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Abstract

We prove that the domination number of every graph of diame-
ter 2 on n vertices is at most (7‘5 + o(l)) vnlogn as n = oo (with
logarithm of base e). This result is applied to prove that if a graph of
order n has diameter 2, then it contains a spanning caterpillar whose
diameter does not exceed (\—}’5 + o(l)) vnlogn. These estimates are
tight apart from a multiplicative constant, since there exist graphs of
order n and diameter 2, with domination number not smaller than
(ﬁi + o(l)) vnlogn. In contrast, in graphs of diameter 3, the dom-
ination number can be as large as | 2] (but not larger).

Our results concerning diameter 2 improve the previous upper
bound of O(n%/4), published by Faudree et al. in [Discuss. Math.
Graph Theory 15 (1995), 111-118].
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1 Introduction

In a graph G = (V, E) with vertex set V and edge set F,aset X CVisa
dominating set if every v € V \ X is adjacent to some z € X. The smallest
cardinality of a dominating set in G, denoted ¥(G), is termed the domination
number of G.

This paper is motivated by the work [2] of Faudree et al. where the au-
thors study the possible structures of spanning trees in graphs. In particular,
their last assertion deals with spanning caterpillars in graphs of diameter 2.
An upper bound of O(n*?) is presented there for both the domination num-
ber and the minimum diameter of a spanning caterpillar (or, equivalently,
the length of a shortest dominating path plus 2) in all n-vertex graphs of di-
ameter 2. The main goal of the present work is to improve these estimates to

¥(G) < (% +o(l)) ynlogn

and the upper bound (735 + o(l)) vnlogn for the diameter of a spanning
caterpillar (throughout the paper, ‘log’ denotes logarithm of base e). We
also show that these new estimates are best possible apart from a multiplica-
tive constant. More explicitly, we prove that there exists an infinite sequence
of graphs of order n and diameter 2 whose domination number is at least
(ﬁ,‘-, + 0(1)) Vnlogn as n — oo.

The situation changes dramatically when the diameter is assumed to be 3
(or larger). Then the domination number can be as large as linear in n, more
precisely | %], not only for connected but also for 2-connected graphs.

The domination number of graphs of diameter 2 is investigated in the
next section, and the consequences on spanning caterpillars are presented in
Section 3. The case of diameter > 3 is considered in Section 4. Some open
problems are discussed in the concluding section.

Notation We denote by y(n,d) the largest value of 4(G) among graphs
with n vertices and diameter at most d. Moreover, x(n,d) is defined simi-
larly, with the additional assumption that the graphs considered are supposed
to be k-connected.
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2 Domination in graphs of diameter 2

In this section we prove the following result.
Theorem 1 (# +o(1)) Vvnlogn < ¥(n,2) < (7’5 +o(1)) vnlogn.

Interestingly enough, both inequalities can be proved by probabilistic
methods.

Proof of the upper bound Let G = (V, E) be any graph on n vertices,
with diameter 2. Suppose first that G contains a vertex v of degree at most
T}‘E vnlogn. Since the distance of each vertex from v is either 1 or 2, the set
of neighbors of v dominates the entire G, thus v(G) < 7‘5 vnlogn in this
case.

Suppose next that the minimum degree in G exceeds 7‘5 vnlogn. The
assertion for this case follows from the well-known more general result [3,
Theorem 2.18] that the domination number of a graph on n vertices with
minimum degree d is at most 1284, (see (4] for a further generalization of
this theorem, on vertex-partitioned graphs). For the sake of completeness,
we present a short argument.

For d > 7‘; vnlogn, we select a subset X C V at random, by the rule

Prob(v € X) = \/102%,

independently for allv € V. The expected cardinality of this X is 7'5 vrlogn.

Consider now the set Y of vertices not dominated by X. Let v € V be
an arbitrary vertex, and denote the degree of v by d. Here d > 7'5 vnlogn
holds by assumption. Thus, by the independent choice of the elements of X,

d
Prob(v€Y)=Prob(v¢ X A(u ¢ X, Vuv € E)) < (l_ Vl_(;ng)

1
7 logn

logn s L
<|[1-E2 < eT7l%" =

1
2n N

185



Therefore, the expected cardinality of Y is smaller than \/n. Since X UY is
a dominating set, v(G) < (7'5 + 0(1)) Vnlogn follows.

Proof of the lower bound Let G = (V, E) be the random graph G,
with n vertices and edge probability p = p(n). Fix two distinct vertices
u,v € V. We are going to estimate the probability of being u and v at
distance at least 3 apart.

For an arbitrary z € V' \ {u,v},

Prob((uz ¢ E)V (vz ¢ E)) =1 — Prob((uz € E)A (vz€ E)) =1—p*.

Moreover, this probability is not influenced by any other 2'; i.e., it is totally
independent of the presence or absence of paths uz'v, for all 2z’ # z. Thus,

Prob(Az€V:(uz€ E)A(vz€ E)) = (1 - p"’)"-2 < (1+40(1))e™™?",
Obviously, this probability becomes as small as o(n~2) if we choose p to be

(2+¢€)logn

p=p(n) = -

for a suitable € = ¢(n) tending to 0 sufficiently slowly. We take G = Gy,
with this p; then, with probability 1 — o(1), each vertex pair has a common
neighbor, hence the graph has diameter 2 almost surely.

We will prove that ¥(G) > (§;‘7§ - o(l)) vnlogn with probability 1-o(1)
as n — oo.

Let m = m(n) < (# - e’) vnlogn, for an arbitrarily small but fixed
¢ > 0. Consider any m-element set M C V. The set of vertices adjacent
to, but not contained in M will be denoted by N(M). By definition, M
dominates G if and only if N(M) = V \ M. The random choice of the edges
implies that

m

me
Prob(u ¢ N(M)) = (1-p)" = (1= p)»™")"" >
for each vertex v ¢ M. Equivalently, for v fixed,

Prob(v € N(M)) <1 - e 155
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Again by the independence of edges, there exist no dependencies among the
events “v € N(M)"” for different vertices of V \ M (because only the edges
joining M with N \ M are relevant in this context). Thus,

Prob (N(M) = V\M) < (1 _ e—l_":%)n—m < e_(n_m)e—r_-% ,

the latter derived by the fact that 1 —z < e~* holds for all z > 0. The choice

of m and p implies
I% <(3-€¢")logn
for some fixed €’ > 0 and any sufficiently large n. Consequently, the bound

obtained above does not exceed e~(1*+e( ™ Oy the other hand, there
are
(n) < (ﬁ)m =em+mlogn—mlogm < e™logn
m m

different possible positions of M, therefore
Prob(AM : [M| = mA N(M) =V \ M) < emloen-(l+o)n/+" _ 57y

Thus, ¥(G) > m holds with probability 1 — o(1). The proof of the theorem
is completed. o

3 Spanning caterpillars of small diameter

A caterpillar C is a tree whose non-leaf vertices induce a path, called the spine
of C. One of the problems studied by Faudree et al. in [2] is to find estimates
on the minimum diameter of spanning caterpillars in graphs of diameter 2.
Improving on their estimtate of O(n%4), the following asymptotic solution
can be derived from the results of the previous section.

Theorem 2 Every graph of order n and diameter 2 contains a spanning
caterpillar of diameter at most (735 + 0(1)) Vvnlogn, and this upper bound
is tight apart from a multiplicative constant.

Proof Let us observe first that if an upper bound of O(y/nlogn) is valid,
" then it is tight indeed. This follows by the fact that the spine of any spaning
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caterpillar C dominates the graph in question. Therefore, ¥(n,2) is a lower
bound on the diameter of C in a worst-case graph G. On applying Theorem 1,
the asymptotic estimate 2(y/nlogn) follows.

Concerning the upper bound, let G = (V, E) be any graph of order n and
diameter 2. Choose a dominating set X C V such that |X| < v(n,2). By
Theorem 1, the proof will be done if we show that G contains a spanning
caterpillar of diameter at most 3 |X| — 3.

First we select a caterpillar C C G with the largest number of vertices
such that the following three conditions are satisfied :

(¢) the spine S of C contains every z € X belonging to C,
(i) the spine begins and ends in X,
(i4i) consecutive vertices of X on S are at distance at most 3 on S.

We prove

Claim A mazimal caterpillar C with the properties (i)-(iii) contains all
vertices of V' \ X.

Proof Suppose, for a contradiction, that some vertex v ¢ X does not
belong to C. Since G has diameter 2, v is precisely at distance 2 apart from
all vertices of S. In particular, there exists a path zuv from the last vertex
z of S to v (and here u € V(C) \ V(S) holds). Moreover, v is dominated by
some z' € X \ V(S), and =’ ¢ V(C) because of (i). Thus, S can be extended
with the path zuvz' to obtain the spine of a larger caterpillar, contradicting
the maximality of C and proving the claim.

Now, the condition (i) implies that S has length at most 3 [V/(S)nX|-3.
At this point the proof can be completed either by referring to Lemma 1 of 2],
which states that if G has a caterpillar C of diameter d then it also contains
a spenning caterpillar of diameter at most d + |V \ V(C)|; or, by directly
choosing the longest path-extension S’ of S such that also S’ ends in X, and
any two consecutive vertices of X on ($'\S)U{z} (where z is the last vertex
of §) are at distance at most 2 on S'. The latter S’ dominates the entire G,
because otherwise any non-dominated z' € X would be at distance 2 from
the end of ', thus S’ would not be longest, contradicting the way it has been
chosen. o

188



4 Graphs of diameter at least 3

In this section we present some simple constructions, which show that d = 2
is the unique value (apart from the trivial case d = 1 of complete graphs) for
which yx(n, d) is sublinear in n (where k > 1 is any fixed integer).

Example 1 y(n,d) = |}] for every d > 3 and every n.

Consider the graph obtained from the complete graph K|,/2) by attaching
pendant edges to | 3] of its vertices. For n > 4, this graph has diameter 3.
Since a dominating set must contain a vertex from each pendant edge, we
obtain that y(n, d) cannot be smaller than [} ].

The fact that equality holds, follows now from the general inequality
¥(G) < |3] valid for all connected graphs G. A short proof of this upper
bound can be obtained by induction on n, choosing a longest path v vy - - v,
in a spanning tree T of G and removing v, with all leaves of T joined to it
(including v,).

Example 2 v,(n,d) > |25}] +1 for every d > 3 and every n > 7.

Denote ¢ = | 23]. Consider ¢ mutually disjoint paths vivivi (1 <i<q)
of length 2, together with r = n — 3¢ > 1 further vertices uy,...,u,. Let
{v{,...,v{} induce a complete graph, and join all v} to all u; (1 < i < g,
1 £ j £ 7). This graph is 2-connected, has diameter 3, and its domination
number is ¢ + 1.

For later reference, we denote this graph by G(gq,7).

k

n — -—

Example 3  (n,d) > IIT[;I—J + 1 for every d > 3, every k > 2,
2

and every n > 5k. As a consequence, graphs of arbitrarily high (but fized)

connectivity can have their domination number linear in n as n — oco.

The basic structure for these graphs is provided by the previous con-
struction, but now we substitute mutually disjoint independent sets S, for
the original vertices z. (By “substitution” we mean that the vertices of
S: are completely joined to the vertices of S, if 2y is an edge in the orig-
inal graph; and there will be no edges between S; and S, if z and y are
nonadjacent.)

189



k

-%,f J and start with the graph G(g, 1).

In the substitution, we let |S;| = |5] if z = vi or z = v}, |S;| = [£] if
z = v}, and finally |S,,| =n —q|3].

By the choice of g, we have |S,,| > [£]; and ¢ > 3 for n > 5k. Thus,
as one can easily check, the graph G obtained is k-connected. (As a matter
of fact, for k even, the condition ¢ > 2 — and hence n > 7k/2 — is already
sufficient.) Moreover, ¥(G) = ¢ + 1, similarly to the previous example.

For a general k, we choose ¢ = l“

5 Concluding remarks

(1) The edge probability p(n) in the proof of the lower bound in Theorem 1
cannot be chosen to be essentially smaller. The reason is that the diameter of

Gnp with p = \/@)n'—%ﬂ is almost surely greater than 2, for every constant
¢ > 0 (see e.g. [1}, Theorem 10 in Section X.2, p. 233). Therefore, in order
to prove a larger lower bound on 4(n,2) — if there exists any — would
probably require a more constructive approach. We summarize the related
open questions as follows.

Problem 1 Prove that the limit

¥(n,2)

ezists, and determine its value.
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(2) Concerning graphs of larger diameter and higher connectivity, we raise

Problem 2 Prove that the limit
83 (nv d)

lim ———=

n—oo n

exists for every fired k > 2 and d > 3, and determine its value. Is it
independent of d for d > do(k), or depends on both k and d ?

Note that high connectivity requires large minimum degree as well ; thus,
the above expression cannot exceed l—*—lk‘lﬁ On the other hand, we have seen
in the previous section that it is not smaller than 327: for k£ even, and 3,3—_1 for
k odd.
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