphs G.

1 Introduction.

Relating basic properties of an adjacency matrix A(G) to the structure of
its underlying graph G has a long history. The eigenvalues of A(G) have
been studied by many authors, including the pioneering work of Cvetkovic,
Doob and Sachs [5]. Considering the algebraic multiplicity of any zero
eigenvalues leads naturally to the study of the rank of A(G). Much recent
work has focused in this area, e.g. [1, 2, 3, 6, 8.

In this paper, we consider the class of graphs called circulant graphs.
Let S be any subset of {1,2,...,n — 1} such that § = —S mod n. A
graph G with vertex set {0,1,2,...,n — 1} is called a circulant graph if
two vertices ¢ and j are adjacent if and only if ({ — j) mod n € S. The
adjacency matrix A(G) is a circulant matriz, i.e., @i = @i—1,j—1 with the
subscript calculation done mod n. In other words, row (¢ + 1) of the matrix
is a cyclic right shift one position from row (z). In the process of finding the
rank of such A(G), we are able to completely characterize circulant graphs
where |S| = 3, i.e. the S-circulant graphs. We show how disconnected 3-
circulants are made up of a collection of connected 3-circulants and how
each connected 3-circulant is one of two basic types. We then return to
A(G) and determine its rank for each type.
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2 Elementary Properties and Examples.

All 3-circulant graphs are 3-regular. Since the sum of the degrees of the
vertices must be two times the number of edges, 3-circulant graphs must
have an even number of vertices. Therefore, in what follows we shall assume
that 7 is even. For S to be a three-element subset of {1,2,...,n — 1} such
that § = —S mod 7, it is clear that S must have the form S = {a, §,n—a}.
A result of Broere [4] gives precise conditions on the connectivity of 3-
circulants.

Theorem 1 Let G be a circulant graph with n vertices formed by S =
{s1,...,8k}. If d = ged(s1,...,8k,n), then G has d connected compo-
nents each isomorphic to the circulant graph on % wvertices formed by S’ =

(%,...,%}.

We can apply this theorem to our specific 3-circulant case as follows.

Corollary 1 Letn be even and S = {a, §,n—a}. If gcd(a, 5,n) = d, then
the circulant graph with n vertices formed by S has d components each iso-
morphic to the circulant graph on % vertices formed by S’ = {4, &5, 232}

A simple example illustrates this result (see Figure 1). Let n = 8, and
S = {2,4,6}. The gcd(2,4,8) = 2, indicating two connected components.
Indeed the even numbered vertices form a subgraph isomorphic to Ky, as
do the odd numbered vertices. The rank of this graph is 8 which is the sum
of the ranks of the two connected components.

3 Classification of Connected 3-Circulants.

Any disconnected 3-circulant is made up of d isomorphic copies of connected
3-circulants. We now classify connected 3-circulants as isomorphic to one
of two basic types. In what follows we assume that G is a connected 3-
circulant with n vertices. The two basic types of connected 3-circulants are
(3) circulants with § = {1, %,n — 1} and (i) P, x C%.

It turns out that the key quantity in our analysis is ged(n,a). If this
ged is odd, a connected 3-circulant is isomorphic to type (é). If this ged
is even, more conditions are required to classify G as type (%) or type ().
Theorems 2 through 3 describe type (i).
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Figure 1: Circulant graph with 8 vertices formed by S = {2, 4, 6}.

Theorem 2 Let n be even and S = {a,%,n — a}. If ged(n,a) = 1, then
the circulant on n vertices formed by S is isomorphic to the circulant on n
vertices formed by §' = {1,%,n - 1}.

Proof: Let n be even and ged(n,a) = 1. Then a is odd. Also, the
cyclic subgroup of Z,, generated by a is all of Z,,. That is the elements of
(a) = {a,2a,3aq,...,na} modulo n are distinct. Hence, the circulant on n
vertices formed by the set {a,n — a} is a cycle on n vertices. The vertex
directly across the cycle from the vertex ka is (% +k)a. But (3 +k)a—(ka+
%) = 3(a—1) is divisible by n since a is odd. Hence, (} +k)a = (ka+ §)
(mod n). Therefore, the circulant on n vertices formed by S is isomorphic
to the circulant on n vertices formed by 5’ = {1, %,n - 1}. O

We illustrate Theorem 2 with an example. Consider the circulant graph
with n = 10 vertices formed by S = {3,5,7} (see Figure 2). In the proof of
Theorem 2, the cyclic subgroup (a) = (3) = {3,6,9,2,5,8,1,4,7,0} is the
entire vertex set. Relabeling the vertices as {1,2,3,4,5,6,7,8,9,0} results
in the circulant graph formed by S = {1,5,9} (see Figure 3). We have
shown the original vertex labels around the outside of the graph.
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Figure 3: Circulant graph with 10 vertices formed by S = {1,5,9}.
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Theorem 3 Let n be even and S = {a,},n —a}. If ged(n,a) = 2k + 1
where k is a nonnegative integer, then the circulant graph on n wvertices
formed by S has 2k + 1 components each isomorphic to the circulant on

iy vertices formed by §' = {1, smpry 5y — 1

Proof: Let n be even and gcd(n,a) = 2k + 1 where k is a nonnegative
integer, then ged(a, %,n) = 2k + 1. Therefore, by Corollary 1, the circulant
graph on n vertices formed by S has 2k + 1 components each isomorphic to
the circulant on 5= vertices formed by S = {51 E(zl?ﬁy’ 371} Since
ged(n, a) = 2k + 1, then ged(5%7, 3557) = 1, and by Theorem 2 our graph
is isomorphic to the graph with 2k + 1 components each isomorphic to the
circulant on %y vertices formed by §' = {1, sy, zgr — 1) 0

This completely characterizes all 3-circulant graphs formed by § = {a, §,n—
a} where ged(n, a) is odd as having components of type (7). The next theo-
rem describes when the gcd(n, a) is even and the 3-circulant’s components
are of type (z). The proof to this theorem follows from Corollary 1 and
Theorem 2.

Theorem 4 Let n be even and S = {a, §,n—a}. If gcd(n,a) = 2k where k
is a positive integer and 4 divides 3, then the circulant graph on n vertices
formed by S has 2k components each isomorphic to the circulant on -
vertices formed by 8’ = {1, &, 3z — 1}

The next two theorems classify the remaining cases as type ().

Theorem 5 Let n = 2(mod 4) and S = {a,%,n — a}. If gcd(n,a) = 2,
then the circulant on n vertices formed by S is isomorphic to P> x Cy.

Proof: Let n = 2(mod 4) and gcd(n,a) = 2. Then the circulant on n
vertices formed by the set {a,n — a} has two components both isomorphic
to cycles on F vertices, one containing all the even vertices (a,2a,..., a
modulo n) and the other containing all the odd vertices. Also, % is odd
and gcd(a, ,n) = 1. Hence, the circulant on n vertices formed by S =
{a,%,n—a} is connected. Now each vertex ka in the even cycle is adjacent
to the vertex ka + % in the odd cycle. Also the vertex ka + % is adjacent
to (ka+%)+a=(k+1)a+ % and (ka+ %) —a = (k—1)a+ 5. Therefore,
the circulant on n vertices formed by S = {a,%,n — a} is isomorphic to
Py X'C"i" . 0O
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As an illustration of this isomorphism, consider the circulant graph with
n = 10 vertices formed by S = {2,5,8} (see Figure 4). Placing the odd
numbered vertices in a cycle, the even numbered vertices in another cycle
and properly connecting adjacent vertices reveals P, x Cs (see Figure 5).

Theorem 6 Letn be even and S = {a, §,n—a}. If gcd(n,a) = 2k where k
is an integer greater than 1 and 4 does not divide %, then the circulant graph
on n vertices formed by S has k components each isomorphic to P, x Cg..

The proof to this theorem follows from Corollary 1 and Theorem 5.

4 Ranks of 3-Circulant Graphs.

Much is known about the eigenvalues of circulant matrices. In fact, a
formula exists for them (7).

Theorem 7 If A is an n x n circulant matriz with ﬁ{‘st Tow [€1,€2, - ., Cn),
then the eigenvalues of A are given by A, = S cwlbP p=0,1,...,n—
1, where w = 2™/,

Applying this formula to our two basic types of 3-circulants completely
determines their rank.

Theorem 8 Let n be even and S = {1,%,n —1}. If G is the circulant on
n vertices formed by S, then
n—2 ifn = Omodl2
rank(G) =< n—4 ifn=6modl2 .
n otherwise

Proof: Let n be even and G be the circulant on n vertices formed by
S = {1,%,n - 1}. To determine the rank of G it suffices to count the
number of zero eigenvalues of A(G). Let w = €*"/*. From the special
structure of A(G), we see that A, = i) ciw~DP reduces to A, = w? +

w”*’" +wPt2m = WP(1+w™ +w?™), for p=0,1,...,(n—1), and t,herefore
_0,2:2,20-2 " (n=hn=2)

For any of the elgenvalues to be zero, it is clear that 14+w™ +w2’" =0, and

the quadratic formula implies that this is only possible when w™ 2’”/ 3

or ¢*™/3_ Thus it becomes a combinatorial problem to discover when such
an equality can hold.
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Figure 5: P, x Cs.
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First note that trying to solve w™ = ¢2™¥/3 or ¢4/3 implies that 31”2(:—_—2)- =

288 4 9wik or 42 4 27ik for some integer k. This reduces to 22 = 2 or
2;‘ modulo n. Recalllng that n is even, the left hand side of this equation
is an integer, and thus n must also be divisible by 3 or else there are no
solutions. Therefore the rank of G is n unless n is divisible by 6.

Knowing that the only possibility for rank deficiency is when n is divisible
by 6, we examine the two cases: n =0 mod 12, and n = 6 mod 12.

If n = 0 mod 12, then n = 12L, and we attempt solve
p(12L -2) 12L or 24L
2 I
Noting that p must be even, since both sides of this equation are even
numbers, and doing some algebraic simplification yields

mod 12L.

p=8L or 4L mod 12L.

Therefore, there are exactly two zero eigenvalues, and the rank of G = n—2.
If n = 6 mod 12, then n = 12L — 6, and we attempt solve
p(12L —-6-2) (12L —6) or 2(12L - 6)
2 -3 3
Here p could be even or odd, so we consider each in turn. If p is even, then
the algebra reveals

mod 12L — 6.

p=8L -4 mod 12L — 6, or

p=4L — 2 mod 12L — 6.

If p is odd, then similar manipulation gives
p=2L -1 mod 12L -6, or

p=10L — 5 mod 12L — 6.

Therefore, there are exactly four zero eigenvalues, and the rank of G = n—4.
m}

If a connected 3-circulant graph G is not isomorphic to a 3-circulant
with § = {1,%,n — 1}, then we have shown that it must be isomorphic
to P x Cg. The following two results completely characterize the rank of
such G.

The following result of Bevis, Domke and Miller [3] address the rank of
P, x C,.
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Theorem 9. Let g = ged(m + 1,n), then
mn+1l-g ifn odd

rank(Pp, x Cp) = { mn+2—g ifg even, % odd .
mn+2-2g9 if 3 even

We can apply this theorem to our specific 3-circulant case as follows.

Corollary 2 Let n = 2(mod4), then

_ n if n # O0mod3
m"k(P’XC’":)‘{ n—2 ifn=0mod3
Proof: Since n = 2(mod4), then 7 is odd. Also, g =ged(3, §) € {1,3}.
Thus, rank(P2 x Cy) = 2(3) + 1 — g, and the result holds. o

5 Conclusion

We have completely described the class of 3-circulant graphs. If G is a
3-circulant graph, then it is either connected or is made up of isomorphic
copies of connected 3-circulant components. Every connected 3-circulant
graph can then be classified as one of two basic types, isomorphic to either
the 3-circulant formed by S = {1,%,n — 1} or P, x C3. We have shown
that the rank of A(G) is determined in every case. Future investigations
will attempt to generalize these properties to circulants with vertices of
higher degree.
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