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ABSTRACT. In a graph, the Steiner distance of a set of vertices U
is the minimum number of edges in a connected subgraph containing
U. For k> 2 and d > k — 1, let S(k,d) denote the property that for
all sets S of k vertices with Steiner distance d, the Steiner distance of
S is preserved in any induced connected subgraph containing S. A k-
Steiner-distance-hereditary (k-SDH) graph is one with the property
S(k, d) for all d. We show that property S(k, k) is equivalent to being
k-SDH, and that being k-SDH implies (k + 1)-SDH. This establishes
a conjecture of Day, Oellermann and Swart.

Distance is a fundamental concept in graphs. Indeed a whole book has
been written on the subject [2]. One special family is distance-hereditary
graphs. We are interested here in a generalisation of such graphs.

Distance-hereditary graphs are graphs such that for any pair of ver-
tices  and y it holds that the distance between z and y is preserved in
any induced connected subgraph containing z and y. Equivalently, for all
pairs of vertices z and y, every induced z—y path has the same length.
Distance-hereditary graphs have been well studied since their introduction
by Howorka [5] in 1977; see for example [1, 3, 4, 6].

While studying distance-hereditary graphs, D’Atri and Moscarini [3]
considered the relationship between normal distance and Steiner distance.
If S is a set of vertices, then a connection for § is any induced connected
subgraph containing S. A connection for S is minimal if the removal of
any vertex destroys the property of being a connection for S. (That is,
any vertex not in S is a cut-vertex.) The Steiner tree of a set S is a
spanning tree of a connection of S of minimum order (number of vertices).
The number of edges in the Steiner tree is the Steiner distance of S. So,
if S is a pair of vertices then the Steiner distance is the normal distance.

A graph is said to be Steiner-distance-hereditary if for every set

S of vertices the Steiner distance of S is preserved in any connection for
S. Equivalently (since the Steiner tree of S in a minimal connection for S
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spans the connection), a graph is Steiner-distance-hereditary if for all sets
S of vertices every minimal connection for S has the same order.

D’Atri & Moscarini [3}, and later Day, Oellermann & Swart [4], proved:
Theorem 1 A graph is distance-hereditary iff it is Steiner-distance-hereditary.

For k > 2 and d > k — 1, we define the property S(k,d) as meaning
that for all sets S of k vertices with Steiner distance d, the distance of S is
preserved in any connection for S. We define the property S(k) as meaning
S(k,d) for all d; Day et al. [4] introduced the property and called such
graphs k-Steiner-distance-hereditary. Distance-hereditary graphs are
the ones obeying S(2).

Day et al. [4] conjectured as an extension to Theorem 1 that in general
being k-Steiner-distance-hereditary implies being (k + 1)-Steiner-distance-
hereditary. This we show. We also show that there is a partial converse:

Theorem 2 (1) For all k > 2 it holds that S(k, k) is equivalent to S (k).
(2) For all k > 2 it holds that S(k) implies S(k + 1).
(3) For all k > 3 it holds that S(k) implies S(k — 1,d) for all d 2 k.

Bandelt and Mulder [1] showed that S(2,2) is equivalent to S(2). The-
orem 2 is a consequence of the following three lemmas.

It is to be noted that property S(k,k — 1) is always satisfied; the inter-
esting property is S(k, k).

Lemma 1 For k > 2 it holds that S(k,k) implies S(k + 1,k +1).

PROOF. Assume graph G obeys S(k,k). Let S C V(G) have cardinality
k + 1 and Steiner-distance k + 1 in G. That is, the graph induced by S is
not connected, but there exists a vertex z such that the graph induced by
SU {z} is connected.

Let H be any connection for S. We need to show that S has Steiner-
distance k+ 1 in H. If H contains z, then we are done. So we may assume
that = ¢ V(H). There are two cases.

1) S is an independent set. Let s1,s2,53 € S. The set 5 — {s1} has
cardinality and Steiner-distance k in G (z is a common neighbour), so by
assumption there is a common neighbour u, of §$ — {s1} in H. Similarly,
there is a common neighbour u2 of S — {s2} in H.

Now, the graph induced by the set SU {u;,u2} is connected. So, by
assumption, there is a common neighbour us of S — {s3} in the set SU
{u1,u2}. Since S is independent, it follows that uz is one of u; or us. That
is, ug is a common neighbour of all of S in H, as required.
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2) S is not an independent set. Then there exists a vertex y in a
nontrivial component of the graph induced by S such that the graph induced
by (S — {y}) U {z} is connected. Thus the set S — {y} has cardinality
and Steiner-distance k in G, and so has Steiner-distance k¥ in H by the
assumption. But y has a neighbour in S and so can be added to the Steiner
tree for S — {y} for the cost of one edge. Thus S has Steiner-distance k + 1

in H, as required. QED
Lemma 2 For alld > k > 3 it holds that S(k,d) implies S(k — 1,d).

PROOF. Assume graph G obeys S(k,d). Let S C V(G) have cardinality
k — 1 and Steiner-distance d in G. Say this is achieved by Steiner tree 7.
Let H be any connection for S.

Let z be any vertex of T* not in S but adjacent to a vertex of S (exists
since d > k). Then the graph induced by V(H) U {2} is connected. So it
contains a tree T' of Steiner-distance d for SU {z}. Let m be a vertex of T
not in S U {z} (exists since d > k); necessarily m € V(H). Then the set
S U {m} has Steiner-distance d in G, and therefore S U {m} and hence S
has Steiner-distance d in H, as required. QED

Lemma 3 Ford > k > 2 it holds that S(k,d) implies S(k,d + 1).

PROOF. Assume graph G obeys S(k,d). Let S C V(G) have cardinality
k and Steiner-distance d + 1 in G. Say this is achieved by Steiner tree T*.-
Let y be an end-vertex of T*; of course, y € S. Let z be the neighbour of y
in T*. Let $' = (S — y) U {z}. Then S' has Steiner distance d in G. (The
tree T* — y shows the distance at most d; any smaller then adding y would
contradict the distance of S.)

Let H be any connection for S. We need to show that S has Steiner-
distance d+1 in H. Assume z € S. Then since we have property S(k—1,d)
(by the above lemma), the set S’ has Steiner-distance d in H. So S has
Steiner-distance d + 1 in H (by adding edge yz to the Steiner tree for S').

So assume z ¢ S. By assumption, the set S’ has Steiner-distance d in
the graph induced by V(H) U {z}; say by Steiner tree 7. Let 3’ be an
end-vertex of T such that neither it nor its neighbour in 7" is z. (Such a
vertex exists since d > k implies that 7" is not a star centered at z.) Let 2’
be the neighbour of 3’ in T". ‘

Let $” = (S —y') U {z'}. Then S’ has distance d in G. (Adding the
edge yz to the tree T' — y' shows that distance at most d.) Furthermore,
H contains S". So S" has distance d in H, and thus S has distance d + 1
in H (by adding edge y'z' to the Steiner tree for S"), as required. QED
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There are some limits to these implications. For instance, graphs which
satisfy property S(k) but not property S(k — 1) also show that property
S(k, k) does not imply property S(k — 1,k — 1). One such example is the
cycle Cry2 on k + 2 vertices for k > 3. Another example of a graph which
satisfies property S(k) but not property S(k — 1) for k > 4 is obtained
by taking the complete bipartite graph K(k,k) and removing a perfect
matching. (Details omitted.)

Also, the line graph L(K,) of the complete graph (vacuously) satisfies
property S(2,3) but does not satisfy property S(3,4) for n large.

Another example graph G is obtained by taking a set X of six elements
and making V(G) the set of the 15 subsets of X of cardinality 3, with two
vertices of G adjacent iff the subsets overlap in two elements. It can be
shown that G satisfies property S(2,3) but not property S(2,2).

Finally, we note that the results in this paper imply a polynomial-time
recognition algorithm for k-Steiner-distance-hereditary graphs. To see this,
it suffices to show that we can verify whether S(k, k) holds for any fixed k.
We look at all sets S of cardinality k and consider only those of Steiner-
distance k. These are the S that do not induce a connected subgraph, but
there exists a vertex z such that S U {z} induces a connected subgraph.
To check whether the distance of S is preserved in every connection for it,
remove all those vertices which are adjacent to every component of S; if
what remains is connected then the distance of S is not preserved in every
connection for it, otherwise S is okay.
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