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ABSTRACT: As an extension of the fractional domination and fractional
domatic graphical parameters, multi-fractional domination parameters are
introduced. We demonstrate the Linear Programming formulations, and to
these formulations we apply the Partition Class Theorem, which is a
generalization of the Automorphism Class Theorem. We investigate some
properties of the multi-fractional domination numbers and their relationships
to the fractional domination and fractional domatic numbers.

1 Introduction

For a graph G = (V,E) of order n and size m with vertex set
V(G) = {v1,v2,...,vn} and edge set E(G) = {ey,eq,...,em}, we define the
open neighborhood of a vertex v; to be the set of all vertices adjacem to it,
N(v) = {v; € V(G) : viv; € E(G)}, and its closed peighborhood is the set
Nlvi] = N(v;) U {v;}. The closed neighborhood matrix N = [n; ;] is the binary
n-by-n matrix with n; ; = 1 if v; € N[v;], and n; ; = 0 otherwise. The degree of
a vertex v; is the number of vertices to which v; is adjacent, degv; = |N(v;)|.
The minimum degree over all vertices in a graph G is denoted by 6(G), and the
maximum degree is denoted by A(G). If D C V(G) and |[N[vJNn D| > 1 for
every vertex v € V(G), then D is said to be a dominating set of G. The
domination number of a graph G, ¥(G), is the minimum cardinality of a
dominating set in G. We call a function f : V(G)—{0, 1} a dominating function
if forallv € V(G) we have Y~ f(w) > 1. We note that a dominating function

weN[v]

is merely the characteristic function of a dominating set. We will next consider a
variation on the idea behind a dominating function.
As defined by Farber [4], a function f: V(G)-[0,1] with 3 f(w)>1

weN|[v]
for all v € V(G) is called a fractional dominating function (fdf). The weight of
fisw(f)= ¥ f(v), and the minimum weight over all fractional dominating
+eV(G)

functions is called the fractional domination number of G, v(G).
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Since every dominating function is also a fractional dominating function, we
have that v;(G) < ¥(G) for any graph G. If we define the function
g:V(G)=[0,1] by g(v) = FGI)_-J for every vertex v € V(G), then g is an fdf
with w(g) = 57 Also,ifg: V(G)-[0, 1] is any fdf of the graph G, then we

must have that Y g(w)>1. So,n< T 1< ¥ Y g(wy= Y (deg
weN[v] veV(G) veV(G) weN[y] veV(G)

v+ 1)g(v) < Eg(:c)(A(G) + 1Dg(v) = (A(G) + 1) veg%a)g(v). Thus, we have

established the following theorem and corollary of Grinstead and Slater [5].

Theorem 1 [5]: If G is a graph of order n with minimum vertex degree 6(G)
and maximum vertex degree A(G), then nA—(Gl)? <v(G) < nf("cl)l'i'

Corollary 2 [5]: If G is regular of degree r, then v/(G) = n—

r+l1°
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©

Figure 1: The graph DB

For a graph G, we say that a set S of dominating functions on G is disjoint

if Y f(v) <1 for all ve V(G). This definition is equivalent to saying that
jes .

dominating sets whose characteristic functions are those in S are disjoint. In [2],
Cockayne and Hedetniemi define the domatic number, d(G), to be the maximum
cardinality of a collection of disjoint dominating sets. They give several bounds
on the domatic number, one of which is d(G) < §(G) + 1 for any graph G. The
graph DB in Figure 1 has disjoint dominating sets {1,5,8,12}, {2,6,10}, and
{4,7,11}, so d(DB) = 3= 6(DB)+1. If a set S of fractional dominating

functions has ¥ f(v) < 1 for all v € V(G) ("disjointness"), then the set S is
jes

called a fractional dominating family (FDF). In [3], Rall defines the fractional
domatic number d¢(G) to be the maximum cardinality of an FDF. If we define
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gi: V(G)-[0,1] by gi(v) = 6(G)+1, then the set {g1, g2, g3, ..., 9s(G)+1} is an
FDF of cardmallly 6(G) + 1. If we let S be any FDF of G, and degv = 6(G),
then |S|—t—zl <Z Y filw) = Zf,(w) < ¥ 1=46G)+1. So,

i=1 weN[u] ueNv i= ueN[u]

we have established Rall's result that df(G) = 6§(G) + 1 for any graph G. In the
example of Figure 1, we see that the minimum weight of one fdf is vs(DB) = 3
by placing values of % on the vertices of the set {2, 4, 6, 7, 10, 11} and zeroes
elsewhere. The minimum combined weight of two disjoint fdf's is 2y;(DB) = 6
which can be achieved by using the same values from above for each of two
fdf's. If we desire three disjoint fdf's, the minimum combined weight will be 10,
which is achieved by placing values of -;- on the vertices of the set {1, 2, 3, 5, 6,
7, 8,9, 11, 12} and zeroes elsewhere for each of the three fdf's. We see that the
combined weight of two disjoint fdf's is just twice the weight of one fdf, but for
three disjoint fdf's we must exceed three times the weight of one. In the
following section, we expand on these observations.

2 Multi-Fractional Domination

We define the _&as_tm_aLdgmmangn_numlm of G to be 7j(G) =
mznZw( fi)= mmz Y fi(v), where {fi, f2,..., fx} is an FDF. Using this

i=1 veV

deﬁmuon, we now have for the graph DB of Figure 1 that'y}(DB) =3,
'y;(DB) = 6, and 'y}(DB) = 10. A second example is the six cycle, for which
74(C6) = 2, 73(Cs) = 4, and v}(Cs) = 6. Since we know that the maximum
cardinality of a FDF is d;(G) = 6(G) + 1, we can only define 7§(G) for
ke {1,2,..,6(G)+1}. Also, because all of the functions in an FDF of

cardinality k are fractional dominating functions, and the weight of each one is
bounded below by v,(G), we have the following observation. If G is a graph,

then 'yf(G) 2 kv,(G) for k € {1,2,...,6(G) + 1}. In addition, we can always
create an FDF of cardinality 1 < k < 6(G)+1 by allowing each of the k&
functions to take on the value G—(ﬁ on every vertex of G. Hence, we have the

next two propositions.

Proposition 3: If G is a graph, then kv;(G) < 'y,(G) Skggygg for 1 Sk <
6(G) + 1.

Proposition4: If G is regular of degree 7, then 'y‘j(G) = r’;—‘l for 1 <k <
6(G) + 1.
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Consider the example of the complete multi-partite graph K3s57,11,13, for
which n = 39 and 6(K3571113) +1=27. The values of 'yf(Ks.s.zn.ls) for
1 < k < 27 are listed in Table 1 along with the values of the upper and lower
bounds of Theorem 3. In addition, the plot in Figure 2 represents the same data,
where the solid lines correspond to the bounds in Proposition 3. Note that
Y§(Kssiaas) = kvg(Ksszuas)  precisely  for  1<k<10, and
Vi(Kss71113) = kg only for k = 27 = 6(K35,7,1113) + 1.

Table 1: 7’}:(1{3,5'7'11'13) forl <k <27

k [k%G) [ %O [kigez | [k [¥nO [HO) [kedm
T_|61/51 |61/51 | 1379 15 | 305/17 | 55/3 6573
2 | 122/51 | 12251 | 26/9 16 | 976/51 | 353/18 | 208/9
3 | 61/17 | 61/17 | 13/3 17 | 6173 18819 | 22119
4 | 244751 | 244751 | 52/9 18 | 366/17 | 1046/47 | 26
S | 305/51 | 305/51 | 65/9 19 | 1159751 | 1113/47 | 24779
6 | 12217 | 12217 | 2673 20 | 1220/51 | 1180747 | 260/9
7 | 427/51 | 427751 | 91/9 21 | 427/17 | 1247747 | 9173
8 | 488/51 | 488/51 | 104/9 22 | 1342/51 | 1314747 | 286/9
9 | 183717 | 183/17 | 13 23 | 1403751 | 2113771 | 299/9
10 | 610/51 | 610/51 | 130/9 24 | 488717 | 2244771 | 10473
11 | 671/51 | 119/9 | 143/9 25 | 1525/51 | 2375771 | 32519
12 | 244717 | 292 | 5273 26 | 1586/51 | 2506771 | 338/9
13 [ 793/51 | 14219 | 169/9 27 | 549717 | 39 39
14 | 854/51 | 307/18 | 182/9

B S e
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Figure 2: Plot of v§(K35711,3) for 1 < k <27
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One item we want to investigate is the relationship between successive
values of 'yf(G) for a given graph. For mstance, the values of ’Yf(Kg 5,7,11,13) for
1 £ k < 10 lie on a line whose slope is 5, , which is the line defined by the lower
bound of Proposition 3. Similarly, when 11 < k<17, 18 <k <22, and
23 < k <26 the values lie on lines of slope fg, &1 , and %, respectively. It is
also interesting to note that v7 (K357.11,13) = n = 39 yet for the graph DB in
Figure 1 we have 37;(DB) = 9 < v}(DB) = 10 < n = 12. We generalize this

result in the next theorem.

Theorem 5: In a graph G with order n, 'yi(c)“(G) = n if and only if every
vertex has minimum degree or is adjacent to a vertex of minimum degree.

Proof: To prove the necessity, assume 7§(G)+'(G) = n. Assume that there

exists some vertex v such that N[vg] N {v| degv = 6(G)} = B. The functions

fi: V(G) —[0,1] for 1 <i<8(G)+1 defined by fi(v) = gy for all
6(G)+1

v € V(G) — {w} and f;(vp) = 0 form an FDF. But, Z w(fi)=n-1<mn,

a contradiction.

Next, we prove the sufficiency. In the case that G is regular of degree §(G),
Proposition 4 states '76(6)“ (G) = n. So, assume that G is not regular, but every
vertex has minimum degree or is adjacent to a vertex of minimum degree. There
exists an F'DF’ for which the value assigned to each given vertex is the same for
each function in the FDF (a consequence of the Partition Class Theorem and
the LP formulation of 'yf(G), which will be discussed in the next section). Let
f:V(G) —[0,1] be such a solution. Since (6(G)+ 1)f(v) <1 for every
vertex v, then f(v) < 7= 6<G) +1- For contradiction, assume that the minimum of the
set {f(v):v e V(G)} is strictly less than 6—((;% Let v be a vertex which

achievcs the mlmmum If v is a minimum degree vertex, then f(N[v]) <
6(G) +1 +6(G) 6(6) +17 = 1, a contradiction that f dominates. If v is not a

minimum degree vertex, then it must be adjacent to a minimum degree vertex w.
Then, f(N[w]) < WG'_I)TI + 6(G)mﬁ =1, a contradiction that f dominates.

So, f(v) = W for every vertex v in G, and 'y";(G)H(G) =n.0

Now that we have identified the class of graphs which do achieve the upper
bound at 6(G) + 1, we would like to know if there are graphs which achieve the
upper bound somewhere before §(G) + 1, and what can happen to the values of
'yf(G) before and after the upper bound is achieved. Before we endeavor to
show this, we will introduce a different way of formulating domination,
fractional domination, and multi-fractional domination.
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3 IP/LP Formulations

Many graph theoretic subset parameters (as well as their fractional
counterparts) have Integer Programming (IP) (respectively, Linear
Programming (LP)) formulations. See [8} and [9] for several formulation
examples. One example, the domination number can be IP-formulated as

7(G) = mind_z; subject to NX >1,, where each z;€{0,1,2,3,..},
i=1

= [z1,Z2,...,Za}', N is the closed neighborhood matrix, 1, is the column n-
vector of all ones, and the decision variables determine a dominating function f
with f(v;) = z;. If we change z; € {0,1,2,3,...} to z; >0, we have the
formulation for 4¢(G). In [4], Farber considers the problem of determining
when ¥(G) = v/(G).

In (1) below, we give the LP formulation of 'yf(G). Note that for any
k €{1,2,3,...,6(G) + 1}, kn is the number of decision variables. For instance,
the graph K357.11,13 will have from 39 decision variables when k£ =1 to 1053
variables when k = 27.

(1) Let G be a graph with order n and f;(v;) = z;jfor 1 <i < k and
1<j<n IfX; = [x, 1y Ti2y ooy Tin)' for 1 < i <k, then
'YJ(G) mmZ qu

i=l j=1

subject to NX >1,forl1 <i<k,
ZX <1,

x,;jZOforISiskandlngn.

Clearly, the number of decision variables in such an LP problem can
become extremely unwieldy. The amount of time to formulate the problem into
LP software and the amount of memory space taken up by a formulation of this
size would be undesirable.

The Automorphism Class Theorem (A.C.T.) in [11], determines conditions
under which the solution to certain LP formulated graph problems will possess
the same value on vertices in the same automorphism class. A generalization of
this, the Partition Class Theorem (P.C.T.) in [12], gives conditions for general
LP problems to possess equal values on certain groups of decision variables.

Theorem 6: (P.C.T.) [12]: Let Wi, ={1,2, .., k} = RIURU...URy,
where R = {’ro +1=12,...n}, R = {7‘1 +1, .., 7‘2}, ey Ri = {T,'-] +1,
S ) SN Ry={rpa1+1, .., mh=k}, and let W;={1, 2,
waj}=81US U US, where S1 = {so+1=1,2,....,5},S={s1+1, ...,
Sz}, vy Si = {S.'_.l +1, .., S,'}, ey S = {Sl_l +1, .., 8= _7} Let M € Rixk
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such that for u, v € S;, we have fig =Y My, = 3 M, for 1 <i<tand

weR, weR,

1<g<h,and foru,v€ Rywehavediy =Y My, =Y My, for1<g<h

wesS, weS,
and 1 <i<t Let X = [ay, a3, ..., ax)' be a solution to one of the following
linear programming problems
k
(i) min Y c;z; subjectto MX > B,z; >0

i=1
k
or (ii) maz Y c;z; subjectto MX < B, z; > 0.
=1

Define X" = [a}, a}, ....a})' bya; = 3 iRy foralli € Ryforeach1 < g < h.
weR,

Then X" is a solution to (1) or (2), respectively, when C = [c1, ¢y, ..., ci] is
constant on each R;, and B = [by, by, ..., b;]! is constant on each ;.

Using the P.C.T. we can conclude that there exists an FDF, say
{f1, f2, .-, fi}, that achieves 'y,(G) where all of the f/s are identical. We may

now reduce the size of the LP formulation for 'y,(G') to that which is given in
(2).

(2) Let G be a graph with order n and fi(v;) = z;for 1 <i < kand
1 <j<n IfX = [21,22,..., 2], then

7'}(G) = min kzn:x,-
Jj=1

subjectto NX > 1,,
kr;<lforl1<j<m,
z; >0forl1 < j<m

We now have an LP problem with only n decision variables for any allowed
value of k. This is clearly a significant decrease in the number of decision
variables. We can easily change the value of k in any LP solving package in
order to generate all values of 'yf(G) from nearly the same formulation. In (3),
we show an example of the reduced LP formulation of 7?(1(3,5‘7_“,.3). In this
case, note that the number of decision variables is not n = 39. Because of the
regularity of K357,11,13, we are able to apply the P.C.T. a second time to the
reduced formulation of (2) and obtain the formulation (3) with only five decision
variables.
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3) ’Y'L,'(K3,5.7.||,|3) = min k(3.'121 + 50 + Tzg + 114 + 131‘5)

1 5 7 11 13
31 7 11 13
subject to 35 1 11 13[X>1
357 1 13
357 11 1
kI,X < 1s

;>0 forl £35<5

Within the LP formulation of 'yf(G), the number & is used only as a scalar
multiple, so we could consider all real values &k € [1,6(G) + 1]. Although this
extension has no apparent graph theoretic description for noninteger values of %,
its analysis does give us some insight into the behavior of 'yf(G) for the integral
values. If we consider k to be in the continuous interval [1,27], the plot of
Figure 2 now becomes that in Figure 3.

[0

! N

5 10 15 20 25

Figure 3: The plot of 'yf(K 357.11.13) where k € [1,27).

Although it is difficult to see from Figure 3, the plot is the piecewise linear
convex curve given in (4).
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61 . 51
glc 5 1<k<d
51 87
gk—§ F<k<SY
4) T(Ksana) =3 Fh- G FT<k<F.
131 ;. 900 221 . 161
Sik—3 T <k<%
13k-312 1 <k<27

|

In fact, the function '77(G) on [1,6(G) + 1] will always be a piecewise
linear convex function.

Theorem 7: If M is an m-by-n nonnegative real matrix with all row sums at
leastone, C = [c1, €2, ...y Cn), 1n = [1, 1, .., 1], X = [21, 22, ..., Zn)', then
Z(k) = minimum(kCX)
subjectto MX > 1,
X<(1/k)1
zi>20for1 <i<n
is a piecewise linear and convex function for 1 < k < m = min{r; : r; is the
sum of the entries in the ith row of M}.

Proof: By parametric linear programming [1], we have
Y (A) = minimum(CX)
subjectto MX > 1,
X<(1-M1,
z; >20for1 <i<n
is a piecewise linear and convex function for 0 < A < 1 — # IfA= "'L;_', then
Z(k) = kY(k%'). Since Y () is piecewise linear and convex then Y can be
written as follows :
r77’1,1/\-|-b| [0,/\|]
ma + by [/\| , /\z]

YOV =93 mid+b [hir, Al

[ MpA+by [Ap-,Ap=1- 1]
where b; = m;_1Ai-) —miAio + b1 for2 <2 < p,and my < my < ... < my,
but
'(m|+b|)k—m| [l,kll
(1n2 + b))k —m, [k| , kz]

Z(k) = kY (%) = < '(mi +b)k—m; (ko ki

L (mp+ b))k —my (ko1 kp = m]
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where k; = ﬁ Hence Z is piecewise linear on [1,m]. But, we need to show
3

that Z is continuous on [I,m], that is, adjacent linear pieces of Z have a
common intersection. Consider the following:
g = (mi+b)kisy —m
= (m; + (mi-1 Ao — midioy + bi1))kic) — my

= (mi + min (52=1) — ma(Bh) + b ko — my
= miki) + mi—i(ki-) = 1) —mi(kicy — 1) + bicikic) —my
= mgki—| + misikicg — Moy — makio + my + bisikio —my

= mi1ki—1 — mio + bici ki)

= (mi_y + bis)kic) — mig
for 2 < i < p. Therefore, Z is a continuous piecewise linear function on [1,m].
We only need show that Z is also convex, that is, m; + b; > mi_1 + bi_y.
Consider the following.

Ai-1 < 1

(miz) — mi) Xy > mio —m;
(misr —mi)dic +my > mi-
Mi_1Ai-] — Midio) +m; + bioy > mio + by
m;i + (misiAicy —midicr +bic)) > mio + i

m; + b; > m; + b
Hence, the slopes of the piecewise linear curve are strictly increasing, which
implies that Z is convex.[J

Corollary 8: A graph G must have 7’,"(G) = km-;—")ﬁ (upper bound of Theorem

3) for all k€{1,2,..,6(G)+ 1}, or only achieve the upper bound at
k=6(G)+1.

4 Future Work

Although Theorem 7 gives a complete view of the behavior of the multi-
fractional domination numbers, we are developing a generalization of the
fractional domatic and domatic numbers. Also, there is work being done by
Hedetniemi, Hedetniemi, Markus, and Slater [10] to define interesting multiple
domination parameters, such as minimizing the cardinality of the union of two
disjoint dominating sets, that is related to the work of Grinstead and Slater [6,7]
and the results of this paper.
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