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Abstract

A graph G is called an L, - graph if, for each triple of vertices
z, y, and z with d(z,y) = 2 and z € N(z) N N(y), d(z) + d(y) >
IN(z) UN(y) UN(z)| — 1. Let G be a 3 - connected L; - graph of
order n > 18. If §(G) > n/3, then every pair of vertices u and v in
G with d(u,v) > 3 is connected by a hamilton path of G.

1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. Notation and terminology not defined here follow that in [6]. If
S C V(G), then N(S) denotes the neighbors of S, that is, the set of all
vertices in G adjacent to at least one vertex in S. For a subgraph H of G
and S CV(G) - V(H), let Ng(S) = N(S)NV(H) and [Ny (S)| = dg(S).
If S = {s}, then Nyg(S) and |[Ng(S)| are written as Ng(s) and dg(s)
respectively. For disjoint subsets A, B of the vertex set V(G) of a graph G,
let e(A, B) be the number of the edges in G that join a vertex in A and a
vertex in B. For any integer p > 3, let (I, +e) denote the graph with p ver-
tices and one edge. We define M, N, and K as {G : K, , C G C K, + pK;
for some p > 3}, {G : Ky, p41 € G C K, + (Ip41 + €) for some p > 3},
and X = M UWN respectively. If P is a path of G, let P denote the path
P with a given orientation. If vertices u, v are on P and u precedes v
along the direction of P, then we use ﬁ[u,v] to denote the consecutive
vertices on P from u to v in the direction specified by B. The same set
of vertices, in reverse order, is denoted by (P[v,u]. We use z~ and zT to
denote the predecessor and successor of a vertex z on P along the orienta-
tion of P. If A C V(P), then A~ and A™ are defined as {v~ : v € A} and
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{vt : v € A} respectively. A graph G is a claw - free graph if G has no
induced subgraph isomorphic to K 3. For an integer %, a graph G is called
an L; — graph if d(z) + d(y) > |[N(z) U N(y) U N(z)| — ¢ , or equivalently
IN(z)N(y)| > |N(z) - (N(z) UN(y))| —i for each triple of vertices z, y,
and z with d(z,y) =2 and z € N(z) N N(y). It can easily be verified that
every claw — free graph is an L; — graph (see [2]).

The long time interest in claw — free graphs motivates our study of L; —
graphs. Several authors have already obtained results on the hamiltonian
properties of L; — graphs. Asratian and Khachatrian [4] proved that all
connected Ly — graphs of order at least three are hamiltonian and Saito
[11] showed that if a graph G is a 2 ~ connected L; - graph of diameter
two then either G is hamiltonian or G € K. More results related to the
hamiltonian properties of L; — graphs can be found in (1}, [2], [3] and [5].

Recently, Li and Schelp [8] extended Matthews and Sumner’s theorems
[9] on the hamiltonicity and traceability of claw — free graphs to L; — graphs.

Theorem 1 [8] Let G be a 2 - connected Ly - graph of order n. If §(G) >
(n —2)/3, then G is hamiltonian or G € K.

Theorem 2 (8] Let G be a connected Ly - graph of order n. If §(G) >
(n —2)/3, then G is traceable.

The objective of this paper is to present a result which is related to
hamilton — connectedness of L, — graphs.

Theorem 3 Let G be a 3 - connected L, - graph of order n > 18. If
8(G) > n/3, then every pair of vertices u and v in G with d(u,v) > 3 is
connected by a hamilton path of G.

Notice that for L; — graphs Asratian et al. [2] presented another condi-
tion that gives the same conclusion as in Theorem 3.

Theorem 4 [2] Let G be a connected L, — graph of order at least 8 such
that |N(u) U N(v)| > 2 for every pair of vertices with d(u,v) = 2. Then
every pair of vertices © and y with d(z,y) > 3 is connected by a hamilton
path of G.

2. Lemmas

Lemma 1 [7] Suppose G is a 2 — connected graph of order n. Then through
each edge of G there passes a cycle of length at least min{n, 26(G) —1}.

Lemma 2 [10] Let G be a graph of order n. If for each pair of non-adjacent
vertices u and v d(u) + d(v) > n + 1, then G is hamilton connected.
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Lemma 3 If G is a 3 — connected Ly, - graph, then either G € K or
w(G—~8) < |S]|—1 for every subset S of vertex set V(G) with w(G-S) > 1,
where w(G — S) denotes the number of components in the graph G — S.

Lemma 3 is modified from Theorem 5 in [2]. It should be pointed out
that the proof of Lemma 3 is similar to that of Theorem 5 in [2]. For the
sake of completeness, we still include the proof of Lemma 3 here.

Proof of Lemmma 3. In order to prove Lemma 3, we need a fact,
which is identical to Lemma 13 in (2], on L; — graphs. The proof of this
fact can be found in [2].

Fact. Let G bean L, - graph, v avertexof Gand W = {w,,ws, ..., wr}
a subset of N(v) of cardinality k. Assume G contains an independent
set U = {u1,us,...,ux} of cardinality k such that UNn (N(w) U {v}) =0
and, for i = 1,2,...,k, u;w; € E(G) and N(u;) N (N(v) = W) = 0. Then
N(w;)) - (N@)U{v}) CN@;)UU, (i=12,..,k).

Let G be a 3 — connected L; — graph and assume that w(G — A) > |A|
for some subset A of vertex set V(G) with w(G— A) > 1. Let X be a subset
of vertex set V(G) of minimum cardinality for which w(G — X) > |X| and
w(G—X) > 1. Since G is 3 - connected, ! := [X| > 3 and m := w(G-X) >
|X| =1! > 3. Let Hy, Hs,..., H;, be the components of G — X. To prove
that G € K, we need the following claims.

Claim 1. For every nonempty proper subset S of X, |{i: N(S)N
V(H:) #0} > S| +2.

Suppose SC X, 0#S# X and [{i : NS)NV(H;) #0}| < |S]| + 1.
Set T=X-S. Thenw(G-T)>2m—(|S|+1)+1>1-|S| =|T|. This
contradiction to the choice of X proves Claim 1.

Choose any subset S of cardinality ! — 1 from X. Then m > |{i :
NS)NV(H) #0}|> S| +2=1+12>4.

Claim 2. Ifv ¢ X and N(v)NX # 0, then X C N(v).

Suppose v € X and Nw)N X # 0, but X € N(v). Set W =
N@NX and k = |W|. Then1l < k < Il. Let wy,ws,...,w; be the
vertices of W. By Claim 1 and Hall’s Theorem (See Bondy and Murty
(6, p- 72]), N(W) — X contains a subset U := {uj,us,...,ux} of cardinal-
ity k such that no two vertices of U U {v} are in the same componment
of G — X and uyws,uswe,...,upwr € E(G). By the above fact, we have
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N(w;) — (N(w) U {v}) € N(u;) UU for each i, 1 < i < k. But then
{i: N(S)NV(H;) # 0} < k+1<|W|+1. This contradiction to Claim
1 proves Claim 2.

For each i, 1 < ¢ < m, let y; be a vertex in H; with N(y:) N X # 0.
Set Y = {y1,¥2,--»ym}. By Claim 2, X C N(y;) for each i, 1 < ¢ < m,
implying Y C N(z), where z is any vertex in X. Since G is an L; — graph,
we have, for any vertex z in X and any pair of distinct vertices y; and y;
inY,

0 < |N(y:) N N(y;)| = [N (=) = (N(y:) U N(y;))] +1
=|X| = |N(=@) = (N(m:) UN(y;))| +1
<|X|-Y|+1=l-m+1< 1L

Therefore | X| — |N(z) — (N(y:) UN(y;))| + 1 =0 or 1 for any vetex =
in X and any pair of distinct vertices y; and y; in Y. The remainder of our
proof is divided into several cases.

Case 1. |X|—|N(z) — (N(y:) UN(y;))| +1 =1 for some vertex z in
X and some pair of distinct vertices y; and y; in Y.

Then N(z) — (N(y:) UN(y;)) = Y and m = . Therefore N(z) N
V(Hi) = {yx } for each k € {1,2,...,m} — {,j}. Furthermore, for each
1€ X—{z}andeach k€ {1,2,..,m}—{i,5}, N(z)NV(H) = {w };
otherwise there exists a vertex yo ¢ X —(V (H;)UV(H;)) and N (yo)NX # 0.
Thus by Claim 2 X C N(yo), contradicting to N(z) NV (Hy) = {yx } for
each k € {1,2,...,m} - {4,j}. Since G is 3 - connected, V(Hy) = {yr }
foreach k € {1,2,..,m} —{4,j}.

Case 1.1. N(z)N[(V(H:) - {w:})U(V(H;) - {y; D] =0.

Then N(z:1)N[(V(H;)—{y: DUV (H;)—{y;})] = 0 for each z; € X —
{ = }; otherwise there exists a vertex yo € [(V(H:)—{#: HU(V(H;)—{y; })]
with N(yo) N X # @, thus by Claim 2 X C N(yo), in particular, yo € N(z),
contradicting to the assumption of this case. Since G is 3 ~ connected,
V(Hi) = {yx } for k =i and k = j. Therefore G € M C K.

Case 1.2. N(z)N[(V(H:) - {x:})U(V(H;) - {y; D] #0.
If there exists a vertex yo such that yo € N(z) N (V(H;) — {v:}) # 0
and N(z) N (V(H;) — {y;}) = 0. Then by Claim 2 we have X C N(yo).

Since G is an L; - graph, we have, for any z; € X — {z} and any distinct
pair of vertices y;,, ¥j, €Y — {v:}
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0 < IN(yi,) N N(y;)l = |N(21) = (N(yi,) UN(y;,))| + 1
=|X| = IN(z1) - (N(y:,) U N(y;,))| +1
SIX[=lYU{wl}+1=i-m<o0.

Thus N(z1) = (N(y;,) UN(y;,)) =Y U{y} for any z; € X — {z}
and any distinct pair of vertices yi,,¥;, € ¥ — {:}. Then N(X -
{z}) nV(H;) = {yo,¥:} and N(X - {z}) N V(H;) = {y; }. Moreover,
N(z) N V(H;) = {yo,y:} and N(z) N V(H;) = {y; }; otherwise by Claim
2 there exists a vertex ym41 € [(V(H:) — {yo,¥:}) U (V(H;) — {y; })] such
that X C N(¥m+1), contradicting to either N(X —{z )NV (H;) = {yo, i}
or N(X - {z})nV(H;) = {y;}. Thus N(X)NV(H;) = {yo,y:i} and
N(X)NV(H;) = {y;}. Since G is 3 — connected, V(H;) = {yo,y:} and
V(H;) = {y; }. Therefore Ge N C K.

If there exists a vertex yo such that yo € N(z) N (V(H;) — {y;}) # 0
and N(z) N (V(H;) — {y:}) = 0, then by a similar argument as before we
can prove that G € N C K.

Next we will show that it is impossible for N(z) N (V(H;) — {y:}) # 0
and N(z) N (V(H;) — {y;}) # 9 hold simultaneously. Suppose not, then
there exist vertices yo and ym41 such that yo € N(@)N(V(H;)—{v:}) #0
and ym+1 € N(z) N (V(H;) — {y;}) # 0. Thus by Claim 2 we have
X C N(yo) and X C N(ym+1). Let z; be a vertex in X — {z } and y;,, v,
two distinct vertices in Y — {y;,y; } (since [Y| = m > 4). Then we have
following contradiction,

0 < |N(y;,) N N(y5)] = IN(z1) — (N(yi, )UN(y;,))| +1
= |X| - |N(z1) = (N(%:,) UN(y;))] +1
<IXI-1YU{yo,yms1 }+1=1-m-1< -1

Case 2. |X|-|N(z) - (N(y:) UN(y;))| + 1 = 0 for some vertex z in
X and some pair of distinct vertices y; and y; in Y.

Case 2.1. |X|-|Y|+1=0.
Then N(z)—(N(y;)UN(y;)) =Y for vertex = in X and distinct vertices
yi and y; in Y and m = [ + 1. Using a similar argumnent as in Case 1, we

can show that V(H) = {yx } foreach k € {1,2,....,m} — {%,7}.

Case 2.1.1. N(z)N[(V(H:)—{v:DHDU(V(H;)-{y; D] =0.
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Using a similar argument as in Case 1.1, we can prove that V(Hy) =
{yr } for k =i and k = j. Therefore G € N C K.

Case 2.1.2. N(z)n[(V(H:) - {y:}) U (V(H;) - {; D] #0.

If there exists a vertex yo such that yo € N(z)N(V(H;) — {y:}) # 0
and N(z) N (V(H;) — {y;}) = 0, then by Claim 2 we have X C N(yo).
Since G is an L; — graph, we have, for any z; € X — {z } and any distinct
pair of vertices yi,, ¥, €Y — {5 },

0 < [N (yin) N N(y3,)l - IN(z1) — (N(gi,) U N(gin))] + 1
= X[ - [N@1) - (N(g:) UN(g;)] + 1
<IXI-[YU{w}+1=1-m<o.

Thus m =, contradicting tom =1+ 1.

If there exists a vertex yo such that yo € N(z) N (V(H;) — {y;}) # 0
and N(z) N (V(H;) — {y:}) = 0, then by a similar argument as before we
can derive a contradiction.

If there exist vertices yo and ym,4+1 such that yo € N(z) N (V(H;) —
{y:i}) # 0 and ym41 € N(z) N (V(H;) - {y; }) # 0, then by Claim 2 we
have X C N(yo) and X C N(Yym+1)- Let =1 be a vertex in X — {z } and
Yiy» ¥, two distinct vertices in Y — {y;,y; } (since |[Y| = m > 4). Then we
have following contradiction,

0 < |N(yi, ) N N(y; )l = IN(z1) — (N(yi,) UN(y;,))] + 1
= |X| = [N(z1) = (N (i, ) UN(y;,))| +1
<IX|-1Yu{yo,ymp1 }+1=l-m-1< -1

Therefore Case 2.1.2 cannot occur.

Case 2.2. |X|-|Y|+1=1.

Then N(z) — (N(y:) UN(y;)) =Y U{yo } for some vertex yo € N(z) —
(Ny:)UN(y;)UY)CV(G)— X and m = 1.

Case 2.2.1. yo € V(Hi) — {yr } for some k # 4 and k # j.
By Claim 2, we have X C N(yp). Let z; be any vertex in X — {z } and

Yiy» ¥4, any pair of distinct vertices in Y — { g }. Since G is an L, - graph,
we have
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0 < [N(yi,) D N(yj )l = IN(z1) = (N(ys, ) UN (y5,))| + 1
= IXl - 'N(xl) - (N(yil)UN(ij))‘ +1
<IX|-[YU{w)}l+1=i-m<0.

Then N(z1) — (N(y:,) UN(y;,)) =Y U {yo} for any z; in X — {z}
and any pair of distinct vertices y;,,y; in ¥ — {y:}. Thus N(X -
{(2}) N V(H) = {yo,ue} and N(X - {s}) N V(H:) = {u:} for i #
k. Moreover, N(z) N V(Hi) = {yo,yx} and N(z) N V(H;) = {y:} for
i # k; otherwise there exists a vertex ym+1 € V(G) — (X UY) such that
N(ym+1) N X # @ and Claim 2 implies that X C N(ym+1), contradicting
to either N(X — {z })NV(H) = {yo,yx} or N(X —{z )NV (H;) = {9: }
for i # k. Since G is 3 — connected, V(H) = {yo,yx} and V(H;) = {vi }
for i # k. Therefore G € N C K.

Case 2.2.2. yo € V(H;)—{yi}oryo € V(H;) - {w:}.

Without loss of generality, we assume that yo € V(H;) — {y:}. Then
by Claim 2 we have X C N(yp). Since G is an L; — graph and yo ¢
N(y:)UN(y;)UY, we have, for any vertex z; in X — {z } and any pair of
distinct vertices y; and y; in Y,

0 < [N(y:) N N(y;)| = IN(z1) = (N(g:) UN ()] + 1
= X[ = [N(@1) - (N(g:) U N(g;)| +1
<IX[-[YU{z}l+1=1-m<o0.

Then N(z:) — (N(yi)UN(y;)) =Y U{yo } for any z; in X — {z } and

any pair of distinct vertices y;, y; in Y. Using a similar argument as in the
last part of Case 2.2.1, we have G € N C K.

Case 3. |X|—|N(z) — (N(y:) UN(y;))| +1 = 0 for some vertex z in
X and any pair of distinct vertices y; and y; in Y.

Case 4. |X|—|N(z)— (N(y:)UN(y;))|+1=0 for any vertex z in X
and some pair of distinct vertices y; and y; in Y.

Case 5. |X|—|N(z)— (N(y;)UN(y;))| +1 =0 for any vertex z in X
and any pair of distinct vertices y; and y; in Y.

Since the conditions in Cases 3, 4, and 5 all imply the conditions in
Case 2, we have G € K.

Therefore we complete the proof of Lemma 3.
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3. Proof of Theorem 3

Proof of Theorem 3. Let G be a graph satisfying the conditions
in Theorem 3. Suppose that there exists a pair of vertices v and v in G
with d(u,v) > 3 and no hamilton path in G connects u and v. Construct
a graph G; = G + uv. Clearly, 6(G1) 2 6(G). By Lemma 1 uv is con-
tained in a cycle of length at least 26(G;1) — 1 in G;. Thus in G there
exists a path from u and v such that the order of that path is at least
26(G1) — 1 > 26(G) — 1. Choose any longest path P = Pfu,v] between u
and v in G and assume that it is orientated from u to v. Then |V(P)| >
26(G)—1. Let H be any component of the subgraph G[V(G) -V (P)]. Then
[V(H)| < n—|V(P)] <36(G) - (26(G) — 1) = 6(G) + 1. We further claim
that there exists a vertex ¢q in H such that |[N(g) N V(P)| > 3. Suppose
not, then for each vertex ¢q in H, dp(q) < 2. Thus dy(g) > d(g) — 2 and
|V(H)| > 1+du(q) > d(g)—1 > 6(G)—1. Thus for any pair of non-adjacent
vertices z and y in H dy(z) +du(y) > 26(G)—-4>6(G)+2 > |V(H)|+ 1.
Hence by Lemma 2 H is hamilton connected. Since G is 3 - connected,
there exist three distinct vertices z1, =2, and z3 in H and three distinct
vertices y1, y2, and y3 on P such that zy;, Z2y2, and z3ys are in E.
Here we assume that y;, y2, and y3 are ordered with increasing index in
the direction of P. Since P is a longest path connecting v and v and
H is hamilton connected, | By, y; ]| > |[V(H)| and [Py, u3 1| > IV(H).
Thus n > | Blu, y7 11+ By, v |+ Plud v3 1|+ Pld, ol +{mn, w2, ws )} +
[V(H)| > 3|V(H)| +3 > 3(6(G) — 1) + 3 > n. Therefore y; = u, y3 = v,
and |V(H)| = 6(G) — 1. Moreover, dy(z1) = du(z3) = 6(G) — 2 and
dp(z1) = dp(x3) = 2. Since d(u,v) > 3, z1v € E. Also z,p ¢ E for each
vertex p € V(P) — {y1,¥2,y3}; otherwise by the hamilton connectedness
of H it can be derived that |V(P)| > 2|V(H)| + 5 when p € T’)[y;*,y{]
or |V(P) > 3|V(H)| + 4 when p € P[y,y;], both imply a contradiction
of [V(P)|+|H| 2 n + 1. Thus z,y2 € E. Similarly, z3y2 € E. Next
we will show that y;y5 € E. Suppose not. Since G is an L; - graph
and dyg 1) = 2, dy) + dlar) > INGG)U NG UNGE) = 1,5 e,
IN@) NN ()] > IN(2) — (N7 ) UN (@) 1> oz 55,21} -
So y; u € E. Similarly, |[N(yy ) N N(z3)| > 2 and ys v € E. This contra—
dicts the assumption of d(u,v) > 3. Thus y; y5 € E. Again by the choice
of P and hamilton connectedness of H, we have n > |V(P)| + |V(H)| >
IBlut, 51 + 1Bl v5 )l + Hon vz, vo,ud s}l + V)] 2 V()] +
[V(H)| + 5+ |V(H)| = 36(G) + 2 > n+ 2, a contradiction.

Choose a vertex ¢ in V/(H) such that |N(g)NV(P)| > 3. Let A be the set

N(q) NV(P) := {a1,az,...,a;} with the a;’s ordered with increasing index
in the direction of P. Let b; and d; be the predecessor and successor of a;
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along P respectively, 1 < ¢ < . Set B := {b,b2,...,b1}, D := {dy,ds, ..., d; }.

Since d(u,v) > 3, ug and vq cannot be in E simultaneously. Thus the
remainder of our proof can be divided into the following cases.

Case 1. u#a; and v # a.

Clearly, BU{q} is independent and N(b;)NN(g)N(V(G)-V(P)) =90
for each ¢, 1 < ¢ < 1. Moreover, d(g,b;) =2 and a; € N(q) N N(b;) for each
i, 1 <i <. Since G is an L; - graph, we have

IN(g) N N ()| > [N(a:) — (N(g) UN(b:))] - 1.
Obviously, Np(a:) C N(a:) — (N(@) UN(b;) U {g}). Thus,
|Np(a:)| < |N(ai) — (N(q) UN(b;))| — 1. Therefore,
|NB(ai)| < IN(g) N N(b:)| = |Na(bs)|- Hence,
e(4,B) = ¥iy INB(a)] € iy INa(b)] = e(4, B).
It follows, for each i, 1 < ¢ <, that
N(a;)-(N(g)UN(b:;)U{g}) = Np(a:) C B. (1)
Similarly, for each ¢, 1 <11 </{,
N(ai)—(N(q)UN(d:)U{q}) = Np(a:) C D. (2)

We claim that foreachi,1 <: <!, b;d; € Eandforeach?,1<i<I[-1,
biv1 # d;. First of all, we show that byd; € E. Suppose not. Then
b1 € N(a1) — (N(g) UN(d1) U {q}) and by (2) we have b, € D, a contra-
diction. Since b;d; € E, bs # d;; otherwise P would not be a longest path
connecting u and v. Using a similar argument as before, we have bad; € E
and b3 # d. Repeating this process, we have for each i,1 <i <!, bd; € E
and foreachi,1<i<!-1, bj41 #d;.

Let s be the first vertex on ?[dl,bz] such that b;s € E(G). The ex-
istence of s is guaranteed by the fact that by & N(b,). Also observe that
s € N(a;); otherwise by (1) we have s € N(a;) — (N(g)UN(b1)U{q}) =
Np(a;) C B, s0 s = be. Then G has a path

TJ)[u, bl]?[dh bz]alq?[a% V)]
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between u and v which is longer than P, contradicting the choice of P.
Similarly, there exists a vertex ¢ which is the first vertex on ﬁ[dz, bs] such
that byt € E(G) and t € N(az)-

The proof for this case is completed by counting the degree sum of the
vertices ¢, s, and t and arriving at a contrdiction. To accomplish this, we set

Vi = Plu,bl,
Vo = Pla,s7],
Vs = Bls, by,
Vi = Plag, t7],
Vs = Plt, v,

Ve =V(G) - V(P).
In the remainder of our proof, we, for each vertex w in G, simplify
some notation letting N;(w) replace Ny, (w), |[N;(w)| = di(w), (Ni(w))™ =
Ny (w), and (Ni(w))* = N (w).

Clearly, d;(g) = 0. Also Nif(s) N Ni(t) = 0; otherwise in G there is a
path between u and v which is longer than P. Therefore,

di(q) + di(s) + da(¢) = INT ()| + [N1 (8)] = INYF (s) U N ()] < VAl

Notice that N(g) N (Va2 — {a1}) = @ and N(t) NV, = @; otherwise G has
paths between u and v which are longer than P. Therefore,

do(g) + da(s) + da(t) < 14 [Vo| — 1 = |V4].

Clearly, ds(g) = 0. Also N3(s) N N;F(t) = 0; otherwise in G there is a
path between u and v which is longer than P. Therefore,

v Icis(‘1)+d3(8)-l~ds(t) = |Na(s)|+|N5 ()] = INs(s)UN5" (8)] < [Va—{s}| =
3| — 1.

Notice that N(g) N (Va — {a2}) = 0 and N(s) N V4 = @; otherwise G has
paths between u and v which are longer than P. Therefore,
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da(q) + da(s) +da(t) <1+ |Va| = 1=V

We further notice that N5(g) N Ns(s) = 0, Ns(s) N N5 (t) = 0, and
Ng (t) N Ns(g) = 0; otherwise in G there are again paths between u and v
which are longer than P. Therefore,

ds(g) + ds(s) + ds(t) = [Ns(g)| + |Ns(s)] + [Ny (¢)| = | Ns(g) U Ns(s) U
Ny (@) < V5.

Obviously, dg(q) + ds(s) + de(t) < |Vs| — 1.

Hence, n < d(q) +d(s) + d(t) < T, (di(q) + di(s) + di(t)) <n—2,a
contradiction.

Case 2. u=a; and v # q;.
Notice that in this case we still have

N(a:)—(N(q)UN(di)u{g}) = Np(a;) C D. (%)
Subase 2.1. d; # biy) foreachi, 1 <i<!-1.

Because of (*), we can still prove that b;d; € E for each i, 2 < i < [.
Let s be the first vertex on ?[bz,dl] such that dys ¢ E(G) and t be the
first vertex on (F[b;;,dz] such that dst € E(G). The existence of s and ¢
is ensured by the facts of dad; € F and dzd, ¢ E. As before, s € N(az)
and t ¢ N(a3) (in fact, s € N(a;) and t ¢ N(a;) for each i, 2 < i < 1).
Next we again count the degree sum of vertices ¢, s, and ¢ and derive a
contradiction. Set

Vi = ?‘[u, 8],
‘/2 = ?[S-*-, 02],
Vs = ﬁ[d% t]a
Vi = Plt+,ag],
Vs = ﬁ[dli;v]:

Vo = V(G) - V(P).
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Clearly, di(q) = 1. Also N;(s) N Ny(t) = 0; otherwise in G there is a
path between u and v which is longer than P. Therefore,

di(g) + di(s) + di(t) = 1+ |NT (s)| + [N1(8)] = 1+ [N (s) U N1 ()] <
1+|W|.

Notice that N(q) N (V2 — {az2}) = 0 and N(t) N V; = @; otherwise G has
paths between u and v which are longer than P. Therefore,

da(g) + da(s) + da(t) <1+ (V2| -1 =|V2|.

Clearly, d3(g) = 0. Also N3(s) N Nj(t) = 0; otherwise in G there is a
path between u and v which is longer than P. Therefore,

ds(q) + da(s) + da(t) = |Ns(s)| + INF ()] = [Ns(s) U NS (8)] < |V -
{d2}| = V5] - L.

Notice that N(g) N (Vs — {a3}) = @ and N(s) NV = 0; otherwise G has
paths between u and v which are longer than P. Therefore,

da(q) +da(s) +da(t) <1+ |Va| — 1 =|V4|.

We further notice that Ny (g) N Ns(s) = 0, Ns(s) N Ny (t) = 8, and
Ng (¢) N Ny (g) = 0; otherwise in G there are again paths between u and v
which are longer than P. Therefore,

ds(g) + ds(s) +ds(t) = [Ny (9)] + |Ns(s)| + | N5 ()] = | N5 (9) UNs(s) U
Ng ()] < Vsl

Obviously, dg(g) + dg(s) + ds(t) < |Vs| — 1.

Hence, n < d(g) + d(s) +d(t) < Y0, (di(g) + di(s) + di(t)) <n—1,2
contradiction.

Subcase 2.2. Thereexist ¢ and 7, 1 < 1,7 <1—1, such that d; = b; 3
and dj ;é bj+1.

Let k := min{j : dj # bj31,1 < j <1 —1}. Then using (x) we can prove
that bdm € E and by, # dpn—1 for each m, k+1 < m < I. Since the set
{i:di = bi41,1 £ i <l -1} is nonempty, we have k > 2 and d; = biy1
for each i, 1 <4 < k—1. Let s = u* and t = be4+1. Again, we derive a
contradiction by finding a upper bound on the degree sum of vertices g, s,
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and t. Set
Vi = Plu, 3],
Ve = Pls*, au),
Vs = Pldy, 1],
Va = Plagsi,al,
Vs = Pld;, ),
Vs = V(G) = V(P).

Clearly, di(gq) = d(s) = 1 and st ¢ E. Notice that ut ¢ E; otherwise by
(x) we have t € D, a contradiction. Therefore,

di(g) + di(s) + di(t) =2 = |Vi].

Clearly, sd; ¢ E and td; ¢ E foreachi,2 <i < k—1. Also ta; ¢ E
for each 4, 2 < i < k — 1; otherwise by (x) we have t € D, a contradiction.
Therefore,

da(g) +da(s) + d2(t) < (IV2l + 1)/2+ (V2| + 1)/2 + {ax}| = |Va| + 2.

Clearly, d3(q) = 0. Also N3(s) N N3 (t) = 0; otherwise in G there is a
path between u and v which is longer than P. Therefore,

ds(q) + da(s) + ds(t) = |Na(s)| + N5 (8)] = |Ns(s) UNGF ()| < |Vs —
{di}l = V3] - 1.

Notice that Ny(g)N N (s) =0, Nf (s)NN(t) =0 and N(t)NN(q) = 0;
otherwise G has paths between u and v which are longer than P. Clearly,

ar & Ny(s), by & Na(q), and b & Na(t). It is observed that b ¢ N;(s);
otherwise G has a path

us(ﬁ[b,',s""]qa,b[ ﬁ[b;",'u]
between u and v which is longer than P, a contradiction. Therefore,

da(q) + da(s) + da(t) = |Na(q)| + [N ()| + IN(2)] = |Na(q) U N} (s) U
N(@)| < |Va—{b}] = V4] - 1.
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Clearly, ds(g) = 0. Notice that N;"(s) N N5(t) = @; otherwise G has a
path from u to v which is longer than P. Since d(u,v) > 3, v & N(s). Thus
N (s) C Vs. Therefore, '

ds(q) + ds(s) + ds(t) = N5 (s)] + | Ns ()] =[N3 (s) U Ns(2)| < |Vsl.
Obviously, ds(g) + ds(s) + ds(t) < [Vs| — 1.

Hence, n < d(g) + d(s) + d(t) < T5.,(di(g) + di(s) +di(t)) Sn—1,2
contradiction.

Subcase 2.3. d; = b;4; foreachi, 1<i<I-1.

Firstly, we prove that V(H) = {¢}. Suppose not, then for any vertex
w in V(H) it is obvious that wd; ¢ E and wa; ¢ E for each i, 1 < ¢ < I
otherwise G contains paths between u and v which are longer than P. Since
G is 3 - connected, G[V(G) — {¢,v}] is connected. Thus there exist vertex
w € V(H)—-{q} and vertex p € [df,v~] such that wp € E. Let s = di
and t = p*. Set

1/1 = ?[u’al]a
‘/2 = ?[dl)p]s
Vs = Plt,o),

Vi = V(G) - V(P).

Clearly, sd; ¢ E and td; ¢ E for each i, 1 < i <l. Also ta; ¢ E for each
i, 1 < i < I; otherwise by (x) we have t € D, a contradiction. Therefore,

di(g) + di(s) + di(t) < (Val + 1)/2+ (il + 1)/2 = V| + 1.

Clearly, da(g) = 0. Notice that N; (s) N Nz(t) = @; otherwise G has a
path between u and v which is longer than P. Therefore,

da(q) + da(s) + da(t) = [Ny ()] + IN2(2)] = [Nz (s) U N2(8)] < [V2l-
Clearly, d3(g) = 0. Notice that N3(s) N Ny (t) = §; otherwise G has a

path between u and v which is longer than P. Since d(u,v) > 3, v & N(s).
Thus N3(s) € V3 — {v}. Therefore,
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v 'ds(g)+d3(8)+d3(t) = |N3(s)|+|N5 (8)] = [N3(s)UN; ()] < [Va—{w}| <

Obviously, ds(g) + da(s) +da(t) < |V4| - 1.

Hence, n < d(q) + d(s) + d(t) < iz, (di(g) + di(s) + di(t)) <n—1,a
contradiction.

Secondly, we prove that G[V(G) — V (P)] has only one component. Sup-
pose not, let H; be any component of G[V(G) — V(P) — V(H)] and q; a
vertex in H; such that |[N(q1) NV (P)| > 3. Clearly, uq, € E; otherwise (x)
implies that ¢, € D, which is impossible. Moreover, we have a;q; ¢ E for
each i, 1 <i < l. Let C be the set N(q1) NV (P) := {e1,¢2,..., 1, } With
the ¢;’s ordered with increasing index in the reverse direction of P.

If ¢; # v, then using a similar argument as in Case 1, we can derive a
contradiction. If ¢; = v, then ¢] = c,-':l foreach 7, 1 <1 < l; —1; otherwise
using similar arguments as in Subcase 2.1 and Subcase 2.2, we can derive
contradictions. Furthermore, using a similar argument as in the first part of
Subcase 2.3, we can show that H; = { ¢, }. Since d(q) > n/3, d(q1) > n/3,
and qyq1 € E, biq) € E, diqy € E. Thus G has a path

T”[u, a-1]qaibiqy ?[d,, v]

between u and v which is longer than P, a contradiction.

Finally, we derive the last contradiction. Since G is a 3 — connected
L, - graph and any graph in the family X contains no pair of vertices of
distance at least three, by Lemma 3 we have w(G — S) < |S] — 1 for every
subset S of vertex set V(G) with w(G — S) > 1. Clearly, |T3[d;,v]| # 1;
otherwise | — 1 > w(G - {a1,a2,...,a1}) = [ + 1. Also |?[d¢,v]| # 2;
otherwise ! > w(G — {a1,a2,...,a;,v}) =1+ 1. Thus |?[d¢,v]| > 3. Since
w(G - {a1,0a2, ...,a1,v}) < !, there exists a vertex in {d;,ds, ...,di_; }, say
dr,1<r<1-1,and a vertex w in I?[dg,v‘]l such that d,w € E(G). Now
consider the vertex w*. We will show that N(w*) N Plu,d;] = 0. If there
exists some vertex, say d,,, in {d1,dz,...,d, } that is also in N(wt), then
G has a path

?[u, am]q?[a,+1 , w](ﬁ[dr, dm]?[w+, v]

between u and v which is longer than P, a contradiction. If there exist
some vertex, say dpm, in { dp41,dr42,...,di } that is also in N(w?), then G
has a path

ﬁ[u, a,]q‘p[am, dr]?[w, dm]?[w“", v)
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between u and v which is longer than P, a contradiction. If some vertex
@m, 1 < m < I, is in N(w'), then by (x) we have w* € D, which is
impossible. Hence, n = |[{q}| + [V(P)] = 1+ |Pu,di]| + |P[d},]| >
1+ 2d(q) + d(w*) + 1 > 36(G) + 2 > n + 2, a contradiction.

Case 3. u#a; andv=aq.

This case is symmetric to Case 2. The arguments in Case 2 can be
symmetrically applied to this case and we can arrive at a contradiction.

The combination of proofs for Cases 1, 2, and 3 completes the proof of
Theorem 3.
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