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Abstract

For an ordered set W = {w;, ws, - --,wx} of vertices and a ver-
tex v in a graph G, the representation of v with respect to W is
the k-vector r(v|W) = (d(v, w1), d(v,w2), - - -, d(v, wx)), where
d(z,y) represents the distance between the vertices z and y.
The set W is a resolving set for G if distinct vertices of G have
distinct representations. A resolving set containing a minimum
number of vertices is called a basis for G and the number of ver-
tices in a basis is the (metric) dimension dimG. A connected
graph is unicyclic if it contains exactly one cycle. For a uni-
cyclic graph G, tight bounds for dim G are derived. It is shown
that all numbers between these bounds are attainable as the
dimension of some unicyclic graph.
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1 Introduction

The distance d(u,v) between two vertices u and v in a connected graph
G is the length of a shortest « — v path in G. For an ordered set W =
{w1,wa, -, wr} C V(G) and a vertex v of G, we refer to the k-vector

r(v|W) = (d(v, w1),d(v, ws),- - -, d(v, wg))

as the (metric) representation of v with respect to W. The set W is called a
resolving set for G if distinct vertices of G have distinct representations. A
resolving set containing a minimum number of vertices is called a minimum
resolving set or a basis for G. The (metric) dimension dim G is the number
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of vertices in a basis for G. If dimG = k, then G is called a k-dimensional
graph.

To illustrate these concepts, we consider the graph G of Figure 1. The
ordered set W, = {v;,va} is not a resolving set for G since r(vs|W;) =
(1,1) = r(vq|W1), that is, G contains distinct vertices having the same
representation. On the other hand, Wy = {v;, v2, v} is a resolving set for
G since the representations of the vertices of G with respect to W, are

T(‘¢)1|W2) = (0, 1, 1) 1'('02|W2) = (1,0, l)
1‘(1)3|W2) = (1, 1,0) 'I'(’U4|W2) = (1,2, 1)

However, W is not a basis for G since W3 = {v1, v} is also a resolving set.
The representations for the vertices of G with respect to W3 are

r(v1|Ws) = (0,1) r(v2|Ws) = (1,0)
r(vs]Ws) = (1,1) r(va|Ws) = (1,2).

Since no single vertex constitutes a resolving set for G, it follows that W3
is a basis for G and dim G = 2. (The vertices in the basis W3 are drawn as
solid circles in Figure 1.)

(41 ]

V4 U3
Figure 1: A graph G and a basis of G

The example just presented also illustrates an important point. When
determining whether a given set W of vertices of a graph G is a resolving
set for G, we need only investigate the vertices of V(G) — W since w € W
is the only vertex of G whose distance from w is 0.

The inspiration for these concepts stems from chemistry. It is often
useful in chemistry to study the similarity (or difference) between two com-
pounds. Two chemical compounds may differ structurally, yet behave simi-
larly in certain situations. In [1] it is noted that if a set of functional groups
or atoms in two compounds have the same distance to another functional
group of atoms, then these compounds may be similar in certain instances.

A common but important problem in the study of chemical structures
is to determine ways of representing a set of chemical compounds such that
distinct compounds have distinct representations. The concepts of resolving
set and minimum resolving set have previously appeared in the literature.
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In [4] and later in [5], Slater introduced these ideas and used locating set
for what we have called resolving set. He referred to the cardinality of a
minimum resolving set in a graph G as its location number of G. Inde-
pendently, Harary and Melter [2] investigated these concepts as well, but
used metric dimension rather than location number, the terminology that
we have adopted. A more generalized metric dimension in graphs has been
studied in [3].

A formula for the dimension of trees that are not paths has been es-
tablished in [1, 2, 4] In order to present this formula, we need additional
definitions. A vertex of degree at least 3 in a tree T is called a major ver-
tex of T. An end-vertex u of T is said to be a terminal vertex of a major
verter v of T if d(u, v) < d(u,w) for every other major vertex w of T. The
terminal degree ter(v) of a major vertex v is the number of terminal ver-
tices of v. A major vertex v of T is an ezterior major vertex of T if it has
positive terminal degree. Let o(T") denote the sum of the terminal degrees
of the major vertices of T, and let ez(T) denote the number of exterior
major vertices of T'. For example, the tree T of Figure 2 has four major
vertices, namely, vy, va, v3, v4. The terminal vertices of v; are u; and us,
the terminal vertices of vs are ug, u4, and us, and the terminal vertices of
vg4 are ug and u7. The major vertex v2 has no terminal vertex and so v
is not an exterior major vertex of T'. Therefore, o(T) = 7 and ez(T) = 3.
We can now state a formula for the dimension of a tree.

Ug
U1
V1
U2 Us
U7 Ug
v
Ug V4 8 Us

Figure 2: A tree with its major vertices

Theorem A IfT is a tree that is not a path, then

dimT = o(T) — ex(T). (1)

If P, :vy,v2,+,vy is a path of order n > 2, then o(P,) = 0 = ex(FP,).
So (1) is not true for paths. Since d(v;,%) = i—1forall 1 < i < n,
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it follows that {v,} is a basis of P, and so dim P, = 1. Moreover, if G
is a connected l-dimensional graph of order n > 2, then there exists a
vertex z of G such that d(u,z) # d(v,z) for all u,v € V(G) and u # v.
Since 1 < d(u,z) < n—1 for all v € V(G) and u # z, it follows that
{d(u,z) : u € V(G)} = {1,2,---,n — 1}. So there exists a vertex y in G
such that d(z,y) = n—1 and G = P,. Therefore, for a nontrivial connected
graph G,

dimG =1 ifandonlyif G=P,. (2)

A connected graph with exactly one cycle is called a unicyclic graph.
Since every two consecutive vertices of the cycle Cy, (n > 3) form a resolving
set for Cy,, it follows from (2) that

dimC, =2 for alln > 3. (3)

Every unicyclic graph that is not a cycle is decomposable into a cycle and
one or more trees, the dimensions of which are known. It is the goal of this
paper to present tight bounds for the dimension of a unicyclic graph G that
is not a cycle in terms of the dimensions of the cycle and the trees rooted
on the cycle in G as well as the structure of G.

2 On the Dimension of Special Types of
Graphs

Every unicyclic graph that is not a cycle can be obtained from a cycle and
one or more trees by identifying some specified vertices on the cycle and on
the trees. For example, the unicyclic graph G of Figure 3 is obtained from
the cycle C4 and the rooted tree T' by identifying the vertices v, in Cy4 and
the root v9 in T'.

In order to establish the relationship between the dimension of a uni-
cyclic graph and those of its cycle and rooted trees, we need additional defi-
nitions. Suppose that G and G5 are nontrivial connected graphs with v; €
V(G1) and v2 € V(G2). Then the identification graph G = G[G1, G2, v1,v2)
is obtained from G; and G3 by identifying v, and v,. Therefore, v; = vy in
G. Such an example is shown in Figure 3. We first present a lemma that
will be used on several occasions.

Lemma 2.1 Let G, and Gy be nontrivial connected graphs with v, €
V(Gl) and vy € V(Gz) and let G = G[Gl,Gg,vl,‘Ug]. IfW =W uWw,
is a resolving set of G, where W; C V(G;) (i =1,2), then W; U {v;} is a
resolving set of G; for i =1,2.

Proof. We show that W), U{v;} is a resolving set of G;. Suppose, to the
contrary, that this is not the case. Then there exist distinct vertices u and
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(5] V2

Figure 3: A unicyclic graph G obtained from a cycle and a rooted tree

v in V(G}) such that r(u|W; U {v1}) = r(v|W; U {v1}). This implies that
dg, (v, w) = dg, (v, w1) for all w; € Wi and dg, (4, v1) = dg, (v, v1). Then
dg(u, ws) = dg, (u,v1) +dg,(v2, w2) = dg, (v,v1) +d, (v2, w2) = da(v, w2)
for all wo € Wy and so r(u|Wa) = r(v|Ws). Therefore, r(u|W, UW2) =
r(v]W; U W2), contradicting the fact that W = W) U W; is a resolving set
of G. Therefore, W; U {v;} is a resolving set for G;. Similarly, W> U {v2}
is a resolving set for G. n

As an immediate consequence of Lemma 2.1, the following corollary
gives a lower bound for the dimension of G = G[G1, G2, v1, ve] in terms of
dim G, and dimG,.

Corollary 2.2 Let Gy and G2 be nontrivial connected graphs with vy €
V(G1) and va € V(G2) and let G = G[G1,G2,v1,v2). Then

dim(G) > dim Gy + dimG, — 2.

Proof. Assume, to the contrary, that dimG < dim Gy + dim G2 — 3. Let
W = W; U W> be a basis of G, where W; C V(G;), i = 1,2. Then either
[Wi| < dim Gy — 2 or |[Wa| < dim G2 — 2, say the former. By Lemma 2.1,
Wi U {v} is a resolving set of G with cardinality at most dimG; — 1,
which is impossible. .

The lower bound in Corollary 2.2 is sharp. For example, let G} = Cy,
G, = Cs, and let G be obtained from G; and G2 by identifying a vertex
v; in Gy and a vertex vy in Gy (see Figure 4). Since dimCy =dimCs = 2
and dimG = 2 (with a basis indicated in each of these graphs), it follows
that dimG = 2 = dimG; +dim G2 — 2.
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G, : Ol Gy : <1

U1 = U2

Figure 4: A graph G with dimG = dimG; +dimG, — 2

For a set W of vertices of G, we define a relation R on V(G) with
respect to W by u R v if there exists a € Z such that r(v|W) = r(u|W) +
(a,a,---,a). Then R is an equivalence relation on V(G). Let [u]w denote
the equivalence class of u with respect to W. Then

v € [ulw if and only if r(v|W) = r(u|W)+ (a,qa,:---,a) (4)
for some a € Z. Next we present a lemma whose routine proof is omitted.

Lemma 2.3 Let G be a nontrivial connected graph with u,v € V(G) and
let W be a nonempty set of vertices of G.

(a) If [vlw # [ulw in V(G), then r(z|W) # r(y|W) for all z € [v]w and
yE [u]w

() If [v]lw = {v} for all v € V(G), then W is a resolving set for G.

The following lemma provides a way of constructing a resolving set of
G = G[G1, G2, v1,v7] from resolving sets of G; and G2 that have certain
prescribed properties. First, we need an additional definition. If a vertex v
of a graph G belongs to some basis of G, then v is called a basis verter of

G.

Lemma 2.4 Let G, and G2 be nontrivial connected graphs with v, €
V(Gi) and vo € V(G3) and let G = G[G1,G2,v1,v2]. Suppose that G,
contains a resolving set Wy such that [vi]lw, = {v1} in G;.

(a) If vo is not a basis vertex of Ga, then W = W1 U B3 is a resolving set
for G for a basis By of G.
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(b) Ifvy is a basis vertex of Ga, then W = Wy U(Ba — {vs2}) is a resolving
set for G, where Bs is any basis for Gy containing vs.

Proof. We first verify (a). Let u,v € V(G) — W and u # v. We show
that r(u|W) # r(v|W). We consider three cases.

Case 1. u,v € V(G1). Then r(ulW)) # r(v|W,) as W, is a resolving
set for Gy, implying that r(u|W) # r(v|W).

Case 2. u,v € V(G2). Similarly, since B; is a basis for G, it follows
that r(u|By) # r(v|B2) and so r(u|W) # r(v|W).

Case 3. Assume that one of u and v belongs to V(G,) and the other
belongs to V(G3), say u € V(G,) and v € V(G,). We may assume that
that 4 # vy in G and v # vy in Ga. Since [v1]w, = {v1}, it follows that
u ¢ [vi]w, and so r(u|Wi) # r(v1|W1) + (a,a,--+,a) for all a € Z. On
the other hand, r(v|W;) = r(v,|Wi) + (b,b,- - -, b), where b = d(v1,v). So
r(u|Wh) # r(v|W1), implying that »(u|W) # r(v|W). Therefore, W is a
resolving set of G and so (a) is true.

We now verify (b). If v; € Wy, then W = Wy U (B2 — {v2}) = W1 U B,
in G. Then W is a resolving set of G by (a). So we assume that v; ¢ W,.
Let u,v € V(G)~ W and u £ v. If (1) u,v € V(G1) or (2) v € V(G;) and
v € V(G2), then a similar argument to that employed in Cases 1 and 3 in the
proof of (a) shows that r(u|W;) # r(v|W1) and so r(u|W) # r(v|W). Hence
we assume that u,v € V(G2). Let By = {w;y,ws, -, wx}, where w; = v
and z € Wi. Let W’ = {z,ws,---,wx} C W. Observe that d(v,z) =
d(v,ve) + d(ve, ) in G. So r(u|W’) = r(u|B,) + (d(v2,2),0,0,---,0) and
r(v|W’) = r(v|B2) + (d(v2,2),0,0,:-+,0). Since B; is a basis for Gy, it
follows that r(u|Bz) # r(v|B2) and so r(u|W’) # r(v|W’), implying that
r(u|W) # r(v]W). Therefore, W is a resolving set of G. ]

For a nontrivial connected graph G, define a binary function fg :
V(G) = Z by

fo(v) = dimG if v is not a basis vertex of G (5)
W= dmG -1 otherwise.

The cardinality of the resolving set W in both (a) and (b) of Lemma 2.4
is [W| = [W1U (B2 — {v2})| = [W1| + fg,(v2). This implies the following
result.

Theorem 2.5 Let Gy and Gy be nontrivial connected graphs with v, €
V(G1) and va € V(G3) and let G = G[G),Gs,v1,v2]. Suppose that G;
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contains a resolving set Wy such that [vilw, = {v1}. Then

[Wi] 4+ dim G, if vo is not a basis
dimG < [Wi| + fa, (v2) = vertex of Gy
[Wi| +dimGs — 1 otherwise.
(6)
In particular, if W, is a basis for Gy, then
. dim G, + dim Gy if vy is not a basis verter of G
dimG < { dimG, +dimGy —1  otherwise.
(7)

In general, (7) is not true. For example, consider the graphs G,
G, and G = G[G1, G2, uz,vs) of Figure 5, where G; = G2 = P; and
G = K 4. By (2) and Theorem A, dimP; = 1 and dim K; 4 = 3 and so
dim (G[Gl, Ga, us, ‘Uz]) =3>2=1+4dimG,.

Uy Ug u3 U1 U3
Gy e o 0
) w
G:
1 V2 U3
G, &—0—o0
(41 U3

Figure 5: Graphs G1, G2, and G with dimG > dimGj + dim G,

3 Basis Vertices of a Tree

We have seen that the dimension of the graph G = G[G1, G2, v1,v2] de-
scribed in Section 2 not only depends on the dimensions of G; and G5 but
also on whether the vertex v, is a basis vertex of G,. This implies that the
dimension of a unicyclic graph G depends on (1) the dimensions of its sub-
trees rooted at the cycle of G, and (2) whether the roots of those subtrees
T on the cycle C are basis vertices of T". Therefore, we need to determine
which vertices in a tree T are the basis vertices of T. We begin with paths.

Let P, : v1,v2,--,v, be a path of order n > 2. Then each of the two
end-vertices v; and v, of P, is a basis for P,,. Thus every vertex of P, is
a basis vertex of P,. So we may assume that n > 3. Since d(vi—1,v;) =
d(vi,vi41) = 1 for all integers ¢ with 2 < i < n — 1, it follows that v; is not
a basis vertex of P,. This observation gives the following result.
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Theorem 3.1 A vertez v of a path P,, n > 2, is a basis verter if and only
tf v is an end-vertezx of P,.

Next we consider trees that are not paths. The following result classifies
the basis vertices of a tree. First we need an additional definition. For a
cut-vertex v in a connected graph G and a component H of G — v, the
subgraph H and the vertex v together with all edges joining v and V(H)
in G is called a branch of G at v.

Theorem 3.2 Let T be a tree with p exterior major vertices vy, v, - - “y Up.
For each i (1 < i< p), let uiy, iz, -+, uik, be the terminal vertices of v;,
and let P;; be the v; — ui; path (1 < j < k;). Suppose that W is a set of
vertices of T. Then W is a basis of T if and only if W contains ezactly
one vertex from each of the paths Pij — v; (1 < j <k; and 1 < i< p) with
ezactly one exception for each i with 1 < i < p and W contains no other
vertices of T.

Proof. Let B be a basis for T" and let v be an exterior major vertex of T.
Suppose that k = ter(v) and that u;, us, - - -, ui are the terminal vertices of
v. Then the branch of T at v containing u; (1 <4 < k) is a v — u; path P;.
We claim that B contains at least one vertex from each of the paths P; — v
(1 £ i < k) with at most one exception. Assume, to the contrary, that two
of these paths, say P; — v and P, — v, contain no vertex of B. Let u} and
uy be the vertices adjacent to v on P, and Pj, respectively. Since neither
Py — v nor P, — v contains a vertex of B, it follows that r(u}|B) = r(u}|B),
contradicting the fact that B is a basis for 7. Thus, as claimed, B contains
at least one vertex from each of the paths P, — v (1 < i < k) with at most
one exception. This implies that

1Bl > (ter(v) - 1), (8)

where the sum is taken over all exterior major vertices of T. If v € B,
then the inequality in (8) is, in fact, strict. However, |B| = dim(T) and
>_(ter(v) = 1) = ¢(T) — ex(T), which contradicts (1). This implies that B
contains exactly one vertex from each path P; — v (1 < i < k) with exactly
one exception and W contains no other vertices of 7.

We now verify the converse. Suppose that ter(v;) = k; for all i with
1 < i< pand W is a set of vertices of T' such that W contains exactly
one vertex from each of the paths P;j —v; (1 < j < k;) with exactly one
exception for each i with 1 < 4 < p. Then |W| = ¢(T)—ez(T). By Theorem
A, it suffices to show that that W is a resolving set of T'. In order to show
this, let u be an arbitrary vertex of T and v any vertex of T different from
u. We consider two cases.
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Case 1. Suppose that there is some exterior major verter w of T and
an terminal vertez z of w such that u lies on the w — x path of T. There
are two subcases.

Subcase 1.1.  There exists y € W such that y lies on the w — z path
of T. If v does not lie on the w — z path, then d(u,y) < d(v.y), implying
that r(u|W) # r(v|W). So assume that v lies on the w — z path. If
d(u,y) # d(v,y), then r(u|W) # r(v|W). If d(u,y) = d(v,y), then y lies
on the u — v path of T. Since the degree of w is at least 3, there exists
another terminal vertex z’ of w and a vertex ¥ on the w — 2’ path such

that y € W. Then d(u,y) # d(v,y). So r(u|W) # r(v|W).

Subcase 1.2.  There is no vertez of W that lies on the w —z path of T.
If there is a vertex y € W such that either v lies on the u —y path or u lies
on the v — y path, then d(v,y) < d(u,y) or d(u,y) < d(v, y), respectively.
In either case, »(u|W) # r(v|W). Thus, we may assume that every path
between v and a vertex of W does not contain u and every path between
u and a vertex of W does not contain v. Necessarily, then, there exists an
exterior major vertex w’ and a terminal vertex z’ of w’ such that v lies on
the w’ — =’ path of T. Observe that v # w’, for otherwise there exists a
terminal vertex z” (it is possible that 2’ = z”) of w' such that the path
z" — v contains a vertex y of W. Then v lies the u — y path of T, which is
a contradiction. Similarly, 2’ ¢ W and u # w.

If w = w', then there exists y € W distinct from w such that y lies on the
w — z' path of T. Then d(u,y) > d(v,y), implying that r(u|W) # r(v|W).
So w # w'. Since the degrees of both w and w' are at least 3, there exists a
branch T} at w that does not contain  and a branch T3 at w' that does not
contain z’'. Necessarily, both 71 and T, must contain a vertex of W. Let 2
and 2/ be vertices of W belonging to Ti and T, respectively. If d(u, z') #
d(v, 2'), then r(u|W) # r(v|W). So we assume that d(u,2') = d(v,2'). In
this case, d(u, z) < d(v, z), implying that r(u|W) # r(v|W).

Case 2. For every exterior major verter w of T and every terminal
vertez = of w, u does not lie on the w — z path of T. Then there are
at least two branches at u, say T3 and T, each of which contains some
exterior major vertex of terminal degree at least 2. Therefore, each of T\
and T contains a vertex of W. Let z and z’ be the vertices of W in T
and T, respectively. First assume that v € V(T1). Then the v — 2! path
of T' contains u, so d(u,2') < d(v,2) and so r(u|W) # r(v|W). We now
assume that v € V(T1). Then the v — z path of T contains u. Hence
d(u, z) < d(v,2), so r(u|W) # r(v|W). Therefore, W is a resolving set of
T. "

The following result is an immediate consequence of Theorem 3.2
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Corollary 3.3  Let T be a tree that is not a path and let v € V(T). Then
v is a basis vertex of T if and only if v is not an erterior major vertez of
T.

4 The Dimension of Unicyclic Graphs

In this section, we determine bounds for the dimension of unicyclic graphs.
Let G be a unicyclic graph and let C be the unique cycle of G. Let uy,
uz, -+ -, g be the distinct vertices of C with degu; >3,1<i<k, and
let T; be the subtree of G rooted at u;. A unicyclic graph G is said to be
of type 1 if A(G) = 3 and for a vertex v of G, degv = 3 if and only if
v = u; for some 1 < i < k. Otherwise, G is of type 2. Therefore, a unicyclic
graph G is type 1 if and only if every tree T; of G is a path, one of whose
end-vertex is u; € V(C). We first present a lemma whose proof is routine
and is therefore omitted.

Lemma 4.1  Let C, be a cycle of order n > 3 and diameter d = n/2].
If n is odd, let Wi = {u,v} with d(u,v) = d, while if n is even, let Wy =
{u, v, w}, where d(u,v) = d and w is any other vertez of C,,. Then [vlw, =
{v} for aliv € V(Cy), wherei=1,2.

The following theorem concerns the dimension of a unicyclic graph of
type 1.

Theorem 4.2  Let G be a unicyclic graph of type 1 with unique cycle C
of order n. Then dimG = 2 if n is odd and dim G <3 ifn is even.

Proof. Since G is not a path, dimG > 2 by (2). It remains to verify the
upper bound. Let u;, us, - - -, ui the vertices of C with deg u; > 3, and let
P; be the path rooted on C with end-vertex u;, 1 < 7 < k. We consider two
cases.

Case 1. n is odd. Let W = {z,y} with d(z,y) = diam C. Then [v]w =
{v} for all vertices v € V(C) — {uy, ua,- -, ux} and [u;]w = {ui}UV(R)
for all i. Therefore, the k + 1 sets V(C) — {u1,u2,-- -, ux} and [ui]w,
1 <4<k, form a partition of V(G). We claim that W is a resolving set of
G. Let u,w € V(G) —~ W and u # w. If there exist two distinct equivalent
classes [s]w and [t]w, s,t € V(C), such that u € [s]y and w € [tlw, then
r(u|W) # r(w|W) by Lemma 2.3 (a). So we assume that u and v belong
to the same equivalence class in V(G). Since [v)w = {v} for all vertices
v € V(C) ~{u1, u,- -, u}, it follows that u, w € [u;]w for some i (1<i<
k). This implies that u, w € V(B;). Since r(u|W) = r(w|W)+(a,q,---,a),
where a = d(u,w) > 0, it follows that r(u|W) # r(w|W), which is a
contradiction. Therefore, W is a resolving set for G and so dimG = 2.
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Case 2. n is even. Choose W = {z,y,w} with d(z,y) = diam C
and where w is any other vertex of C. Then an argument similar to
that employed in Case 1 shows that W is a resolving set of G. There-
fore, dimG < [W|=3. ]

Both 2 and 3 are attainable as the dimensions of unicyclic graphs of
type 1 that contain an even cycle. For example, the unicyclic graph G
of Figure 6 has dimension 2 and the unicyclic graph G, of Figure 6 has
dimension 3.

G1: G2:

Figure 6: Unicyclic graphs of type 1 with dimensions 2 and 3

Next we consider the dimensions of unicyclic graphs of type 2.

Theorem 4.3 Let G be unicyclic graph of type 2 with cycle C such that
uy, ug, - -, Uk are the vertices of C withdegu; >3, 1< i<k, and T; is
the tree rooted at u;. Then

k k
3 fri(w) <dmG <24 ) fr(w). (9)
i=1 i=1

Proof. We first show that Yor_, fr,(w) < dimG. If Z‘le fri(uwi) <2,
then S5, fr.(ui) < 2 < dimG by (2). So we assume that Zf=1 Jr.(ui) >
3. Assume, to the contrary, that dimG < (Z:;l fr. (u,-)) —1. Let r =

(Z:;l fr (u;)) — 1> 2 and let W be a resolving set of G with |W| = r.
Then there exists an integer i with 1 < ¢ < k such that [WNV(T3)|=r <
fr,(wi) — 1. Let W; = WNV(T;). By Lemma 2.1, W; U {u;} is a resolving
set for Tj. If r; < fr,(wi) — 2, then |W; U {w}| < fr,(wi) —1 < dimT; — 1,
which is a contradiction. So we may assume that r; = fp(u;) — 1. If
fr,(u;) = dimT;, then u; is not a basis vertex of T;. On the other hand,
since |W; U {w}| = ri +1 = (fr;(ws) — 1) + 1 = dimT;, it follows that
the set W; U {u;} is a basis for T;, implying that u; is a basis vertex of
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T;, producing a contradiction. So we assume that fr,(v) = dimT; — 1.
Then [W; U{w;}| = r; + 1 = fr,(w;) = dimT; — 1, which is impossible since
Wi U {u;} is a resolving set. Therefore, 3%, fr,(u;) < dimG.

We now verify the upper bound for dimG. Let C be the unique cycle
in G, where C has order n. For each integer i with 1 < i < k, if fri(u) =
dimT;, then let B; be any basis for 7;. If fr;(u;) = dimT; — 1, then let B;
be a basis for T; containing ;. Hence |B; — {w;}| = fr,(u;) for each integer
¢ with 1 <7 < k. We now consider two cases.

Case 1. n is odd. First assume that ¥ = 1. Let U; be the unicyclic
graph obtained from the cycle C and the tree T} by identifying a vertex in C
and a vertex in 77 and labeling it u;. Let Wy = {u, v}, where u,v € V(C)
and d(u,v) = [n/2]. Since [vlw, = {v} for all v € V(C), it follows by
Theorem 2.5 that dimU; < 2+ fr, ().

Next, let U, be the graph obtained from U; and Ty by identifying a
vertex of C in U; and a vertex in T and labeling it us. Let W) = W U
(By — {u1}). By Lemma 2.4, W, is a resolving set for U;. If v € V(TY),
then v € [u;]w, in U;. This implies that [ua]lw, = {u2} in U; and so
[u2]w, = {u2} in U;. Applying Theorem 2.5 to U; and Ty, we have

dim U, < IWII + fTa(u2) = [2+fo(u1)] + sz(u2)'

Repeating the procedure above, for k > 3, we let Uy be obtained from
Uk-1 and the tree T} by identifying a vertex of C in Ur—1 and a vertex in
Ty and labeling it uy. Let

Wier = WiaU(Broy — {uk-1})
= WoU(B1 —{u1}) U (B2 — {us}) U+ U (Br—1 — {wk_1}).

Then ',Wk__1| = Zf;ll fr.(u;i). Since Wy C Wi_1 and [we]w, = {uk}, it

follows that [uk]w,_, = {uk} in Uk_1. Again, we apply Theorem 2.5 to
Uk-1 and T} and obtain

k
dim Uy < |Wi-i| + fr(ue) =2 + Zf'r.(ui)-

i=1

Case 2. n is even. Since G is a unicyclic graph of type 2, there exists
a vertex u; (1 < i < k) such that either degu; > 4 or 7} is not a path.
Assume, without loss of generality, that u; = u;.

Again, let U; be the unicyclic graph obtained from C and T by iden-
tifying a vertex in C and a vertex in 7} and labeling it u;. We claim
that dimU; < 2 + fr,(u1). Let Wo = {u,v}, where d(u,v) = n/2 and
u,v € V(C)—{u1} and let W) = WoU(B1—{u,}), where |[W;| = 2+ fr, (u1).
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If Ty is a path, then u, is not an end-vertex of T} and so u; does not be-
long to any basis of 77 by Theorem 3.1. Otherwise, T is not a path and
dimT; > 2. Hence By — {u;} # 0, implying that Wy # W;. Next we show
that W, is a resolving set of U;. Let = and y be distinct vertices of Uy — Wj.
We show that r(z|W,) # r(y|W1). There are three subcases.

Subcase 2.1 z,y € V(C). Let
Sl = {u,v,ul} and Sg = {u,v,w} g Wl, (10)

where w € By — {w;}. Since d(z,w) = d(z, 1) + d(u1,w) and d(y,w) =
d(y, u1) + d(u1, w), it follows that r(z|S2) = r(z|S1) + (0,0, d(u1,w)) and
r(y|S2) = r(y[S1) + (0,0,d(uy, w)). By Lemma 4.1, S; is a resolving set
of C. Hence r(z|S1) # r(y|S1) and so r(x|S2) # r(y|Sz), implying that
r(z|Wh) # r(y[W7).

Subcase 2.2 z,y € V(T). If u; ¢ By, then By — {u;} = By, which is a
basis for U;. So #(z|B)) # r(y|B1), implying that r(z|W;) # r(y|W1). So
we assume that u; € By. Let S = (B; — {u1})U{u} C W;. Since d(z,u) =
d(x,u;)+d(uy,u) and d(y, u) = d(y, u1) +d(uy, u), it follows that r(z|S) =
r(z|B1)+(0,0,---,0,d(uy,u)) and r(y|S) = r(y|B1)+(0,0, - - -,0,d(u, u)).
Since B is a basis for T}, it follows that r(z|S) # 7(y|S) and so r(z|W,) #
r(y|W1).

Subcase 2.3 = € V(C) and y € V(T). If y # vy, then either d(z,u) #
d(y,u) or d(z,v) # d(y,v) and so r(z|W1) # r(y|W1). Hence we may
assume that y = u;. Let w € By. Then d(z,w) = d(z,y) + d(y, w). Since
y # w, it follows that d(y,w) # d(z, w), implying that r(z|W:) # r(y|W1).
So W, is a resolving set of Uy and dim Uy < |Wy| = 2+ fr, (u1), as claimed.

We now let U, be the graph obtained from U; and T3 by identifying
a vertex in C of U; and a vertex in Ty and labeling it us. In order to
apply Theorem 2.5 to U; and T3, we need to show that [z]w, = {z} for
all z € V(C) — {u1}. Again, let S; and Sy be the sets defined in (10).
We show that [z]s, = {z} for all z € V(C) — {u1}. Assume, to the
contrary, that there exists y # z such that y € [z]s,, that is, r(z|S2) =
r(y|S2)+(a, a, - - -, a) for some integer a. If y € V(T), then y € [u1]w, and so
y & [2]w,, implying that y ¢ [z]s,. So we may assume that y € V(C). Since
d(z,w) = d(z,u1)+d(u1, w) and d(y, w) = d(y, u1)+d(u;, w), it follows that
r(z]S2) = 7(2|S1) + (0,0, d(u1, w)) and 7(y|S2) = r(2]S1) + (0,0, d(u1, w)).
This implies that 7(2|S1)—r(y|S1) = r(2|S2)—r(y|S2) = (a,q,-- -, a), which
contradicts Corollary 4.1. Therefore, [z]s, = {z} for all z € V(C) — {u1}.
Since Sz C W, it follows that [z]w, = {z} for all z € V(C) — {w1}. In
particular, [uz]w, = {u2}. Applying Theorem 2.5 to U; and T3, we have

dimU, < [Wh|+ fr,(u2) = 2+ fr,(w1) + fr, (u2).
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Then an argument similar to that used in Case 1 shows that (9) is true for
all Uy with k > 3. a

If G is a unicyclic graph of type 1, then fr,(u;) = 0 for all i with
1 < i < k. This implies that (9) is not true if G is a unicyclic graph of
type 1 and G contains an even cycle. Also, for k = 2, Theorem 4.3 provides
an improved lower bound for the dimension of G = G[G1,G2,v1,v9) in
Corollary 2.2.

We conclude this section by showing that the bounds in Theorem 4.3
are sharp In fact, the three numbers 2 + Z,_l fri(ui), 1+ Z,_l Sri(w),
and Z, =1 f1,(u;) are all attainable as the dimensions of some unicyclic
graphs. We will only give the unicyclic graphs with an odd cycle since the
examples for the unicyclic graphs with an even cycle are similar. Consider
the unicyclic graphs G, G2, and G3 of Figure 7. We describe a basis for
each of those unicyclic graphs with the aid of the following lemma whose
routine proof is omitted.

Lemma 4.4  IfS is a p-subset of V(G), where p > 2, such that d(u,z) =
d(v,z) for allu,v € S and & # u,v, then every resolving set of G contains
at least p— 1 elements inS.

uy T 12/?/(: T

Y4

U2

T,
Gl G2

Ts “ Ty
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T
Gs ?

Figure 7: The unicyclic graphs G, Ga, and G5
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The unicyclic graph G, of Figure 7 has dimension 3 where the three
solid vertices form a basis for G;. The tree T} in G; has dimension 2 by
Theorem A. Since degy, u) = 2, it follows that u, is a basis vertex of T} by
Corollary 3.3 and so fr,(u1) = dimT; — 1 = 1. Therefore, dimG; =3 =
fr(w1) + 2.

The unicyclic graph G of Figure 7 has dimension 4. By Theorem A,
dim7; = 2 and dim T3 = 2. The vertex u; is an exterior major vertex of T}
and so u; is not a basis vertex of ;. Thus fr, (u1) = dimTj = 2. The vertex
us is an end-vertex of Ty and so u» is a basis vertex of T5. So fr,(u2) =
dimT; — 1 = 1. Therefore, dimGz =4 =2+ 1+1 = fr, (1) + fry(u2) + 1.

The unicyclic graph G3 of Figure 7 has dimension 4. By Theorem
A, dimTy = dimT> = dim7T> = 2. Similarly, fr,(v1) = dimTy = 2,
Jr,(u2) = dimT3 — 1 and fr,(u3) = dimT3 - 1. Therefore, dimGz = 4 =
fri(u1) + fra(u2) + fry (us).
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