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ABSTRACT. In this paper the decomposition of Dyck words into
a product of Dyck prime subwords is studied. The set of Dyck
words which are decomposed into k components is constructed
and its cardinal number is evaluated.

1 Introduction

This work deals with the decomposition of Dyck words into prime factors
and will be used for the analogous decomposition of Motzkin words [5]. On
the other hand this decomposition is related to the decomposition of the
set of all nested sets of [2m] = {1,2,...,2m} into subsets, the elements of
which have a given number of outer pairs [7].

For the determination of the set of Dyck words of length 2m with certain
number of factors we transform each Dyck word into a pair of partitions of
m such that the first component of the pair dominates the second [3]. This
relates Dyck words to graphs and matrices where the domination order
appears [1], [6].

We recall some basic notions about Dyck words. A word u € {a,a}*
is called Dyck if {u|lo = |u|s and for every factorization » = pg we have
|Pla = lPla, Where |u|a, |Pla, (resp. |ula, [pla) is the number of occurences
of the letter « (resp. a) in u, p.

A Dyck path of length 2m is a path in the first quadrant, which begins
at the origin, ends at (2m,0) and consists of steps (4+1,+1) (North-East)
and (41, —1) (South-East). It is well known that the Dyck paths of length
2m are coded by the Dyck words u = ujug ... ugm, so that every North-East
(resp. South-East) step corresponds to the letter u; = o (resp. u; = @)

It is also known that the cardinality of the set D,, of all Dyck words (or
paths) of length 2m is equal to the number of Catalan Cy, = m;ﬂ(":;")
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On the other hand the Dyck words {or paths) may by generated either
by the context-free grammar D — e + aDaD where € is the empty word
[2] or by using binary trees [4].

Let u = ujusp...uz, be a Dyck word of {a,a}*. Two indices %, 7 € [2m]
such that i < j, u; = & and u; = & are called conjugates with respect to u,
if j is the smallest number in [+ 1, ju|] for which the subword wjuiy; ... u;
is a Dyck word. Obviously the set S = {(7,7): ¢ < j and 1, § conjugates} is
nested.

A non empty Dyck word that is not a product of two nonempty Dyck
words is called prime. It is clear that the Dyck prime words are these that
the only intersections of their coresponding Dyck paths with the z-axis are
the initial and the final points of the paths.

It is evident that a Dyck word u = ujusg...usn, is prime if and only if
1,2m are conjugates with respect to u. Further, if the first and the last
letter of a Dyck prime word are removed one gets a Dyck word. Therefore
the number of Dyck primes of length 2m+ 2 is equal to the number of Dyck
words of length 2m. Thus if we denote by P, the set of all Dyck prime
words of length 2 we obtain that

|| =1and |Pn1| =Cm, me N

Given a Dyck word u = ujus...usm let i3 = 1, j; the conjugate of i,
and u! = u;, ...uj. It is clear that u! is a Dyck prime word. Moreover
if u! # ulet ip = j; + 1, ja the conjugate of i3 and u? = u,, ... u ;. Itis
clear that u? is also a Dyck prime word. Proceeding in this way we define

recursively a finite sequence u!,u?,...,u* of Dyck prime words such that

u=u'u?. .. u*. Moreover it is easy to check that this sequence is unique.

From the above discussion we have the following proposition.

Proposition 1.1. Every Dyck word is uniquely decomposed into a product
of Dyck prime words.

The Dyck words which are decomposed into & Dyck prime words (compo-
nents) are those whose coresponding Dyck paths meet the z-axis at exactly
k — 1 points, apart from the points (0,0) and (0, 2m).

Let Dy, « be the set of all Dyck words of length 2m which are decomposed
into k Dyck primes and d(m, k) its cardinal number.

In section 2 the number d(m, k) is evaluated with the aid of several
recursion formulas. In section 3 the elements of D,, x are determined using a
transformation between the Dyck words and some pairs of finite sequences.
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2 The number d(m, k)
For the number d(m, k) of all Dyck words of length 2m which are decom-
posed into k Dyck prime words we have the following formulas:

d(m,k) =0, ifk>m.

d(m,m)=1.

d(m,l) = Cm-—l-

d(m,1) +d(m,2) +--- +d(m,m) = Cp.

Further by proposition 1.1 we obtain the following result.

Proposition 2.1. For m > k, we have d(m, k) = 3 C;,Cy, ... Cyz, where
the sum is taken over all (z;,x2, . ..,zk) Withz; € N and z1+z2+- - -+Zk =
m—k.

We now give the main result of this section

Proposition 2.2. For 2 < k < m we have

m—1
dim, k)= > dm-1,X).

A=k—1
Proof: We define a function
m—1
fiDmp— |J Dm-1a
A=k—1

as follows: Given a word © = uug...Uosm € Dmi and j € [2m] the
conjugate of 1 with respect to u we set,

fw)= : .
UUSZ - - - Uj—1Uj41 -« - U2, if2<j.

It follows that f(u) is a Dyck word of length 2m—2. Moreover if j = 2 the
word f(u) is decomposed into k — 1 components so that f(u) € Dm—1,k-1-
On the other hand if 7 > 2 the word ugus .. .u;j_1 is also Dyck. Let o be the
number of prime components into which this word is decomposed. Since
the word u;41ujs2. .. uzm is decomposed into k — 1 components it follows
that f(u) is decomposed into ¢+k —1 components and f (v) € Dm—1,0+k—1-

Further, since

1<o< 22 andj+2k-1) <2m
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we deduce easily that
m-—1
k<o+k-1<m-1and f(u) € U Dp_1 5.
A=k
This shows that in general

m—1
fwe |J Dmoia
A=k—1
and the function f is well defined.
We will show that f is a bijection. Clearly since f is 1 — 1 it is enough
to show that f is onto. For this let
m—1
V=TU1V2...VU2n-2 € U D —1,A-
A=k—1
We consider two cases:

If v € Dip—1,k—1 we define © = adv. On the other hand if v € D
for some A € [k, m — 1] and i is the index corresponding to the last letter
of the (A — k+{)th component of v we define u = av; ... v;avi4) .. . V2m_2.

In both cases we have u € Dy, & and f(u) = v. This shows that f is a
bijection and

m—1 m-—1
d(m, k) =Dkl = Y |Dm-ral= Y dim—1,)).
A=k-1

A=k—1
O

From the above proposition and the equality d(m, 1) = C,,_; we obtain
the values of d(m, k), k < m (see Table 1).

Table 1: The values of d(m, k)

m\k| 1] 2| 3] 4|56
1 1
2 1 1
31 2| 2 1
A 5| 5| 3] 1
5(14]14] 9| 41
6|42 |42 |28 (14 5[ 1

We conclude this section with some formulas for the number d(m, k).

d(m,2) = Cp_y. (1)
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d(m,k) =d{m,k—1)—d(m -1,k - 2). (2)

Z(k+1d(m,k) Crnt1. (3)
k=1
m—k+1
dim,k)= Y  Caadm—Ak~1). (4)
A=1
L_li
im0y = 3 (0571 7)o )
A=0
k(2m—k-1
d(m,k):;( 1 ) (6)

The proofs of (1) and (2) are easy whereas the proof of (3) follows im-
mediately from proposition 2.2. Finally, the equalities (4), (5) and (6) are
deduced easily from (3) by induction.

3 The generation of Dy, &

We recall that a v-partition of m is a finite sequence z = (z;), ¢ € [v] of
positive integers such that
14
Z.’Ei =m.
i=1

For two v-partitions = = (z;) and y = (%), © € [v] of m we say that z
dominates y if and only if

i i for each p € [v — 1]
14 v
Yow=) y=m
i=1 i=1

It is well known that this relation is a partial order [3].

Clearly every Dyck word u € D,, is written uniquely in the form » =
a®1a¥1a®2aY? . .. o® a¥* so that the two sequences z = (z;) and y = (v:),
i € [v] are v-partitions of m and z dominates y.
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Then the sequences = (1;) and 8 = (6;) with

1 i
7%= sz and 0; = Zyj,i € V]
i=1 =1

are increasing such that 7; > 0; for each i € [v] and 5, =8, = m.

For example for the Dyck word u = adaadaddaaccaddd we have
that w € Dg3 and z = (1,2,1,2,2), y = (1,1,2,1,3), 7 = (1,3,4,6,8),
0=(1,2,4,5,8).

If A,, is the set of all pairs (7, 8) as above we can easily check that the
function y(u) = (7, 8) defines a bijection between the sets D, and Ap,.

This discusion suggests the following.

Proposition 3.1. There exists a bijection between the sets Dy, and An,.

Clearly using this bijection the set D,, x may be regarded as the subset
of A, such that the underlying sequences coincide for exactly k indices.

For the generation of Dy, » one may consider for each v > k the sets
I, of all increasing sequences n = (1), & € [v], in [m] with 5, = m and
compare their elements in order to find the pairs (n,0) € I, , X I, with
7 = 0; for each i € [v] and |{i € [v]: ;i = 0;}| = k.

In the following we present a recursive method for the generation of
Dpm k. This method is based on the idea used in the proof of proposition
2.2 and shows how the set D, ; is generated by the set D,,_; x where
Aelk-1,m-1].

Construction: Given a word w € Uf\':kl_l Dp—1,x with y(uw) = (n,6),
1= (m), 0 = (6:), i € [v] we define a word u* by v(uv*) = (n*,6"), n* = (),
6* = (8;), as follows:

Ifu€ Dm_1h—1thennf =07 =1,7,, =m+1and 6], =0;+1.

Ifue Dp_yafor A >k, theny =n;+1,0; =60; fori <p,and 6; =6;41
for i > p where p is the (A — k + 1)th element of [v] for which 7, = 0.

We can easily check that u* € Dy, x and every element of Dy, » may be
constructed by some element of

m-—1
U Dm——l,A

A=k—1

in this way.
We finally remark that since the set of all nested sets of [2m] with exactly

k outer pairs [7] may also be identified with Dy, x, the above method may
be used for its construction.
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