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ABSTRACT. We introduce the concept of equal chromatic par-
tition of networks. This concept is useful for deriving lower
bounds and upper bounds for performance ratios of dynamic
tree embedding schemes that arise in a wide range of treestruc-
tured parallel computations. We provide necessary and suffi-
cient conditions for the existence of equal chromatic partitions
of several classes of interconnection networks which include X-
Nets, folded hypercubes, X-trees, n-dimensional tori and k-ary
n-cubes. We use the pyramid network as an example to show
that some networks do not have equal chromatic partitions, but
may have near-equal chromatic partitions.

1 Introduction

Corloring all nodes of a graph with colors such that no two adjacent nodes
have the same color is called the vertez (or node) coloring (or simply color-
ing). A graph that requires k different colors for its vertex coloring, and no
less, is called a k-chromatic graph, and the number & is called the chromatic
number of the graph. A closely related concept is graph partition. A graph
is p-partite if its node set can be partitioned into k disjoint subsets such
that no two nodes in any subset are adjacent. Such a partition is called a
p-partition. Clearly, a graph G is p-partite if and only if p > k, where k
is the chromatic number of G. A p-partition of a graph G is a chromatic
partition of G if p = k. Graph coloring and partitioning have many applica-
tions in solving practical problems arising in, for instances, coding theory,
state reduction of sequential circuits and VLSI layout.

In this paper, we consider a partition problem which has applications in
interconnection networks of parallel computer systems. An interconnection
network is characterized by a graph with its nodes and edges represent-
ing processors and communication channels connecting pairs of processors,
respectively, in a parallel computer system. An interconnection network
(or network for short) is bipartite if and only if it does not contain an
odd cycle. This simple fact has been used to partition networks into two
classes: bipartite and non-bipartite. Example bipartite networks include
trees, hypercube, n-dimensional mesh, mesh of trees and the star graph.
In this paper, we show the chromatic numbers of several useful networks
are greater than 2. We are interested in the following network chromatic
partition problem: find a chromatic partition of a given network such that
the sizes of the subsets are as equal as possible. We call a k-partition of an
n-node graph G an equal k-partition of G if the k subsets have the same
size. Whenever possible, we want to find an equal chromatic partition of
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a given network. It is known that the hypercube and the star graph have
equal chromatic partitions. We consider the partitions of several classes
of interconnection networks which include X-Nets, folded hypercubes, X-
trees, n-dimensional tori and k-ary n-cubes. We provide necessary and
sufficient conditions for the existence of equal chromatic partitions of these
networks. We use the pyramid network as an example to show that some
networks do not have equal chromatic partitions, but may have near-equal
chromatic partitions.

The network chromatic partition problem considered here has applica-
tions in optimizing performance ratios of dynamic tree embeddings into
a given network. Dynamic tree embedding (DTE) schemes arise in tree-
structured parallel computations such as divide-and-conquer algorithms,
branch-and-bound computation, backtrack search algorithms, game-tree
evaluation, functional and logical programs. In these applications the shape
and the size of the tree representing a tree-structured computation are un-
predictable at compile-time, and the tree grows during the course of compu-
tation. A DTE algorithm is an on-line algorithm that maps processes that
are executable in parallel to processors. Several DTE algorithms have been
developed and analyzed (e.g. [1, 3, 4, 6, 8, 9, 12, 10, 11]). In [10], lower
bounds for performance ratios of DTEs on bipartite networks are given.
In [11], the network partition concept is generalized to p-partite networks,
and upper bounds for performance ratios of DTEs on such networks are
derived. The class of DTE algorithms given in [11] are based on the equal
p-partition, p > k, where k is the chromatic number of the graph. For
different value p, these algorithms have different performances. Since an
equal chromatic partition can be used to construct other equal partitions,
our partition methods can be used as subalgorithms of the class of DTE
algorithms given in [11]. Furthermore, our results can be combined with
the analysis of [11] to assess the performances of these DTE algorithms on
the networks discussed in this paper. We believe that the concept of equal
chromatic network (graph) partition may have other applications.

2 Chromatic Partitions

In this section, we present our findings on chromatic partitions of several
representative classes of interconnection networks. Our goal is to find such
partitions with node subsets of sizes as equal as possible.

2.1 X-Nets

First, we consider the X-Net interconnection network used in the MasPar
parallel computer. An m x n X-Net is an m x n two-dimensional mesh
with additional diagonal links in each cycle of four nodes. Since it contains
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many 4-cliques, it cannot be k-partite such that ¥ < 4, and furthermore,
it is easy to see that the X-Net is not planar. However, we can use four
colors ¢;, 0 < ¢ < 3, to color its nodes in the way shown in Figure 1. It is
simple to verify the following claim:

Theorem 1. The chromatic number of an m x n X-Net, where m > 2 and
n > 2, is 4, and such an XNet has an equal chromatic if and only if mn is
a multiple of 4.
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Figure 1. Four coloring of an 4 x 5 X-Net
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2.2 Folded Hypercubes

An n-dimensional folded hypercube [2] is a graph of 2" nodes, each being
labeled by a unique n-bit binary number. In such a graph, two nodes are
connected by an edge if and only if either their binary labels are distinct in
exactly one bit position, or the label of one node is the complement of the
label of the other. An n-dimensional folded hypercube, which has degree
(n + 1), contains an n-dimensional hypercube, which has degree n, as a
subgraph. The diameter of the n-dimensional folded hypercube is half of
the diameter of the n-dimensional hypercube. Unlike the n-dimensional
hypercube, the n-dimensional folded hypercube may not be bipartite.

We say that a node in the n-dimensional folded hypercube has an even
(resp. odd) parity if its label contains an even (resp. odd) number of 1s.
Divide nodes in the n-dimensional folded hypercube into two subsets V’
and V" such that V’ contains all nodes of even parity, and V" contains the
remaining nodes. Clearly, |V}| = |V;|. If n is odd, then, by the definition
of the n-dimensional folded hypercube, two nodes are not connected by
an edge if they have the same parity. Therefore, the n-dimensional folded
hypercube is bipartite if n is odd. If n is even, we partition the nodes into
V'’ and V" as in the case that n is odd. Clearly, two nodes in V’ (resp. V")
are connected by an edge if and only if the label of one is the complement of
the label of the other {note: the labels of both nodes have the same parity).
Then, we can partition V’ (resp. V") into two subsets Vp and V) (resp. V2
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and V3) of equal size such that a bijection exists between them. That is,
for every node u in V; (resp. V) there is exactly one node v in V; (resp.
V3) such that the label of v is the complement of the label of u, and vice
versa. An example is shown in Figure 2. We summarize these findings by
the following statement.

Theorem 2. The chromatic number of the n-dimensional folded hypercube
is 2, if n is odd, and 4, if n is even. Furthermore, the n-dimensional folded
hypercube has an equal chromatic partition.

00

1 NN 2
L NN N

Figure 2. A 4-partition of an 4-dimensional folded hypercube. Each
node has a 4-bit label. The single digit label i of a node indicates
that the node belongs to subset V; of a 4-partition

2.3 Tori and k-ary n-Cubes

In this and subsequent subsections, we prove that the chromatic numbers
of several classes of networks are equal to 3. For this purpose, we define
three bijection functions f;, 0 < i < 2, on a set C = {cp, ¢1, c2} of three
distinct colors:

Ja(co) = Clatb) mod 3 (1)

The k1 x k2... x k, n-dimensional torus is a graph G = (V, E) that
contains [;_, k4 nodes (kg > 2 for d = 1,2,...,n). Each node a is labeled
by a unique n-tuple {a;,az,...,a,), 0 < ag < kg — 1. Two nodes a and
b are connected by an edge if and only if either ag = by + 1 (mod kq) or
ag =bg—1 (mod kg) for some d, and a; = b, for [ #d. The ky x ky...x k,
n-dimensional torus can also be defined recursively as follows. A ring of size
k1 with nodes labeled (0), (1),..., (ki — 1) such that node (i) and node ()
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are connected by an edge if and only if eitheri =35+1 mod kjori=35-1

(mod k;). The k;y x k3 ... x ky,, n-dimensional torus G is constructed using
kn copies Go,G1,...,Gy, -1 of the k; x ka... X kn—1 (n — 1)-dimensional
torus, and new edges connecting nodes from different copies. Each node in
G is labeled by an n-tuple (a1, as, . .., an). The connectivity of nodes in each
copy G; follows the definition of the the k; x ks ...xkn,—; (n—1)-dimensional
torus on the first n — 1 elements (i.e. (n — 1)-prefix) of the n-tuples. The
connectivity of two nodes a = (a1,as2,...,0,) and b= (b, b2,...,bs) from
two different copies follows the definition of a ring of size k,, on the rightmost
elements of the n-tuples. The added edges that connect nodes of different
copies of the (n — 1)-dimensional tours are called the n-dimensional edges.

Theorem 3. The chromatic number of the k; X ks ... X ky, n-dimensional
torus is 2 if all kg’s, 1 < d < n, are even, and 3, if at least one of ky’s is
odd. The ki x k... X k, n-dimensional torus has an equal 2-partition if
and only if all k4’s are even, and it has an equal 3-partition if and only if
at least one of kg’s is a multiple of 3.

Proof: Clearly, the k; X k»... X k, n-dimensional torus has chromatic
number 2 if and only if that all k4, 1 < d < n, are even since all its cycles
are of even size. We show that if all k4, 1 < d < n, are even, the torus has
an equal bipartition. Define

n
Vo = {(al,az,-.-,an) [1€aa< ka,zad even},

d=1

and

n
Wi= {(al,az,---.an) |1<aq Skd,zad Odd}-

d=1
We claim that Vp and V; give a partition. To see this, consider two nodes
(a1,a2,...,a,) and (by, b2, ...,bs) in Vg (resp. V7). Assume that these two
nodes are connected by an edge, i.e., the distance between them is one.
Since {a1,a2,...,a,) # {b1,b2,...,bn), there exists d such that ag # bq,
either ag = bg+ 1 mod kg or ag = bg — 1 mod kg4, and ey = bg for all
d’ # d. This implies that (e +az + --- + a4) and (by + by + - - - + by) have
different parity, and one of the two nodes must be in V; (resp. Vp). This is
a contradiction to the assumption that both are from V; (resp. V). Now,
let us look at the sizes of Vp and V;. It is well known that an n-dimensional
torus has a Hamiltonian cycle. It is also clear that if a node is in Vp (resp.
V1), then its neighbors are in V; (resp. Vp). Therefore, the nodes along this

Hamiltonian cycle alternately belong to V5 and V;. Hence, |Vp| = |V4].

If one of kg’s is odd, then the k; x ks... X k, torus is not bipartite.
We show that such a graph is 3-colorable. Our proof is by induction. Let
c1, ¢1 and ¢z be three different colors. As the base, it is easy to see that
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1-dimensional torus (a ring) is 3-colorable. Let a ring of size k be denoted
by (vo,v1,...,vk—1), where v; is connected to v;,; for 0 < i < k— 1, and
v is connected to v—;. Clearly, the ring can be colored using three colors.
Suppose that any k; x k3 ...X kn—1 (n—1)-dimensional torus is 3-colorable.
We construct the k; x k3 ... x k, n-dimensional torus by making k,, copies
Go,G1,...,Gn-1 of the (n — 1)-dimensional torus, with all copies having
the same 3-coloring (i.e. the corresponding nodes in all copies have the
same color), and connecting nodes from different copies by rings of size k.
Assume that g is a known 3-coloring of a ring (vo, v1,...,vn-1) of size ky;
i.e. g(v;) is the color of node v; in the ring (refer to Figure 3(a)). Then,
we use functions fo, f1 and f, (refer to (1)) to change the node colors in
the copies as follows. If g(v;) = cj, then any node in G; with color ¢,
is reassigned a new color f;(c;). Clearly, the new colors of nodes in each
copy G; remain satisfying the 3-colorability, and all n-dimensional edges
connect nodes of different colors. Therefore, we obtain a 3-coloring of the
(n + 1)-dimensional torus (see Figure 3(b) for an example). The induction
is complete.

We show that the k; % k2... x k, n-dimensional torus has an equal 3-
partition if and only if k; for some d is a multiple of 3. If none of ky’s is a
multiple of 3, then there does not exist an equal 3-partition for the torus.
Without loss of generality, assume that k, is a multiple of 3. Consider
the inductive 3-coloring procedure described above. We construct the n-
dimensional torus by making k. copies Go, Gy, ...,Gn—1 of the (n — 1)-
dimensional torus, with all copies having the same 3-coloring and each of
the three colors ¢, ¢; and ¢y being used to color at least one node in each
copy. Since ky, is a multiple of 3, we can color a ring (vg, v1, . .., ¥n—1) of size
ky using the three colors alternatively as (co, ¢1, ¢z, o, €1, c2, . . ., €0, €1, C2).
Then, as before, we perform the following transformation: if g(v;) = ¢;,
then any node in G; with color ¢, is reassigned a new color fz(c,,). We

partition the k, copies of the (n — 1)-dimensional torus into % groups:

(G3m, G3m+1, Gam42), 0 < m < %2 — 1. Let the number of nodes in each
copy G that are colored with ¢, ¢; and ¢; be ng, n;, and ng3, respectively.
We count the number of nodes in each group (Gsm,Gam+1,G3m+2) that
are colored with each color after the transformation as follows: the number
of nodes in G3,, colored with ¢, ¢; and c; are ng, n; and n,, respectively;
the number of nodes in G341 colored with cp, ¢; and c; are n;, n3, and ng,
respectively; and the number of nodes in G2 colored with cg, ¢; and co
are ng, ng, and n;, respectively. Clearly, the total number of nodes colored
with each color in group (Gsm, G3m+1,G3m+2) is (no + n1 + n2), i.e. we
have an equal 3-partition of (Gam, Gam+1,G3m42). Hence, for all groups,
which form the n-dimensional torus, we obtain an equal 3-partition. O

Since the k-ary n-cube is a k-dimensional torus with k; = kg = --- =
kn, = k, all arguments in the proof of above theorem are applicable to the
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the k-ary n-cube. For the k-ary n-cube we have the following claim:

Corollary 1. The chromatic number of the k-ary n-cube is 2 if k is even,
and is 3, if k is odd. The k-ary n-cube has an equal chromatic bipartition
if and only if k is even, and it has an equal chromatic 3-partition if and
only if k is a multiple of 3.

w
(%)

"

5]
[N
[

(a) )

Figure 3. 3-coloring of a 4 x 6 torus.
{(a) The coloring of the six component rings of size 4, and the coloring of a
ring of size 6. (b) Final coloring of the torus after transformation

24 X-Trees

A useful variation of the tree structure is the X-tree [7]. An X-tree is a su-
pergraph of a complete binary tree with links added to connect consecutive
nodes on the same level of the tree from left to right (see Figure 4 for an
example). A (2™ — 1)-node X-tree has m levels, level 0 though level m —1,
with the root in level 0. We show that an X-trees have equal chromatic
partitions under certain conditions.

Theorem 4. The chromatic number of m-level X-tree, m > 1, is 3.
An m-level X-tree has an equal chromatic partition if and only if m is
even. If m is odd, it has a chromatic partition (Vp,V1,V2) such that
max{|Vo|, [Vil, |V2]} — min{|Vo|, [V1|, [V2|} = 1.

Proof: Since the m-level X-tree, m > 1, contains cycles of odd number of
nodes, it is not bipartite. We color the tree nodes using colors ¢p, ¢; and
¢z in an inductive way. If m = 2, there are three nodes in the X-tree, and
each is assigned a distinct color. If m = 3, we can color the tree nodes as in
the left subtree of the X-tree of Figure 4. Suppose we have already colored
the nodes for an X-tree T of m — 1 levels, where m > 2. The X-tree T of
m levels is constructed by adding another (m — 1)-level X-tree T” to the
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right of 77, and introducing an additional node u as the root of T. Node
u is connected to the roots of 7' and 7, and the nodes in the same level
of T" and T” are cannected following the definition of X-tree. We consider
T"” as an mirror image of 7", and the colors assigned to the nodes of T are
mapped to the nodes of T” by this reflect mapping. Then, the roots of T’
and T have the same color ¢;. We select ¢; from C — {c;} such that ¢, is
assigned to the least number of nodes of TV among the three colors, and use
c; to color u, which is the root of T' (see Figure 4 (a)). Then, for each node
of T" colored ck, we reassign it a new color fj(ck) (see Figure 4 (b)). It
is easy to verify that no two adjacent nodes in T have the same color (see
Figure 4(b)), and therefore, we obtained a 3-partition (Vp, V1, V) of T.

@) (b)

Figure 4. 3-coloring of a 4-level X-tree T.
(a) The coloring of two component 3-level X-trees 7’ and T”, and
the root of T. (b) Final coloring of T' after transformation

Now, we use this coloring scheme, as shown in Figure 4, to show that

0 if m is even,

1 if mis odd. )

max{|Vol, [Vi|, |Va[} — min{|Vo|, V1, |V2l} = {

Furthermore, if m is odd, the number of nodes with the color of the root is
one more than the number of nodes colored by each of the two remaining
colors. For m = 2 and m = 3, (2) is obviously true (for m = 3, refer to
the left subtree of three levels shown in Figure 4). Suppose that (2) is true
for m — 1 levels such that m > 2. If m is odd, then the left subtree has
an equal 3-partition. After selecting any ¢; from C — {¢;}, where ¢; is the
color of the root of T”, to color the root of T, and applying transformation
fi(cx) to the colors of all nodes in the right subtree T” of T, the number of
nodes colored c; is one more than the number of nodes colored by each of
the remaining colors in T". If m is even, then by the induction hypothesis,
the number of nodes with color ¢; in subtree 7", where ¢; is the color of the
root of 7", is one more than the number of nodes colored by each of the two
remaining colors. After selecting any ¢; from C — {¢;} to color the root of
T, and applying transformation f;(ck) to the colors of all nodes in the right
subtree T of T', the number of nodes colored with the three different colors
in T become the same. This completes the induction. The theorem directly
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follows from that fact that the number of nodes in an m-level X-tree is a
multiple of 3 if and only if m is even. O

2.5 Pyramids

The 2" x 2" pyramid network [7] consists of n + 1 levels of 2-dimensional
meshes; the mesh at level m, 0 < m < n, is of size 2™ x 2™. The node with
indices (%,7) on the 2™ x 2™ mesh is connected to the nodes with indices
(2 — 1,25 — 1), (2i — 1,25), (23,27 — 1), and (2i,27) on the 2m+1 x 2m+!
mesh. The node at level 0 is called the root of the pyramid. The 4 x 4
pyramid network is shown in Figure 5. The pyramid network is a natural
generalization of X-tree; they are closely related. It has been proven useful
for many applications. For examples, finite difference methods for solving
a system of partial differential equations, and parallel image processing.
Since the pyramid contains odd cycles, it is not bipartite.

Theorem 5. The chromatic number of the 2™ x 2™ pyramid, n > 1, is 3.

Proof: Using induction, we now show that the pyramid is 3-partite by
coloring its nodes with three colors. A 2 x 2 pyramid has five nodes, four
of them form a cycle, and the fifth node is connected to each of the four
nodes in the cycle. We can use two colors to alternatively color the nodes
along the 4-cycle, and use the third color to color the root. Suppose that
we can use three colors to color the nodes of the 2"~! x 2"~! pyramid P
such that no two adjacent nodes in P have the same color. We label the
boundary sides of P’s mesh in each level with a, b, ¢ and d in the order of
traversing the boundary of the mesh. We construct a 2™ x 2™ pyramid P’
using four copies Py, P, P; and P3 of P as follows. Py is the same as P,
P; is the mirror image of Py. Then we add two more copies P, and P; of P,
where P, is a mirror image of Py and P; is a mirror image of P;. For each
level of Py, Py, P> and Ps, except level 0, edges are added between Py and
Py, P, and P, P; and Pj3, and Py and P» to connect corresponding nodes
with the same boundary side label (a, b, c or d) to form a larger mesh. The
roots of Py, P;, P, and P; are connected as a cycle, and furthermore, a new
node u is connected to these four roots. Node u, which is the root of the
constructed 2" x 2™ pyramid P’, is assigned a color that distinct from the
color of the roots of Py, P, P, and Ps. An example of this construction is
shown in Figure 5(a). Now, at every level of P’, except the root level, there
are adjacent nodes with the same color, and all four nodes in level 1 have
the same color. Suppose the root of P’, say node u, is assigned color ¢;.
Then, for all nodes in P, and P; (including their roots), we change their
colors using functions of (1): if its original color is c;j, then its new color
is fi(c;). It is easy to verify that after this color change operation, no two
adjacent nodes in the newly constructed 2™ x 2" pyramid P’ have the same
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color, and consequently we obtain a 3-partition of the 2" x 2" pyramid P’

from a 3-partition of the 2*~1 x 2"~! pyramid P. O
0 0
0 Q—
2
p,[d d1pg
’ ] 1< ¢
N o' Mot
P20\ [b b/zéd ‘I
FOo——0, o
(a) (b)

Figure 5. 3-coloring of a 4 x 4 pyramid.
(a) The coloring of four component 2 x 2 pyramids P,, P;, P; and Ps, and
the root of P’. (b) Final coloring of P’ after transformation

Let N, denote the total number of nodes in the 2" x 2* pyramid. Clearly,
N, E":o 4%, and N,, is a multiple of 3 if and only if n + 1 is a multiple
of 3. However, any pyramid does not have an equal chromatic partition.

Theorem 6. Any pyramid does not have an equal chromatic partition.

Proof: All 3-partitions (Vp, V;, V2) of the 2" x 2 pyramid are equivalent
in the sense that the relative sizes of the three node subsets are the same
for all its 3-partitions. For brevity, we informally prove this fact. Consider
a pyramid whose root is colored with color ¢;. Then, in the next level,
the four nodes must be colored with ¢y and c; in an alternative way along
the cycle of four nodes. There are two such ways, and they are equivalent.
Then, we go to the next level, we have a similar situation: the node colors
of the previous level determines the colors of the nodes in the current level
in a unique (under isomorphism) way. Such an argument can be applied
from one level to the next level, level by level. Therefore, the relative sizes
of the three node subsets are the same for all its 3-partitions.

The 2™ x 2™ pyramid has an odd number of nodes. Suppose that the root
of the pyramid is colored with ¢;. Then, following the above arguments, the
total numbers of nodes colored with c;, ¢; and ¢, in the levels other than
the root level are all even. Consequently, the parities of the numbers of
nodes colored with three colors are not the same. Therefore, any pyramid
network does not admit an equal 3-partition. O

Let rmux/min denote the ratio ma.x{lVo|, |1,l|: |V2I}/ min{l%la 'VII) IVZI}
of a 3-partition (Vo, V}, V2) of the pyramid network. As n becomes larger,
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the ratio rmax/ min of a 3-partition (|Vol, |V1], |V2|) of the 2" x 2" pyramid
approaches 1 rapidly. For examples, for n =1, rpax/ min = 2, Which is the
largest possible; for n = 5, Tax /min = 154/147. Thus, for large n, the
2™ x 2™ pyramid has a near-equal chromatic partition.

3 Concluding Remarks

We have presented necessary and sufficient conditions for the existence of
equal chromatic partitions of several classes of interconnection networks.
We also showed that the chromatic partition for the pyramid network is
“unique”, and it does not have an equal chromatic partition. We believe
that our techniques can be used to find equal or near-equal chromatic par-
titions of other classes of networks, such as c-dimensional butterfly and
wrapped butterfly networks.

For some applications, such as the algorithms for DTE, we may use a vari-

ation of equal chrornatic partition without affecting the solutions. We may
say that a network G has an equal chromatic partition (Vp, V3, ..., Vk—1),
where k is the chromatic number of G if max{|Vo|, |Vi|, . - ., [Vk—1|}—min{| V5|,
IVil, .., |Ve-1l} < ¢, where c is a constant. It is easy to see that for any
n-node X-Net, there exists a 4-partition such that each of the four subsets
has [2] or | 2] nodes. As shown in Theorem 4, there exists a 3-partition
for any n-node X-tree such that each of the three subsets has [3] or | }]
nodes. Thus, under this new definition, all X-Nets and X-trees have equal
chromatic partitions. We conjecture that, under this new definition, all
k1 X ka ... X k, n-dimensional tori and k-ary n-cubes have equal chromatic
partitions, i.e. one can always find a chromatic partition (Vg, V1, V2) such
that max{|Vol|, [Vi|, [V2|} — min{|V], V1], [V2|} < ¢, where c is a constant.
However, if such a partition exists, its structure is not simple. For pyramid
networks the value max{|Vo|, [V1], |V2|} —min{|Vo|, [V1], |V2|} is not bounded
as the size of the pyramid network increases.
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