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For basic definitions and notation, we refer the reader to standard texts
on graph theory [3], [4], [7]. Given a graph G, let us say that Z C V(G)
is k-blocking if G \ Z contains no path of order k. Given a graph G and
an integer k > 2, we seek min|Z|, where the minimum is taken over all

k-blocking subsets Z C V(G). The ratio of min |Z| to |V (G)| will be called
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Abstract

How many vertices must we delete from a graph so that it no
longer contains a path P on k vertices? We explore this question
for various special graphs (hypercubes, square lattice graphs) as well
as for some general families.

Introduction

the k-blocking ratio of G.

For the first, suppose that each vertex represents a state of a program (or

finite state machine) and each edge a possible transition between states.

The problem is suggested by various computer science applications.
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It is desired to select a set of distinguished states (the set Z) so that the
program will enter a distinguished state after at most k steps. (We assume,
for this abstraction, that the program does not return to the same state
during the k steps.)

For the second application, suppose that each vertex represents a com-
puter and each edge a communication channel. We wish to record all “long
distance” messages, specifically, all messages traveling at least k steps. If
we could identify a subset Z of the computers representing all paths of
order k, we could place recorders at only those processes.

Alon and Chung considered a problem of this type in connection with

fault tolerant networks [1). They obtained the following striking result.

Theorem (Alon, Chung). For every € > 0 and every integer k > 2 there
exists a graph G with (k/€) vertices, mazimum degree A = O(1/€®), and

k-blocking ratio at least 1 — e.

The proof of Alon and Chung uses the Ramanujan graphs studied by
Lubotzky, Phillips, and Sarnak [8]. We shall study commonplace examples
(hypercubes, grid graphs) and some general families of graphs, for example
graphs with bounded degree. By presenting these comparatively simple
results, we hope to stimulate interest in this subject. More extensive studies
are needed on k-blockings for more general classes of graphs.

Among the networks that have been used extensively in parallel com-
puting are the hypercubes. Let Q. denote the n-dimensional hypercube.
This is the graph with vertex set V(Q,) = {0,1}" in which uv € E(Q,)
if and only if the binary n-tuples u and v differ in exactly one component.
Recursively, @, = K2 X Qn—1, that is @, is obtained by taking two dis-
joint copies of Q-1 and adding the n — 1 edges that join corresponding
vertices. [In general, G; x G is the graph with vertex set V(G)) x V(G2)

in which uv € E(G, x G») if wyv; € E(G,) and up = v or uy = v; and
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UV3 € E(Gz)]

Proposition 1. For a hypercube Q, of dimension n > 2, the 2-blocking

ratio is 1/2, and so is the 3-blocking ratio.

Proof. First, let us show that the 2-blocking ratio is no more than 1/2.
Let w(v) = Y, v; be the Hamming weight of vertex v. Note that @, is
bipartite with bipartition V(Q,) = (W, Z) where W = {v| w(v) is even}
and Z = {v| w(v) is odd}. Then |W| = |Z] = 2"~! and Z (or W) is
2-blocking (and hence 3-blocking). In the other direction, first note that
the recursive definition shows inductively that @, has a 2-factor consisting
of 2=2 Cy’s. Any 3-blocking set must contain at least two vertices from
each of these Cy’s, and thus any 3-blocking set must contain at least 2"~

vertices. a

2 Graphs of Large Degree

The following result uses the following well-known theorem of Erdds and
Gallai [6]: a graph of order n that contains no P has at most n(k — 2)/2
edges.

Theorem 1. Suppose that fori =1,2,3,... the graph G; has order n; and
is reqular of degree d;, where d; = 00 asi — c0. Givenk > 2 and € > 0,
there is an integer N = N(¢, k) such that for all n; > N the k-blocking

ratio of G; exceeds % —e€.

Proof. If G is a d-regular graph of order n, then G has nd/2 edges. Deleting
any (3 — €)n vertices from G yields a graph with (3 + €)n vertices and at
least 22 — (1 — e)nd = nde edges. If we assume that this graph contains no
Py, then the Erdés-Gallai theorem gives

1 k-2
de < (§+e) 5
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which is clearly false provided d is sufficiently large. Since d; = oo for the
given sequence (G}), it follows that for all sufficiently large i the k-blocking

ratio of G; e}\cceeds % —e. a

Corollary 1. For any fized k > 2 and any € > 0 the k-blocking ratio of
Qn is at least (3 — €) for all sufficiently large n.

Proof. The hypercube Q) is a regular graph of order 2" and degree n.

Hence Theorem 1 applies. O

3 Graphs of Bounded Degree.

With W and Z disjoint subsets of V(G), we shall denote by E(W, Z) the
edge set {wz € E(G)|w e W,z € Z}.

Theorem 2. Suppose G is a graph of order n and mazimum degree A.
(a) Some set of |[nA/(A + 1)| vertices in G is 2-blocking.
(b) Some set of [nA/(A + 2)] vertices in G is 3-blocking.

Both results are sharp. Thus, for the family of all graphs with mazimum
degree A, the largest possible 2-blocking ratio is A/(A + 1) and the largest
3-blocking ratio is A/(A + 2).

Proof. (a) Equivalently, a(G) > [n/(A + 1)]. This follows immediately
from the following Ramsey result of Chvatal [5): r(T, Kp) = (m —1)g+1
for any tree T with q edges (in particular, T = K 4). For another simple
proof, note that if W C V(G) is an independent set of order a(G) and
Z = V(G)\ W, then Z is 2-blocking. Since W is a maximal independent

set, each vertex in Z is adjacent to at least one vertex in W. Hence

12| < |E(W, 2)| < (n - |2]) A,
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which gives |Z| < |[nA/(A + 1)]. To see that this bound is sharp, consider
the example G = mKa 4, where m = n/(A +1). In order to obtain an
independent set, at least A vertices must be deleted from each component.
Hence, any 2-blocking set contains at least nA/(A + 1) vertices.

(b) Let W C V(G) be such that P; ¢ (W), and, subject to this
condition, |W| is as large as possible. Further, assume that of all such
sets with the maximum possible cardinality, W has been chosen so as to
minimize the number of edges of (W). We claim that each vertex in Z =
V(G) \ W is adjacent to at least two vertices of W. Clearly, each z € Z
is adjacent to at least one vertex in W. If I'(2) N W = {w} where w is
isolated in (W), then W' = W U {2} satisfies |W'| > |W| and P3 ¢ (W'), a
contradiction. Similarly, if I'(z) "W = {w;} where wyw is an isolated edge
in (W), then W' = (W \ {w:}) U {2} satisfies |W’'| = |W| and P; ¢ (W').

However, (W') has fewer edges than (W), a contradiction. Hence
21Z| < |[EW,2)| < (n—|2)) A,

which gives |Z| < nA/(A + 2). To see that this bound is sharp, suppose
A is even, and consider G = mCP(A/2 + 1), where m = n/(A + 2) and
CP(r) = rK; denotes the cocktail-party graph [2, p. 17). If fewer than mA
vertices are deleted from G, then some component retains at least three
vertices, and the subgraph spanned by these three contains P3. Hence any

3-blocking set contains at least mA = nA/(A + 2) vertices. O

Next we prove that the examples used to show sharpness in Theorem 2
are unique. The following notation will be used: for z ¢ W, write ['w(z) =

T NW.
Theorem 3. Suppose G has order n and mazimum degree A.

(a) If G has no set of fewer than nA /(A + 1) vertices that is 2-blocking,

then G = mKA+1 .
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() If G has no set of fewer than nA /(A + 2) vertices is 3-blocking, then
A is even and G = mCP(A/2 + 1) wherem =n/(A + 2).

Proof. (a) A review of the above proof shows that Z is a 2-blocking set
with |Z| < (n — |Z])A, and so |Z| < nA/(A + 1), unless each vertex in W
has degree A and |T'w (2)| = 1 for each z € Z. Since |W| = a(G), it follows
that if 21,20 € Z have a common neighbor in w € W then 212, € E(G);
otherwise, W \ {w}) U {21, 22} is an independent set with more than |W|
vertices. Hence each component of G is isomorphic to K41, and it follows
that G = mKa 4, where m =n/(A +1).

(b) A review of the above proof shows that Z is a 3-blocking set with
2|1Z| < (n —|Z|)A, and so |Z| < nA/(A +2), unless W = V(G)\ Z is
an independent set, each vertex w € W has degree A, and each vertex
z € Z satisfies [T'w(z)| = 2. Let w € W be arbitrary, and consider (I'(w)).
We claim that A is even and (I'(w)) = CP(A/2). To prove this claim,
we first note that if z € ['(w) has degree A — 1 in (I'(w)) then it has
degree (A — 1) +2 > A in G, a contradiction. Suppose z € I'(w) has
degree A — 3 or less in (I'(w)). Specifically, suppose that there are distinct
vertices 2',z" € I'(w) such that 22’ ¢ E(G), and 22" ¢ E(G). We may
assume that Ty (z) = {w,w'} where v’ # w. If Tw(2') = {w,w"} where
w" # w', then W' = (W\{w})U{z, 2'} satisfies |W’'| > |W| and P3 ¢ (W'),
a contradiction. Hence, we conclude that I'y (2) = Tw(2') = Tw(z") =
{w,w'}. But then W" = (W\{w,w'})U{z, 2/, 2"} satisfies [W"| > |W'| and
Py ¢ (W"), a contradiction. It follows that (['(w)) = CP(A/2) as claimed.
Since each z € Z satisfies [T'w(z)] = 2 and belongs to a subgraph of (Z)
isomorphic to the cocktail-party graph CP(A/2), it follows that G is regular
of degree A. Again suppose 2z’ ¢ E(G), so T'w(z) = Tw(2') = {w,w'}.
Then (W \ {w,w'}) U {z,2'} is an independent set. Thus z can play the
role initially played by w. It follows that I'(w') = I'(w) and the subgraph
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spanned by I'(w) U {w,w'} is isomorphic to CP(A/2 + 1). Clearly, such a
subgraph is a component of G, for else some vertex has degree exceeding
A. A repetition of this argument yields the fact that G = mCP(A/2 +1)
where m = n/(A + 2). O

Question 1. Is it true that for graphs mazimum degree A the largest pos-
sible 4-blocking ratio is AJ(A +3)?

For A > 2 the graph G = mH where m = n/(A +3) and H = Ca 3 shows
that there is a graph with maximum degree A and 4-blocking ratio at least
A/(A + 3). (If fewer than nA/(A + 3) vertices are deleted from G, then
there is a set of four vertices left from one of the original components. If
X is such a set then (X)&z C Py and thus (X)g 2 Ps.)

4 Grid Graphs

Let GP(n) = P, x P, and GC(n) = C,, xCy. We shall refer to GP(n) as the
square grid graph. Specifically, we shall take GP(n) to be the graph with
vertex set V = {(z,¥)| 0 < z,y < n} in which two vertices are adjacent if
their indices agree in one coordinate and differ by exactly one in the other.

Note that GC(n) is regular of degree four.

Proposition 2. If n is even, then GP(n) has 2-blocking ratio 1/2. The
3-blocking ratio is 1/2 as well.

Proof. The proof is practically the same as that for hypercubes. Let Z =
{(z,y)| +y =1 (mod 2)}. Then |Z| = n?/2 and every edge of GP(n) is
incident with a vertex in Z, so Z is 2-blocking. In the other direction, note
that GP(n) has a 2-factor consisting of n2/4 Cy’s. Any 3-blocking set Z
must contain at least two vertices from each of these C4’s, so the 3-blocking

ratio is at least 1/2. a
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Proposition 3. (a) The 4-blocking ratio of G = GP(n) is at most 3/8.
(b) The 4-blocking ratio of GC(n) is at least 3/8.
(c) The 4-blocking ratio of GP(n) converges to 3/8 as n — oo.
Proof. (a) Note that for G = GP(n) the set
Z={(z,y)|0<z,y<n, zxy=0 (mod4)}

is 4-blocking, since each connected component of G \ Z is isomorphic to
K 4 or some subgraph thereof. Figure 1 shows Z (the darkened vertices)
for the case of n = 8. In this case |Z| = (3/8) - 64 = 24.
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Figure 1. 4-Blocking Set for GP(8)

(b) Note that GC(n) has n? vertices and is regular of degree 4 so it has
2n? edges. Suppose Z is a 4-blocking set. Then G\ Z has n? — |Z| vertices
and at least 2n? — 4|Z| edges, and it contains no P;. Since G \ Z contains

no P,, each nontrivial component is isomorphic to P, P3, K3 or K] 4.
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T

Figure 2. Components of G\ Z

These graphs have average degree 1, 4/3, 3/2, 8/5, respectively, and it fol-
lows that G \ Z has average degree at most 8/5. Hence

2202 - 4)2) _ 8
nr—1Z] =5

which gives |Z]/n? > 3/8. (c) Clearly, as n — oo the “edge effects” be-
come negligible, so the fact that the 4-blocking ratio for GC'(n) is a least
3/8 implies that the 4-blocking ratio for GP(n) is at least 3/8 — ¢ for all
sufficiently large n. O

In the same way, we can prove the following result on the 6-blocking

ratio.

Proposition 4. (a) The 6-blocking ratio of G = GP(n) is at most 1/3.
(b) The 6-blocking ratio of GC(n) is at least 1/3. (c) The 6-blocking ratio

of GP(n) converges to 1/3 as n = oo.

An example showing that the 6-blocking ratio of GP(n) is at most 1/3

is
Z={(z,9)|0<z,y<n, z+y=0 (mod4) or z—y=0 (mod6)}.

This set is illustrated for the case n = 12 in Fig. 3.
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Figure 3. 6-Blocking Set for GP(12)

The components of GP(n) \ Z are subgraphs of the graph shown in Fig. 4.

Figure 4.

To prove that the 6-blocking ratio of G = GC(n) is at least 1/3, it suffices
to check that if Z is any 6-blocking set then each component of G \ Z has
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average degree at most 2. Indeed, a component of G \ Z will either be a
tree, and thus have average degree less than 2, or else it will contain a Cj,
and then it will be a subgraph of the graph shown in Fig. 4. Inspection
shows that each such subgraph has average degree at most 2. In view of
the average degree condition, we have 2(2n% — 4|Z|)/(n? — |Z]) < 2, so
|Z]/n® > 1/3.

Lemma 1. If p < r, and p vertices are deleted from GP(r), then the re-
sulting graph contains e path of order (r — p)? + p.

Proof. The vertices of GP(r) fall into 7 rows and r columns. The deletion
“of any p < r vertices leaves r — p rows and r — p columns intact. Then
there is an obvious zig-zag path that uses each of the r — p intact rows,
and follows the leftmost and rightmost intact columns to go between these

rows, as illustrated below. This gives a path with (r — p)? + p vertices. O

Figure 5. Illustration of the Lemma
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Theorem 4. For k > 3 and for all sufficiently large values of n, the k-
blocking ratio of GP(n) is between 1/(4v’k) and \/2/k.

Proof. First we prove that the k-blocking ratio is less than /2/k. For this

purpose, we use the blocking set
Z={=y)|0<z,y<n, z+y=0 (modm)}, m=[V2k].

For simplicity, assume first that m divides n. Then

2m -2
12| T m even,
2 Yom—1

n,:nz , modd,

and a maximal component of GP(n) \ Z has m2?/2 —m + 1 vertices if m is
even and (m — 1)2/2 vertices if m is odd. Each component is a subgraph of
one of the maximal ones. The maximal components are illustrated in Fig.

6forform=6and m="1.

Figure 6. Components of GP(n) \ Z
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With this choice, |Z|/n? < 2/m < +/2]k and P, ¢ GP(n)\ Z since
no component of GP(n) \ Z has more than k vertices, and the largest
component does not have a hamiltonian path. The same conclusion holds
in case n is not divisible by m, since |Z|/n? < 2/m still holds.

To prove the lower bound, we shall use Lemma 1. Set d = [vVk] =
Vk + € where 0 < € < 1. For simplicity, first assume that 2d divides .
Then there are (n/2d)? copies of GP(2d) in G = GP(n). If | Z] < n2/(4Vk),
then a simple averaging argument shows that in GP(n) there is a copy of
GP(2d) having at most (2d)?/(4vk) = d?//k vertices in common with Z.
By Lemma 1, in GP(n) \ Z such a copy contains a path with at least

2 2
(2d—£) +L‘P_=d2(2_i) i

vk vk vk vk
(k—€2)2 e2
=_k—+‘/’;+2e+ﬁ
>k+Vk

vertices. Now it is easy to see that the condition (2d)|n can be removed
provided n is sufficiently large. By continuity, we can choose § > 0 so that
with d/v/k replaced by d2/v/k + 4 in the above calculation, the final value
is at least k. For all sufficiently large n, there exists a copy of GP(2d)
having at most d?/vk + & vertices in common with Z, and this gives the

desired result. a
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