Clique-inverse graphs of bipartite graphs¹

Fábio Protti² Jayme L. Szwarcfiter³

Universidade Federal do Rio de Janeiro Caixa Postal 2324, 20001-970, Rio de Janeiro, Brazil

{fabiop, jayme}@nce.ufrj.br

Abstract

The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family \mathcal{F} of graphs, the clique-inverse graphs of \mathcal{F} are the graphs whose clique graphs belong to \mathcal{F} . In this work, we describe characterizations for clique-inverse graphs of bipartite graphs, chordal bipartite graphs, and trees. The characterizations lead to polynomial time algorithms for the corresponding recognition problems.

Keywords: intersection graphs, clique graphs, clique-inverse graphs

1 Introduction

Let G be a finite undirected graph with no loops nor multiple edges. Denote the vertex set of G by V(G), and the edge set by E(G). A subgraph H of G is a graph where $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a set X of vertices of G, denote by G[X] the subgraph of G

¹This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brazil.

²Núcleo de Computação Eletrônica, Universidade Federal do Rio de Janeiro.

³Núcleo de Computação Eletrônica, Instituto de Matemática, and COPPE-Sistemas. Universidade Federal do Rio de Janeiro.

induced by X, that is, the vertex set of G[X] is X and two vertices are adjacent in it if they are so in G.

A clique is a subset of vertices inducing a complete subgraph of G, while a maximal clique is one not properly contained in any other. The clique number $\omega(G)$ of G is the largest order of a clique in G.

A chord c is an edge linking two non-consecutive vertices in a cycle. Denote by C_k a cycle with k vertices. A graph is chordal if it contains no induced subgraph isomorphic to C_k for $k \geq 4$.

A graph is bipartite if its vertex set can be partitioned into two sets U and W such that every edge in E(G) links a vertex of U to a vertex of W. A graph is chordal bipartite if it is bipartite and contains no induced subgraph isomorphic to C_{2k} for $k \geq 3$.

The clique graph K(G) of G is the intersection graph of the collection of maximal cliques of G. If H = K(G), we say that G is a clique-inverse graph of H. Given a family \mathcal{F} of graphs, the family of clique-inverse graphs of \mathcal{F} is defined as

$$K^{-1}(\mathcal{F}) = \{G | K(G) \in \mathcal{F}\}.$$

In [6], Hedetniemi and Slater presented characterizations for clique graphs of triangle-free graphs, bipartite graphs, and trees:

Theorem 1 [6] Let G be a graph. Then $G \in K(\mathcal{F})$ if and only if $K(G) \in \mathcal{F}$ and any two distinct maximal cliques of G have at most one vertex in common, where \mathcal{F} is one of the following families: triangle-free graphs, bipartite graphs, or trees.

Let \mathcal{I}_k be the family of graphs with the following property: any two distinct maximal cliques of a graph in \mathcal{I}_k have at most k vertices in common. Then Hedetniemi and Slater's result can be rewritten as

$$K(\mathcal{F}) = K^{-1}(\mathcal{F}) \cap \mathcal{I}_1,$$

where \mathcal{F} is one of the families cited in the above theorem. Although the problem of characterizing clique graphs of certain families has been studied for several cases, e.g. [1, 2, 5, 6, 7, 11, 15], much less is known about the corresponding inverse problem, which can be stated as follows: given a family \mathcal{F} of graphs, characterize $K^{-1}(\mathcal{F})$, called the family of *clique-inverse graphs* of \mathcal{F} . In this work, characterizations are described for clique-inverse graphs of bipartite graphs, chordal bipartite graphs, and trees. The characterizations lead to polynomial time algorithms for solving the corresponding recognition problems.

Clique-inverse graphs were the subjects of [9] and [12]. They are also called *roots* (relative to the clique operator), see e.g. [10]. Clique-inverse graphs of complete graphs are called *clique-complete*. A characterization of the minimal clique-complete graphs with no universal vertex (a vertex adjacent to all other vertices of the graph) has been formulated in [9]. It corresponds to a description of the minimal clique-complete graphs whose maximal cliques do not satisfy the Helly property. In [13], characterizations for clique-inverse graphs of triangle-free graphs and K_4 —free graphs are presented in terms of forbidden subgraphs.

The following result is a characterization for clique-inverse graphs of triangle-free graphs. It will be used later:

Theorem 2 [13] G is a clique-inverse graph of a triangle-free graph if and only if G does not contain as an induced subgraph any of the following graphs: $K_{1,3}$, 4-fan, 4-wheel (see Figure 1).

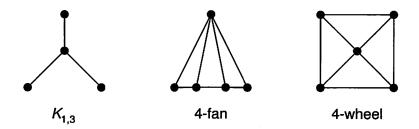


Figure 1: Forbidden subgraphs for clique-inverse graphs of triangle-free graphs.

2 The characterizations

In this section we give complete characterizations for the situations in which K(G) is bipartite, chordal bipartite, or a tree. We begin by

analyzing the case in which K(G) is bipartite. The characterization will be formulated in terms of a list of forbidden subgraphs.

Any bipartite graph is triangle-free. Thus, $K^{-1}(BIPARTITE)$ is contained in $K^{-1}(TRIANGLE - FREE)$.

Theorem 3 A graph G is a clique-inverse graph of a bipartite graph if and only if G does not contain as an induced subgraph any of the following: $K_{1,3}$, 4-fan, 4-wheel, and C_{2k+5} (for all $k \geq 0$).

Proof. (\Rightarrow): Assume by contradiction that G is a clique-inverse graph of a bipartite graph and G contains $S = C_{2k+5}$ as an induced subgraph. Write $S = u_0u_1 \dots u_pu_0$, where p = 2k+4, $k \geq 0$. Clearly, there exists a collection $\mathcal{M} = \{M_0, M_1, \dots, M_p\}$ of maximal cliques of G such that each edge $e_i = \{u_i, u_{i+1}\}$ of S lies in exactly one of the cliques in \mathcal{M} , say e_i lies in M_i (indices are taken circularly in the range $0 \dots p$). Note that $u_{i+1} \in M_i \cap M_{i+1}$, that is, M_i and M_{i+1} intersect. Thus, $M_0M_1 \dots M_pM_0$ is an odd cycle in K(G). This is a contradiction, since K(G) is bipartite. On the other hand, by Theorem 2, if G contains either a 4-wheel, a 4-fan, or $K_{1,3}$ as an induced subgraph, then K(G) contains a triangle, another contradiction.

(\Leftarrow): Assume by contradiction that G does not contain any of the graphs listed in the statement of the theorem as an induced subgraph, and that G is not a clique-inverse graph of a bipartite graph. Then, there exists a chordless odd cycle $C = M_0 M_1 \dots M_{2p} M_0$ in K(G), where $p \ge 1$ and each M_i is a distinct maximal clique of G. Choose G for which G is minimum. There are two possible cases:

Case 1: p = 1. Then, K(G) contains a triangle. This implies, by Theorem 2, that G contains either a 4-wheel, a 4-fan, or $K_{1,3}$ as an induced subgraph, a contradiction.

Case 2: p > 1. This situation is depicted in Figure 2 (for p = 2). Let $u_i \in M_i \cap M_{i+1}$, where indices are taken circularly in the range $0 \dots 2p$. Note that each u_i belongs to no maximal cliques of G other than M_i and M_{i+1} . Otherwise, if u_i also belongs to a maximal clique M distinct from M_i and M_{i+1} , then K(G) contains a triangle, a contradiction - since the cycle $C = M_0 M_1 \dots M_{2p} M_0$ in K(G) has been taken for p > 1 minimum. Thus, the cycle $C_G = u_0 u_2 \dots u_{2p} u_0$ in G is chordless, since the existence of a chord linking non-consecutive vertices u_k and u_j in C_G would imply the existence of a new maximal clique M containing u_k and u_j , distinct from the cliques in the

multiset $\{M_k, M_{k+1}, M_j, M_{j+1}\}$. Thus, C_G is a chordless odd cycle with $2p+1 \geq 5$ vertices, which contradicts the assumption that G does not contain C_{2k+5} , $k \geq 0$, as an induced subgraph. \square

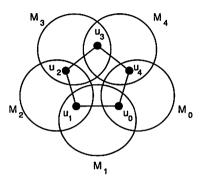


Figure 2: Case 2 of Theorem 3, for p = 2.

In order to characterize clique-inverse graphs of chordal bipartite graphs, we employ an additional definition. Let $C = v_0v_1 \dots v_kv_0$ $(k \geq 3)$ be a cycle in a graph G. We say that C admits an even division if there exists a vertex $w \in G \setminus C$ which is adjacent to four distinct vertices $v_i, v_{i+1}, v_j, v_{j+1}$ of C such that j - (i+1) is even, that is, the path $v_{i+1}v_{i+2}\dots v_j$ has an even number of edges. The indices are taken circularly in the range $0 \dots k$. See Figure 3.

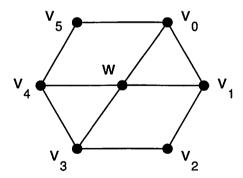


Figure 3: The cycle $v_1v_2v_3v_4v_5v_6v_1$ admits an even division.

The next theorem characterizes $K^{-1}(CHORDAL\ BIPARTITE)$ in terms of $K^{-1}(BIPARTITE)$:

Theorem 4 A graph G is a clique-inverse graph of a chordal bipartite graph if and only if $G \in K^{-1}(BIPARTITE)$ and every chordless even cycle of G with at least six vertices admits an even division.

Proof. (\Rightarrow): Assume that G is a clique-inverse graph of a chordal bipartite graph, that is, K(G) is chordal bipartite. Clearly, $G \in K^{-1}(BIPARTITE)$. Now, let $C = v_0v_1 \dots v_{2k-1}v_0$ be a chordless even cycle of G with $k \geq 3$. Let M_i be a maximal clique of G containing the edge $\{v_i, v_{i+1}\}$, where indices are taken circularly in the range $1 \dots 2k-1$. It is clear that $M_0M_1 \dots M_{2k-1}M_0$ is a cycle in K(G), since $v_i \in M_{i-1} \cap M_i$. Assume by contradiction that G does not admit an even division. Then $M_i \cap M_j = \emptyset$ for non-consecutive indices i and j such that j-(i+1) is even. Observe that $M_i \cap M_j = \emptyset$ also holds for non-consecutive i and j such that j-(i+1) is odd, since otherwise K(G) would contain an odd cycle, contradicting K(G) to be bipartite. It follows that $M_0M_1 \dots M_{2k-1}M_0$ is chordless, $k \geq 3$. This contradicts the fact that K(G) is chordal bipartite.

Assume that $G \in K^{-1}(BIPARTITE)$ and every chordless (⇐): even cycle of G with at least six vertices admits an even division. Then, K(G) is bipartite. Now, let us show that K(G) does not contain an induced subgraph isomorphic to C_{2k} , for $k \geq 3$. Assume by contradiction that $C = M_0 M_1 \dots M_{2k-1} M_0$ is a chordless cycle in K(G) for $k \geq 3$. Then, there exists a cycle $C_G = v_0 v_1 \dots v_{2k-1} v_0$ in G such that the edge $\{v_i, v_{i+1}\}$ lies in the maximal clique M_i , $0 \le i \le 2k-1$, where i is taken circularly in the range $0 \dots 2k-1$. By the assumption, C_G admits an even division. Therefore, let $w \in$ $G \setminus C$ adjacent to four distinct vertices $v_i, v_{i+1}, v_i, v_{i+1}$ of C such that j-(i+1) is even. Observe that v_i belongs to no maximal cliques other than M_{i-1} and M_i , for otherwise K(G) would contain a triangle. Since w, v_i , and v_{i+1} belong to a same maximal clique, it follows that w belongs to at least one of the cliques M_{i-1} and M_i . Analogously, w belongs to at least one of the cliques M_{i-1} and M_i . Thus, some clique of the set $\{M_{i-1}, M_i\}$ intersects at least one clique of the set $\{M_{j-1}, M_j\}$. Since j - (i+1) > 0, it follows that there exist two intersecting maximal cliques with non-consecutive indices in the cycle $C = M_0 M_1 \dots M_{2k-1} M_0$. This is a contradiction, since C has been assumed to be chordless. \square

To conclude this section, let us examine the family $K^{-1}(TREE)$. The following definition will be employed: a *domino* is a graph where every vertex belongs to at most two distinct maximal cliques [8].

Theorem 5 A graph G is a clique-inverse graph of a tree if and only if G is a chordal domino.

Proof. (\Rightarrow): Assume by contradiction that G is a clique-inverse graph of a tree and G is not chordal, and let $v_0v_1 \ldots v_kv_0$ be a chord-less cycle in G with $k \geq 3$. Then there exist k+1 distinct maximal cliques M_0, M_1, \ldots, M_k in G such that the edge $\{v_i, v_{i+1}\}$ lies in M_i and M_i intersects M_{i+1} , where the indices are taken circularly in the range $0 \ldots k$. This implies that $M_0M_1 \ldots M_kM_0$ is a cycle in K(G). But this is a contradiction, since K(G) is a assumed to be a tree.

Assume now that G is a clique-inverse graph of a tree and G contains a vertex v belonging to more than two maximal cliques of G. Then it follows that the maximal cliques of G containing v induce a clique of size strictly greater than two in K(G). This is another contradiction, since K(G) is assumed to be a tree.

(\Leftarrow): Assume by contradiction that G is a chordal domino and K(G) is not a tree. Let $M_0M_1 \ldots M_kM_0$, $k \geq 2$, be a cycle in K(G). There are two possible cases.

Case 1: k = 2.

Let $R = M_0 \cap M_1 \cap M_2$. It is clear that $R = \emptyset$, since every vertex of G belongs to at most two maximal cliques. Let $v_{01} \in M_0 \cap M_1$, $v_{02} \in M_0 \cap M_2$, and $v_{12} \in M_1 \cap M_2$. Observe that v_{01} , v_{02} , and v_{12} induce a triangle in G. Therefore, there exists a maximal clique M in G containing v_{01} , v_{02} , and v_{12} . Clearly, $M \neq M_0$, since $v_{12} \in M$ and $v_{12} \notin M_0$. Analogously, $M \neq M_1$. This implies that v_{01} belongs to M_0 , M_1 , and M, contradicting the fact that every vertex of G belongs to at most two maximal cliques.

Case 2: k > 2.

Let $v_i \in M_i \cap M_{i+1}$, where $0 \le i \le k$ and indices taken circularly in the range $0 \dots k$. Then, $C = v_0 v_1 \dots v_k v_0$ is a cycle in G. The v_i 's are distinct, for otherwise, if $v_i = v_j$ for $i \ne j$, then v_i would belong to

all the cliques in the multiset $\{M_i, M_{i+1}, M_j, M_{j+1}\}$, which contains at least three distinct elements. Since G is chordal, C has a chord joining v_r and $v_{(r+2) \mod k}$, for some r in the range $0 \ldots k$. Thus, v_r , v_{r+1} , and v_{r+2} induce a triangle in G. This implies that there exists a maximal clique M in G containing these three vertices. Clearly, $M \neq M_r$, since $v_{r+1} \in M$ and $v_{r+1} \notin M_r$. Analogously, $M \neq M_{r+1}$. Thus, v_r belongs to M_r , M_{r+1} , and M. This contradicts the fact that every vertex of G belongs to at most two distinct maximal cliques. \square

Corollary 6 Let G be a graph. Then, G is a clique-inverse graph of a tree if and only if G does not contain as an induced subgraph any of the following graphs: $K_{1,3}$, 4-fan, 4-wheel, C_k (for all $k \geq 4$).

Proof. If $G \in K^{-1}(TREE)$, then G is a clique-inverse graph of a triangle-free graph. Therefore, by Theorem 2, G does not contain as an induced subgraph any of the following graphs: $K_{1,3}$, 4-fan, 4-wheel. Moreover, by Theorem 5, G is chordal, and thus the first part follows. Conversely, if G does not contain $K_{1,3}$, 4-fan, 4-wheel, or C_k ($k \geq 4$) as an induced subgraph, then G is chordal. Moreover, by Theorem 2, K(G) contains no triangle, which implies that each vertex of G can belong to at most two distinct maximal cliques, that is, G is a domino. Thus, by Theorem 5, G is a clique-inverse graph of a tree. \Box

3 Algorithms

We start this section by observing that if K(G) has bounded clique number, then |V(K(G))| is O(n), that is, the number of maximal cliques of G is linearly bounded.

Lemma 7 [14] Let G be a connected graph. If $\omega(K(G)) \leq r$ for a positive constant r, then $|V(K(G))| \leq rn$.

Proof. Observe that any vertex v of G may belong to at most r maximal cliques, since otherwise the cliques of G containing v would correspond to a clique of size at least r+1 in K(G), a contradiction.

Therefore, the number of maximal cliques of G is at most rn, that is, $|V(K(G))| \leq rn$.

A consequence of the above lemma is the fact that clique-inverse graphs of bipartite graphs have few maximal cliques.

Corollary 8 Let G be a connected graph. If K(G) is bipartite then G contains at most 2n maximal cliques.

By using the above observations, we describe below polynomialtime recognition algorithms for the families focused in this work.

Let G be a graph. In order to decide whether or not K(G) is bipartite, first check whether G contains at most 2n maximal cliques by applying the algorithm in [16] to \overline{G} , which generates all the maximal cliques of G with delay O(nm), where m = |E(G)|. This task takes $O(n^2m)$ time. If G has more than 2n maximal cliques, then the answer to the question 'Is G in $K^{-1}(BIPARTITE)$?' is clearly 'no'. Otherwise, construct K(G) by taking the maximal cliques generated by the algorithm. This task takes O(nm) time, since G has at most 2n maximal cliques, and each intersection test between two cliques takes O(m) time. Finally, verify whether K(G) is bipartite in O(m) time (recall that |V(K(G))| is O(n)). Therefore, the entire procedure answers the question 'Is G in $K^{-1}(BIPARTITE)$?' in polynomial time.

In order to decide whether K(G) is chordal bipartite, apply a similar algorithm. The graph K(G) can be constructed in polynomial time. In addition, K(G) can be recognized as a chordal bipartite graph also in polynomial time [4].

Finally, one may use the characterization of Theorem 5 to verify whether K(G) is a tree. Checking chordality and recognizing whether G is a domino can be done in polynomial time.

References

[1] H.-J. Bandelt and E. Prisner. Clique graphs and Helly graphs. J. Comb. Theory, Series B 51, 34-45 (1991).

- [2] A. Brandstädt, F. F. Dragan, V. D. Chepoi, and V. I. Voloshin. Dually chordal graphs. SIAM J. Discrete Math. 11, 437-455 (1998).
- [3] R. C. Hamelink. A partial characterization of clique graphs. *Journal of Combinatorial Theory* 5, 192–197 (1968).
- [4] P. L. Hammer and F. Maffray and M. Preissmann. A characterization of chordal bipartite graphs. Tech. Rep. 16-89, Rutgers Center for Operations Research, New Brunswick, New Jersey 08903 (april, 1989).
- [5] S. T. Hedetniemi. Graphs of (0, 1)—matrices. In: M. Capobianco, J. B. Frechen, and M. Krolik, eds., Recent Trends in Graph Theory 151–172. Springer-Verlag, Berlim (1971).
- [6] S. T. Hedetniemi and P. J. Slater. Line graphs of triangleless graphs and iterated clique graphs. Lecture Notes in Mathematics 303, 139-147 (1972).
- [7] B. Hedman. Clique graphs of time graphs. J. Combin. Theory Ser. B 37, 270-278 (1984).
- [8] T. Kloks, D. Kratsch, and H. Müller. Dominoes. Proceedings of WG'94, E.W. Mayr, G. Schmidt, G. Tinhofer, (eds.), Springer-Verlag, Berlin, LNCS 903, 106-120 (1995).
- [9] C. L. Lucchesi, C. P. Mello, and J. L. Szwarcfiter. On clique-complete graphs. *Discrete Mathematics* 183, 247–254 (1998).
- [10] E. Prisner. *Graph Dynamics*. Pitman Research Notes in Mathematics 338, Longman, London 1995.
- [11] E. Prisner and J. L. Szwarcfiter. Recognizing clique graphs of directed and rooted path graphs. *Discrete Applied Mathematics*, 94, 321–328 (1999).
- [12] F. Protti. Classes de grafos clique-inversos. PhD Thesis, Universidade Federal do Rio de Janeiro (1998). In portuguese.
- [13] F. Protti and J. L. Szwarcfiter. Clique-inverse graphs of K_3 -free and K_4 -free graphs. Tech. Rep. NCE 05/99, NCE/UFRJ, Rio de Janeiro, Brazil (1999). Submitted.

- [14] F. Protti and J. L. Szwarcfiter. On clique graphs with linear size. Tech. Rep. NCE 07/99, NCE/UFRJ, Rio de Janeiro, Brazil (1999). Submitted.
- [15] J. L. Szwarcfiter and C. F. Bornstein. Clique graphs of chordal and path graphs. SIAM J. Discrete Math. 7, 331-336 (1994).
- [16] S. Tsukiyama, M. Ide, H. Arujoshi, and H. Ozaki. A new algorithm for generating all the maximal independent sets. SIAM J. Computing 6, 505-517 (1977).