Pairwise Balanced Designs on 4s + 4 blocks with longest block of cardinality 2s + 1

R.G. Stanton

Department of Computer Science University of Manitoba Winnipeg, Canada R3T 2N2

ABSTRACT. The quantity $g^{(k)}(v)$ was introduced in [4] as the minimum number of blocks necessary in a pairwise balanced design on v elements, subject to the condition that the longest block have cardinality k. When $k \ge (v-1)/2$, it is known that $g^{(k)}(v) = 1 + (v-k)(3k-v+1)/2$, except for the case when $v \equiv 1 \pmod{4}$ and k = (v-1)/2. This exceptional "case of first failure" was treated in [1] and [2]. In this paper, we discuss the structure of the "case of first failure" for the situation when v = 4s + 4.

1 Introduction

The formula $g^{(k)}(v) = 1 + (v - k)(3k - v + 1)/2$ holds for v = 4s + 1 and k > 2s. When k = 2s, the formula fails and the result for this case was given in [2]; the structure of the design in the case was discussed in [1].

In this paper, we consider the analogous situation for v=4s+4. The formula $g^{(k)}(v)=1+(v-k)(3k-v+1)/2$ is valid for $k\geq 2s+2$, and so it first fails in the case k=2s+1. It is natural to look at this case of first failure.

The S bound in this case (cf. [3]) is given by

$$g^{(k)}(v) \ge 1 + (v - k)(5k - v + 1)/6$$

$$= 1 + (2s + 3)(3s + 1)/3$$

$$= 1 + (6s^2 + 11s + 3)/3$$

$$= 1 + (2s^2 + 3s + 1) + [2s/3].$$

Now let s = 3t + a (a = 0, 1, 2). Then

$$[2s/3] = [(6t + 2a)/3] = 2t + a.$$

So the S bound is given by

$$S = 1 + (2s^2 + 3s + 1 + 2t + a) = 1 + S^*$$

Now we use an approach similar to that used in [1]. We let b_i be the number of blocks of length i other than the base block of length k. Then

$$b_2 + b_3 + b_4 + \dots = S^* + \epsilon,$$

 $b_2 + 2b_3 + 3b_4 + \dots = (2s+1)(2s+3) + B_0,$
 $b_2 + 3b_3 + 6b_4 + \dots = (2s+2)(4s+3) - s(2s+1).$

These equations simplify to

$$b_2 + b_3 + b_4 + \dots = 2s^2 + 3s + 1 + 2t + a + \epsilon,$$

$$b_2 + 2b_3 + 3b_4 + \dots = 4s^2 + 8s + 3 + B_0,$$

$$b_2 + 3b_3 + 6b_4 + \dots = 6s^2 + 13s + 6.$$

Using multipliers 3, -3, 1, we obtain

$$b_2 + b_5 + 3b_6 + 6b_7 + \cdots = a + 3\epsilon - 3B_0$$

We conclude that $b_2 \leq a + 3\epsilon - 3B_0$.

Now use multipliers 1, -2, 1; we obtain

$$b_4 + 3b_5 + 6b_6 + \cdots = 1 + 2t + a + \epsilon - 2B_0$$

Hence $b_4 + b_6 + b_8 + \cdots < 1 + 2t + a + \epsilon - 2B_0$.

Adding our two inequalities gives the result that

$$b_2 + b_4 + b_6 + \ldots \le 1 + 2t + 2a + 4\epsilon - 5B_0$$

 $\le 1 + 2t + 2a + 4\epsilon.$

But each point on the base block must occur with 2s + 3 other points and this requires that at least one block of even length hang on each point of the base block. Thus, parity requires that

$$b_2 + b_4 + b_6 + \cdots \ge 2s + 1.$$

Thence $1 + 2t + 2a + 4\epsilon \ge 2s + 1 = 6t + 2a + 1$.

Hence $4\epsilon \geq 4t$, that is, $\epsilon \geq t$.

So we obtain a bound on g-1 as

$$S + \epsilon = 2s^2 + 3s + 1 + (2t + a) + t$$
$$= 2s^2 + 4s + 1.$$

We shall now show that this bound is met.

2 Attainment of the bound

If the bound $g - 1 = 2s^2 + 4s + 1$ is met, then

$$b_2 + b_3 + b_4 + \dots = 2s^2 + 4s + 1,$$

 $b_2 + 2b_3 + 3b_4 + \dots = 4s^2 + 8s + 3 + B_0,$
 $b_2 + 3b_3 + 6b_4 + \dots = 6s^2 + 13s + 6.$

The previously obtained inequalities now become equalities.

So
$$b_2+b_4+b_6+\cdots=1+6t+2a=1+2s$$
, $b_2=3t+a-3B_0$, $b_4+b_6+\cdots=1+3t+a-2B_0$.

It follows that $B_0 = 0$, $b_2 = 3t + a$, $b_4 + b_6 + \cdots = 1 + 3t + a$. Furthermore, since

$$b_2 + b_5 + 3b_6 + 6b_7 + \cdots = 3t + a - 3B_0 = 3t + a$$

it follows that

$$b_5 = b_6 = b_7 = \cdots = 0.$$

We thus find that, if the bound

$$g - 1 = 2s^2 + 4s + 1$$

is met, then $B_0 = 0$, that is, all other blocks meet the base block of length 2s + 1. Furthermore, $b_2 = s$, $b_4 = s + 1$, and therefore

$$b_3 = 2s^2 + 4s + 1 - (2s + 1) = 2s^2 + 2s.$$

This information allows us to produce a construction for a design meeting the bound. We illustrate the construction for s = 4, that is, for $g^{(9)}(20) = 1 + (49)$. However, the construction is perfectly general.

On each of the 9 base points of the long block, we must hang 11 others (call these 11 points $1, 2, 3, \ldots, 8, 9, 0, \infty$).

By considering frequencies, we see that any point that occurs r times in the 4 blocks of length 2 (singletons attached to the long block) must occur r+1 times in the 5 blocks of length 4 (triples hanging on the long block).

Suppose that ∞ occurs in the s singletons and thus also in the s+1 triples. We write down the usual 1-factorization of K_{10} (on $1, 2, 3, \ldots, 8, 9, 0$) as

01	02	03	04	05	06	07	08	<u>09</u>
12	13	24	35	46	57	68	79	81
83	94	15	26	37	48	59	61	72
74	85	96	17	28	39	41	52	63
<u>56</u>	67	<u>78</u>	89	91	12	23	34	45.

Now append ∞ to the pairs 12, 34, 56, 78, 90, and thus get 5 triples. Add a singleton ∞ to the remaining 4 columns. This gives a total of 45+4=49 short blocks hanging on the long block.

In general, we have

$$\binom{2s+2}{2} + s = (s+1)(2s+1) + s = 2s^2 + 4s + 1$$

short blocks hanging on the long block. Thus we have shown that

$$q-1=2s^2+4s+1$$
.

3 Alternative constructions

Not every possible assignment of singletons leads to a solution. For example, suppose there are three singletons ∞_1 and one singleton ∞_2 in the case v=20, k=9. Then 11 elements ∞_1 , ∞_2 , 1, 2, 3, 4, 5, 6, 7, 8, 9, hang on each point of the block of length 9. Element ∞_1 occurs in 4 triples and element ∞_2 occurs in 2 triples. So deletion of ∞_1 and ∞_2 leaves the usual factorization of K_9 on $\{1, 2, \ldots, 9\}$. This factorization has the form (i, --, --, --, --) as i ranges from 1 to 9.

When we adjoin ∞_1 and ∞_2 , we get 9 blocks in different factors as

$$\infty_2$$
1, ∞_2 2, ∞_2 3, ∞_1 4, ∞_1 ∞_2 5, ∞_2 6, ∞_2 7, ∞_2 8, ∞_1 9.

One of the factors containing $\infty_1 4$ and $\infty_1 9$ must contain a singleton ∞_2 and the other must contain a tripleton $\infty_2 - -$. But this tripleton has to be $\infty_2 49$ and this is a contradiction.

This argument is perfectly general and shows that it is never possible to have s-1 singletons ∞_1 and one singleton ∞_2 .

On the other hand, suppose that the 4 singletons are ∞_1 , ∞_1 , ∞_2 , ∞_2 . For convenience, write ∞_1 and ∞_2 as a and b. Then we can immediately start the factors as

It is straightforward to complete the factors containing a3, a4, b8, b9, and then proceed to the others to obtain a solution as

a1	a2	a3	a4	ab5	b6	b7	<i>b</i> 8	b9
b	\boldsymbol{b}	<i>b</i> 14	b23	16	\boldsymbol{a}	\boldsymbol{a}	a69	a78
26	17	52	51	27	18	19	57	56
37	39	67	68	38	29	28	12	13
48	46	89	79	49	47	45	34	24
59	58				35	36		

We conclude by noting that $g^{(3)}(8) = 12$ is an exception to the general result that $g^{(2s+1)}(4s+4) = 1 + (2s^2+4s) + 1$. The general result only holds for s > 1.

Also, the results of this section show that the solution for $g^{(5)}(12)$ is given uniquely by adjoining 2 singletons ∞ to two factors of K_6 and using ∞ to form triples on the other 3 factors.

The solution for $g^{(7)}(16)$ is rather interesting. One has the solutions obtained from a factorization of K_8 by adjoining ∞ to form 3 singletons and 4 triples. The considerations of this section show that using K_7 with singletons ∞_1 , ∞_1 , ∞_2 , does not lead to a solution.

However, we point out that solutions do exist when there are 3 distinct singletons (call them a, b, c). The result may have a triple abc, as follows.

\boldsymbol{a}	b	\boldsymbol{c}	abc	a12	b34	c56
<i>b</i> 6	a4	a5	16	<i>b</i> 5	a6	a3
c4	c1	b2	23	c3	c2	<i>b</i> 1
13	26	14	45	46	15	24
25	35	36				

Or it may have no triple abc, as shown below.

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	ab1	ac2	b34	c56
bc	a5	a4	c3	b5	a6	a3
16	c4	b6	26	13	c1	b2
24	12	15	45	46	25	14
35	36	23				

References

- [1] J.L. Allston, M.J. Grannell, T.S. Griggs, and R.G. Stanton, Pairwise Balanced Designs on 4s + 1 Points with Longest Block of Cardinality 2s, *Utilitas Mathematica* 58 (2000), 97-107.
- [2] R.C. Mullin, R.G. Stanton, and D.R. Stinson, Perfect Pair-Coverings and an Algorithm for Certain (1-2) Factorizations of the Complete Graph K_{2s+1} , Ars Combinatoria 12 (1981), 73-80.
- [3] R.G. Stanton, A Survey of Minimal Clique Covers, Bulletin of the ICA 30 (2000), 51-58.
- [4] R.G. Stanton, J.L. Allston, and D.D. Cowan, Pair-Coverings with Restricted Largest Block Length, *Ars Combinatoria* 11 (1981), 85-98.