# A hamiltonian result on $L_1$ – graphs

Rao Li
School of Computer and Information Sciences
Georgia Southwestern State University
Americus, GA 31709
Email: rl@canes.gsw.edu

#### Abstract

A graph G is called an  $L_1$  – graph if, for each triple of vertices x, y, and z with d(x,y)=2 and  $z\in N(x)\cap N(y)$ ,  $d(x)+d(y)\geq |N(x)\cup N(y)\cup N(z)|-1$ . Let G be a 3 – connected  $L_1$  – graph of order  $n\geq 18$ . If  $\delta(G)\geq n/3$ , then every pair of vertices u and v in G with  $d(u,v)\geq 3$  is connected by a hamilton path of G.

## 1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Notation and terminology not defined here follow that in [6]. If  $S \subseteq V(G)$ , then N(S) denotes the neighbors of S, that is, the set of all vertices in G adjacent to at least one vertex in S. For a subgraph H of Gand  $S \subseteq V(G) - V(H)$ , let  $N_H(S) = N(S) \cap V(H)$  and  $|N_H(S)| = d_H(S)$ . If  $S = \{s\}$ , then  $N_H(S)$  and  $|N_H(S)|$  are written as  $N_H(s)$  and  $d_H(s)$ respectively. For disjoint subsets A, B of the vertex set V(G) of a graph G, let e(A, B) be the number of the edges in G that join a vertex in A and a vertex in B. For any integer  $p \geq 3$ , let  $(I_p + e)$  denote the graph with p vertices and one edge. We define  $\mathcal{M}$ ,  $\mathcal{N}$ , and  $\mathcal{K}$  as  $\{G: K_{p,p} \subseteq G \subseteq K_p + pK_1\}$ for some  $p \geq 3$ ,  $\{G: K_{p,p+1} \subseteq G \subseteq K_p + (I_{p+1} + e) \text{ for some } p \geq 3\}$ , and  $\mathcal{K} = \mathcal{M} \cup \mathcal{N}$  respectively. If P is a path of G, let  $\overrightarrow{P}$  denote the path P with a given orientation. If vertices u, v are on P and u precedes valong the direction of P, then we use  $\vec{P}[u,v]$  to denote the consecutive vertices on P from u to v in the direction specified by  $\overrightarrow{P}$ . The same set of vertices, in reverse order, is denoted by  $\overline{P}[v,u]$ . We use  $x^-$  and  $x^+$  to denote the predecessor and successor of a vertex x on P along the orientation of P. If  $A \subseteq V(P)$ , then  $A^-$  and  $A^+$  are defined as  $\{v^- : v \in A\}$  and

 $\{v^+:v\in A\}$  respectively. A graph G is a claw – free graph if G has no induced subgraph isomorphic to  $K_{1,3}$ . For an integer i, a graph G is called an  $L_i$  – graph if  $d(x)+d(y)\geq |N(x)\cup N(y)\cup N(z)|-i$ , or equivalently  $|N(x)\cap N(y)|\geq |N(z)-(N(x)\cup N(y))|-i$  for each triple of vertices x,y, and z with d(x,y)=2 and  $z\in N(x)\cap N(y)$ . It can easily be verified that every claw – free graph is an  $L_1$  – graph (see [2]).

The long time interest in claw – free graphs motivates our study of  $L_1$  – graphs. Several authors have already obtained results on the hamiltonian properties of  $L_i$  – graphs. As atian and Khachatrian [4] proved that all connected  $L_0$  – graphs of order at least three are hamiltonian and Saito [11] showed that if a graph G is a 2 – connected  $L_1$  – graph of diameter two then either G is hamiltonian or  $G \in \mathcal{K}$ . More results related to the hamiltonian properties of  $L_i$  – graphs can be found in [1], [2], [3] and [5].

Recently, Li and Schelp [8] extended Matthews and Sumner's theorems [9] on the hamiltonicity and traceability of claw – free graphs to  $L_1$  – graphs.

**Theorem 1** [8] Let G be a 2 – connected  $L_1$  – graph of order n. If  $\delta(G) \ge (n-2)/3$ , then G is hamiltonian or  $G \in \mathcal{K}$ .

**Theorem 2** [8] Let G be a connected  $L_1$  – graph of order n. If  $\delta(G) \ge (n-2)/3$ , then G is traceable.

The objective of this paper is to present a result which is related to hamilton – connectedness of  $L_1$  – graphs.

**Theorem 3** Let G be a 3 - connected  $L_1$  - graph of order  $n \ge 18$ . If  $\delta(G) \ge n/3$ , then every pair of vertices u and v in G with  $d(u,v) \ge 3$  is connected by a hamilton path of G.

Notice that for  $L_1$  – graphs Asratian et al. [2] presented another condition that gives the same conclusion as in Theorem 3.

**Theorem 4** [2] Let G be a connected  $L_1$  – graph of order at least 3 such that  $|N(u) \cup N(v)| \ge 2$  for every pair of vertices with d(u,v) = 2. Then every pair of vertices x and y with  $d(x,y) \ge 3$  is connected by a hamilton path of G.

#### 2. Lemmas

**Lemma 1** [7] Suppose G is a 2 – connected graph of order n. Then through each edge of G there passes a cycle of length at least min{ n,  $2\delta(G) - 1$  }.

**Lemma 2** [10] Let G be a graph of order n. If for each pair of non-adjacent vertices u and v  $d(u) + d(v) \ge n + 1$ , then G is hamilton connected.

**Lemma 3** If G is a 3 - connected  $L_1$  - graph, then either  $G \in \mathcal{K}$  or  $\omega(G-S) \leq |S|-1$  for every subset S of vertex set V(G) with  $\omega(G-S) > 1$ , where  $\omega(G-S)$  denotes the number of components in the graph G-S.

Lemma 3 is modified from Theorem 5 in [2]. It should be pointed out that the proof of Lemma 3 is similar to that of Theorem 5 in [2]. For the sake of completeness, we still include the proof of Lemma 3 here.

**Proof of Lemma 3.** In order to prove Lemma 3, we need a fact, which is identical to Lemma 13 in [2], on  $L_1$  – graphs. The proof of this fact can be found in [2].

Fact. Let G be an  $L_1$  – graph, v a vertex of G and  $W = \{w_1, w_2, ..., w_k\}$  a subset of N(v) of cardinality k. Assume G contains an independent set  $U = \{u_1, u_2, ..., u_k\}$  of cardinality k such that  $U \cap (N(v) \cup \{v\}) = \emptyset$  and, for i = 1, 2, ..., k,  $u_i w_i \in E(G)$  and  $N(u_i) \cap (N(v) - W) = \emptyset$ . Then  $N(w_i) - (N(v) \cup \{v\}) \subseteq N(u_i) \cup U$ , (i = 1, 2, ..., k).

Let G be a 3 – connected  $L_1$  – graph and assume that  $\omega(G-A) \geq |A|$  for some subset A of vertex set V(G) with  $\omega(G-A) > 1$ . Let X be a subset of vertex set V(G) of minimum cardinality for which  $\omega(G-X) \geq |X|$  and  $\omega(G-X) > 1$ . Since G is 3 – connected,  $l := |X| \geq 3$  and  $m := \omega(G-X) \geq |X| = l \geq 3$ . Let  $H_1, H_2, ..., H_m$  be the components of G - X. To prove that  $G \in \mathcal{K}$ , we need the following claims.

Claim 1. For every nonempty proper subset S of X,  $|\{i: N(S) \cap V(H_i) \neq \emptyset\}| \geq |S| + 2$ .

Suppose  $S \subseteq X$ ,  $\emptyset \neq S \neq X$  and  $|\{i : N(S) \cap V(H_i) \neq \emptyset\}| \leq |S| + 1$ . Set T = X - S. Then  $\omega(G - T) \geq m - (|S| + 1) + 1 \geq l - |S| = |T|$ . This contradiction to the choice of X proves Claim 1.

Choose any subset S of cardinality l-1 from X. Then  $m \geq |\{i: N(S) \cap V(H_i) \neq \emptyset\}| \geq |S|+2=l+1 \geq 4$ .

Claim 2. If  $v \notin X$  and  $N(v) \cap X \neq \emptyset$ , then  $X \subseteq N(v)$ .

Suppose  $v \notin X$  and  $N(v) \cap X \neq \emptyset$ , but  $X \not\subseteq N(v)$ . Set  $W = N(v) \cap X$  and k = |W|. Then  $1 \leq k < l$ . Let  $w_1, w_2, ..., w_k$  be the vertices of W. By Claim 1 and Hall's Theorem (See Bondy and Murty [6, p. 72]), N(W) - X contains a subset  $U := \{u_1, u_2, ..., u_k\}$  of cardinality k such that no two vertices of  $U \cup \{v\}$  are in the same componment of G - X and  $u_1w_1, u_2w_2, ..., u_kw_k \in E(G)$ . By the above fact, we have

 $N(w_i) - (N(v) \cup \{v\}) \subseteq N(u_i) \cup U$  for each  $i, 1 \leq i \leq k$ . But then  $|\{i: N(S) \cap V(H_i) \neq \emptyset\}| \leq k+1 \leq |W|+1$ . This contradiction to Claim 1 proves Claim 2.

For each  $i, 1 \leq i \leq m$ , let  $y_i$  be a vertex in  $H_i$  with  $N(y_i) \cap X \neq \emptyset$ . Set  $Y = \{y_1, y_2, ..., y_m\}$ . By Claim 2,  $X \subseteq N(y_i)$  for each  $i, 1 \leq i \leq m$ , implying  $Y \subseteq N(x)$ , where x is any vertex in X. Since G is an  $L_1$  – graph, we have, for any vertex x in X and any pair of distinct vertices  $y_i$  and  $y_j$  in Y,

$$0 \le |N(y_i) \cap N(y_j)| - |N(x) - (N(y_i) \cup N(y_j))| + 1$$
  
= |X| - |N(x) - (N(y\_i) \cdot N(y\_j))| + 1  
\le |X| - |Y| + 1 = l - m + 1 \le 1.

Therefore  $|X| - |N(x) - (N(y_i) \cup N(y_j))| + 1 = 0$  or 1 for any vetex x in X and any pair of distinct vertices  $y_i$  and  $y_j$  in Y. The remainder of our proof is divided into several cases.

Case 1.  $|X| - |N(x) - (N(y_i) \cup N(y_j))| + 1 = 1$  for some vertex x in X and some pair of distinct vertices  $y_i$  and  $y_j$  in Y.

Then  $N(x)-(N(y_i)\cup N(y_j))=Y$  and m=l. Therefore  $N(x)\cap V(H_k)=\{y_k\}$  for each  $k\in\{1,2,...,m\}-\{i,j\}$ . Furthermore, for each  $x_1\in X-\{x\}$  and each  $k\in\{1,2,...,m\}-\{i,j\}, N(x_1)\cap V(H_k)=\{y_k\}$ ; otherwise there exists a vertex  $y_0\not\in X-(V(H_i)\cup V(H_j))$  and  $N(y_0)\cap X\neq\emptyset$ . Thus by Claim  $2\ X\subseteq N(y_0)$ , contradicting to  $N(x)\cap V(H_k)=\{y_k\}$  for each  $k\in\{1,2,...,m\}-\{i,j\}$ . Since G is 3-connected,  $V(H_k)=\{y_k\}$  for each  $k\in\{1,2,...,m\}-\{i,j\}$ .

Case 1.1. 
$$N(x) \cap [(V(H_i) - \{y_i\}) \cup (V(H_j) - \{y_j\})] = \emptyset$$
.

Then  $N(x_1) \cap [(V(H_i) - \{y_i\}) \cup (V(H_j) - \{y_j\})] = \emptyset$  for each  $x_1 \in X - \{x\}$ ; otherwise there exists a vertex  $y_0 \in [(V(H_i) - \{y_i\}) \cup (V(H_j) - \{y_j\})]$  with  $N(y_0) \cap X \neq \emptyset$ , thus by Claim 2  $X \subseteq N(y_0)$ , in particular,  $y_0 \in N(x)$ , contradicting to the assumption of this case. Since G is 3 – connected,  $V(H_k) = \{y_k\}$  for k = i and k = j. Therefore  $G \in \mathcal{M} \subseteq \mathcal{K}$ .

Case 1.2. 
$$N(x) \cap [(V(H_i) - \{y_i\}) \cup (V(H_j) - \{y_j\})] \neq \emptyset$$
.

If there exists a vertex  $y_0$  such that  $y_0 \in N(x) \cap (V(H_i) - \{y_i\}) \neq \emptyset$  and  $N(x) \cap (V(H_j) - \{y_j\}) = \emptyset$ . Then by Claim 2 we have  $X \subseteq N(y_0)$ . Since G is an  $L_1$  – graph, we have, for any  $x_1 \in X - \{x\}$  and any distinct pair of vertices  $y_{i_1}, y_{j_1} \in Y - \{y_i\}$ 

$$0 \le |N(y_{i_1}) \cap N(y_{j_1})| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$   
 $\le |X| - |Y \cup \{y_0\}| + 1 = l - m \le 0.$ 

Thus  $N(x_1)-(N(y_{i_1})\cup N(y_{j_1}))=Y\cup\{y_0\}$  for any  $x_1\in X-\{x\}$  and any distinct pair of vertices  $y_{i_1},y_{j_1}\in Y-\{y_i\}$ . Then  $N(X-\{x\})\cap V(H_i)=\{y_0,y_i\}$  and  $N(X-\{x\})\cap V(H_j)=\{y_j\}$ . Moreover,  $N(x)\cap V(H_i)=\{y_0,y_i\}$  and  $N(x)\cap V(H_j)=\{y_j\}$ ; otherwise by Claim 2 there exists a vertex  $y_{m+1}\in [(V(H_i)-\{y_0,y_i\})\cup (V(H_j)-\{y_j\})]$  such that  $X\subseteq N(y_{m+1})$ , contradicting to either  $N(X-\{x\})\cap V(H_i)=\{y_0,y_i\}$  or  $N(X-\{x\})\cap V(H_j)=\{y_j\}$ . Thus  $N(X)\cap V(H_i)=\{y_0,y_i\}$  and  $N(X)\cap V(H_j)=\{y_j\}$ . Since G is 3-connected,  $V(H_i)=\{y_0,y_i\}$  and  $V(H_i)=\{y_i\}$ . Therefore  $G\in \mathcal{N}\subseteq \mathcal{K}$ .

If there exists a vertex  $y_0$  such that  $y_0 \in N(x) \cap (V(H_j) - \{y_j\}) \neq \emptyset$  and  $N(x) \cap (V(H_i) - \{y_i\}) = \emptyset$ , then by a similar argument as before we can prove that  $G \in \mathcal{N} \subseteq \mathcal{K}$ .

Next we will show that it is impossible for  $N(x) \cap (V(H_i) - \{y_i\}) \neq \emptyset$  and  $N(x) \cap (V(H_j) - \{y_j\}) \neq \emptyset$  hold simultaneously. Suppose not, then there exist vertices  $y_0$  and  $y_{m+1}$  such that  $y_0 \in N(x) \cap (V(H_i) - \{y_i\}) \neq \emptyset$  and  $y_{m+1} \in N(x) \cap (V(H_j) - \{y_j\}) \neq \emptyset$ . Thus by Claim 2 we have  $X \subseteq N(y_0)$  and  $X \subseteq N(y_{m+1})$ . Let  $x_1$  be a vertex in  $X - \{x\}$  and  $y_{i_1}, y_{j_1}$  two distinct vertices in  $Y - \{y_i, y_j\}$  (since  $|Y| = m \geq 4$ ). Then we have following contradiction,

$$0 \le |N(y_{i_1}) \cap N(y_{j_1})| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$   
 $\le |X| - |Y \cup \{y_0, y_{m+1}\}| + 1 = l - m - 1 \le -1.$ 

Case 2.  $|X| - |N(x) - (N(y_i) \cup N(y_j))| + 1 = 0$  for some vertex x in X and some pair of distinct vertices  $y_i$  and  $y_j$  in Y.

Case 2.1. 
$$|X| - |Y| + 1 = 0$$
.

Then  $N(x) - (N(y_i) \cup N(y_j)) = Y$  for vertex x in X and distinct vertices  $y_i$  and  $y_j$  in Y and m = l + 1. Using a similar argument as in Case 1, we can show that  $V(H_k) = \{y_k\}$  for each  $k \in \{1, 2, ..., m\} - \{i, j\}$ .

Case 2.1.1. 
$$N(x) \cap [(V(H_i) - \{y_i\}) \cup (V(H_i) - \{y_i\})] = \emptyset$$
.

Using a similar argument as in Case 1.1, we can prove that  $V(H_k) = \{y_k\}$  for k = i and k = j. Therefore  $G \in \mathcal{N} \subseteq \mathcal{K}$ .

Case 2.1.2. 
$$N(x) \cap [(V(H_i) - \{y_i\}) \cup (V(H_j) - \{y_j\})] \neq \emptyset$$
.

If there exists a vertex  $y_0$  such that  $y_0 \in N(x) \cap (V(H_i) - \{y_i\}) \neq \emptyset$  and  $N(x) \cap (V(H_j) - \{y_j\}) = \emptyset$ , then by Claim 2 we have  $X \subseteq N(y_0)$ . Since G is an  $L_1$  – graph, we have, for any  $x_1 \in X - \{x\}$  and any distinct pair of vertices  $y_{i_1}, y_{j_1} \in Y - \{y_i\}$ ,

$$0 \le |N(y_{i_1}) \cap N(y_{j_1})| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$   
 $\le |X| - |Y \cup \{y_0\}| + 1 = l - m \le 0.$ 

Thus m = l, contradicting to m = l + 1.

If there exists a vertex  $y_0$  such that  $y_0 \in N(x) \cap (V(H_j) - \{y_j\}) \neq \emptyset$  and  $N(x) \cap (V(H_i) - \{y_i\}) = \emptyset$ , then by a similar argument as before we can derive a contradiction.

If there exist vertices  $y_0$  and  $y_{m+1}$  such that  $y_0 \in N(x) \cap (V(H_i) - \{y_i\}) \neq \emptyset$  and  $y_{m+1} \in N(x) \cap (V(H_j) - \{y_j\}) \neq \emptyset$ , then by Claim 2 we have  $X \subseteq N(y_0)$  and  $X \subseteq N(y_{m+1})$ . Let  $x_1$  be a vertex in  $X - \{x\}$  and  $y_{i_1}, y_{j_1}$  two distinct vertices in  $Y - \{y_i, y_j\}$  (since  $|Y| = m \ge 4$ ). Then we have following contradiction,

$$0 \le |N(y_{i_1}) \cap N(y_{j_1})| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$   
 $\le |X| - |Y \cup \{y_0, y_{m+1}\}| + 1 = l - m - 1 \le -1.$ 

Therefore Case 2.1.2 cannot occur.

Case 2.2. 
$$|X| - |Y| + 1 = 1$$
.

Then  $N(x) - (N(y_i) \cup N(y_j)) = Y \cup \{y_0\}$  for some vertex  $y_0 \in N(x) - (N(y_i) \cup N(y_j) \cup Y) \subseteq V(G) - X$  and m = l.

Case 2.2.1. 
$$y_0 \in V(H_k) - \{y_k\}$$
 for some  $k \neq i$  and  $k \neq j$ .

By Claim 2, we have  $X \subseteq N(y_0)$ . Let  $x_1$  be any vertex in  $X - \{x\}$  and  $y_{i_1}, y_{j_1}$  any pair of distinct vertices in  $Y - \{y_k\}$ . Since G is an  $L_1$  – graph, we have

$$0 \le |N(y_{i_1}) \cap N(y_{j_1})| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_{i_1}) \cup N(y_{j_1}))| + 1$   
 $\le |X| - |Y \cup \{y_0\}| + 1 = l - m \le 0.$ 

Then  $N(x_1)-(N(y_{i_1})\cup N(y_{j_1}))=Y\cup\{y_0\}$  for any  $x_1$  in  $X-\{x\}$  and any pair of distinct vertices  $y_{i_1},y_{j_1}$  in  $Y-\{y_k\}$ . Thus  $N(X-\{x\})\cap V(H_k)=\{y_0,y_k\}$  and  $N(X-\{x\})\cap V(H_i)=\{y_i\}$  for  $i\neq k$ . Moreover,  $N(x)\cap V(H_k)=\{y_0,y_k\}$  and  $N(x)\cap V(H_i)=\{y_i\}$  for  $i\neq k$ ; otherwise there exists a vertex  $y_{m+1}\in V(G)-(X\cup Y)$  such that  $N(y_{m+1})\cap X\neq\emptyset$  and Claim 2 implies that  $X\subseteq N(y_{m+1})$ , contradicting to either  $N(X-\{x\})\cap V(H_k)=\{y_0,y_k\}$  or  $N(X-\{x\})\cap V(H_i)=\{y_i\}$  for  $i\neq k$ . Since G is 3 - connected,  $V(H_k)=\{y_0,y_k\}$  and  $V(H_i)=\{y_i\}$  for  $i\neq k$ . Therefore  $G\in \mathcal{N}\subset \mathcal{K}$ .

Case 2.2.2. 
$$y_0 \in V(H_i) - \{y_i\}$$
 or  $y_0 \in V(H_i) - \{y_i\}$ .

Without loss of generality, we assume that  $y_0 \in V(H_i) - \{y_i\}$ . Then by Claim 2 we have  $X \subseteq N(y_0)$ . Since G is an  $L_1$  – graph and  $y_0 \notin N(y_i) \cup N(y_j) \cup Y$ , we have, for any vertex  $x_1$  in  $X - \{x\}$  and any pair of distinct vertices  $y_i$  and  $y_j$  in Y,

$$0 \le |N(y_i) \cap N(y_j)| - |N(x_1) - (N(y_i) \cup N(y_j))| + 1$$
  
=  $|X| - |N(x_1) - (N(y_i) \cup N(y_j))| + 1$   
 $< |X| - |Y \cup \{y_0\}| + 1 = l - m \le 0.$ 

Then  $N(x_1) - (N(y_i) \cup N(y_j)) = Y \cup \{y_0\}$  for any  $x_1$  in  $X - \{x\}$  and any pair of distinct vertices  $y_i$ ,  $y_j$  in Y. Using a similar argument as in the last part of Case 2.2.1, we have  $G \in \mathcal{N} \subseteq \mathcal{K}$ .

- Case 3.  $|X| |N(x) (N(y_i) \cup N(y_j))| + 1 = 0$  for some vertex x in X and any pair of distinct vertices  $y_i$  and  $y_j$  in Y.
- Case 4.  $|X| |N(x) (N(y_i) \cup N(y_j))| + 1 = 0$  for any vertex x in X and some pair of distinct vertices  $y_i$  and  $y_j$  in Y.
- Case 5.  $|X| |N(x) (N(y_i) \cup N(y_j))| + 1 = 0$  for any vertex x in X and any pair of distinct vertices  $y_i$  and  $y_j$  in Y.

Since the conditions in Cases 3, 4, and 5 all imply the conditions in Case 2, we have  $G \in \mathcal{K}$ .

Therefore we complete the proof of Lemma 3.

### 3. Proof of Theorem 3

**Proof of Theorem 3.** Let G be a graph satisfying the conditions in Theorem 3. Suppose that there exists a pair of vertices u and v in Gwith  $d(u,v) \geq 3$  and no hamilton path in G connects u and v. Construct a graph  $G_1 = G + uv$ . Clearly,  $\delta(G_1) \geq \delta(G)$ . By Lemma 1 uv is contained in a cycle of length at least  $2\delta(G_1) - 1$  in  $G_1$ . Thus in G there exists a path from u and v such that the order of that path is at least  $2\delta(G_1) - 1 \ge 2\delta(G) - 1$ . Choose any longest path P = P[u, v] between uand v in G and assume that it is orientated from u to v. Then  $|V(P)| \ge$  $2\delta(G)-1$ . Let H be any component of the subgraph G[V(G)-V(P)]. Then  $|V(H)| < n - |V(P)| \le 3\delta(G) - (2\delta(G) - 1) = \delta(G) + 1$ . We further claim that there exists a vertex q in H such that  $|N(q) \cap V(P)| \geq 3$ . Suppose not, then for each vertex q in H,  $d_P(q) \leq 2$ . Thus  $d_H(q) \geq d(q) - 2$  and  $|V(H)| \ge 1 + d_H(q) \ge d(q) - 1 \ge \delta(G) - 1$ . Thus for any pair of non-adjacent vertices x and y in H  $d_H(x) + d_H(y) \ge 2\delta(G) - 4 \ge \delta(G) + 2 \ge |V(H)| + 1$ . Hence by Lemma 2 H is hamilton connected. Since G is 3 – connected, there exist three distinct vertices  $x_1$ ,  $x_2$ , and  $x_3$  in H and three distinct vertices  $y_1$ ,  $y_2$ , and  $y_3$  on P such that  $x_1y_1$ ,  $x_2y_2$ , and  $x_3y_3$  are in E. Here we assume that  $y_1, y_2$ , and  $y_3$  are ordered with increasing index in the direction of P. Since P is a longest path connecting u and v and H is hamilton connected,  $|\overrightarrow{P}[y_1^+, y_2^-]| \ge |V(H)|$  and  $|\overrightarrow{P}[y_2^+, y_3^-]| \ge |V(H)|$ . Thus  $n \ge |\overrightarrow{P}[u, y_1^-]| + |\overrightarrow{P}[y_1^+, y_2^-]| + |\overrightarrow{P}[y_2^+, y_3^-]| + |\overrightarrow{P}[y_3^+, v]| + |\{y_1, y_2, y_3\}| + |\overrightarrow{P}[y_1^+, v_2^-]| + |\overrightarrow{P}[y_2^+, v_3^-]| + |\overrightarrow{P}[y_3^+, v_2^-]| + |\overrightarrow{P}[y_3^+, v_3^-]| +$  $|V(H)| \ge 3|V(H)| + 3 \ge 3(\delta(G) - 1) + 3 \ge n$ . Therefore  $y_1 = u, y_3 = v$ , and  $|V(H)| = \delta(G) - 1$ . Moreover,  $d_H(x_1) = d_H(x_3) = \delta(G) - 2$  and  $d_P(x_1)=d_P(x_3)=2$ . Since  $d(u,v)\geq 3, \ x_1v\not\in E$ . Also  $x_1p\not\in E$  for each vertex  $p \in V(P) - \{y_1, y_2, y_3\}$ ; otherwise by the hamilton connectedness of H it can be derived that  $|V(P)| \ge 2|V(H)| + 5$  when  $p \in \overrightarrow{P}[y_1^+, y_2^-]$ or  $|V(P)| \ge 3|V(H)| + 4$  when  $p \in \overrightarrow{P}[y_2^+, y_3^-]$ , both imply a contradiction of  $|V(P)| + |H| \ge n + 1$ . Thus  $x_1y_2 \in E$ . Similarly,  $x_3y_2 \in E$ . Next we will show that  $y_2^-y_2^+ \in E$ . Suppose not. Since G is an  $L_1$  - graph and  $d(y_2^-, x_1) = 2$ ,  $d(y_2^-) + d(x_1) \ge |N(y_2^-) \cup N(y_2) \cup N(x_1)| - 1$ , i. e.,  $|N(y_2^-) \cap N(x_1)| \ge |N(y_2) - (N(y_2^-) \cup N(x_1))| - 1 \ge |\{y_2^-, y_2^+, x_1\}| - 1 = 2$ . So  $y_2^-u \in E$ . Similarly,  $|N(y_2^-) \cap N(x_3)| \ge 2$  and  $y_2^-v \in E$ . This contradiction dicts the assumption of  $d(u,v) \geq 3$ . Thus  $y_2^-y_2^+ \in E$ . Again by the choice of P and hamilton connectedness of H, we have  $n \geq |V(P)| + |V(H)| \geq$  $|\overrightarrow{P}[y_1^+, y_2^{--}]| + |\overrightarrow{P}[y_2^{++}, y_3^{-}]| + |\{y_1, y_2^-, y_2, y_2^+, y_3\}| + |V(H)| \ge |V(H)| + |V(H)| + |V(H)| \ge |V(H)| + |V($  $|V(H)| + 5 + |V(H)| = 3\delta(G) + 2 \ge n + 2$ , a contradiction.

Choose a vertex q in V(H) such that  $|N(q) \cap V(P)| \geq 3$ . Let A be the set  $N(q) \cap V(P) := \{a_1, a_2, ..., a_l\}$  with the  $a_i$ 's ordered with increasing index in the direction of P. Let  $b_i$  and  $d_i$  be the predecessor and successor of  $a_i$ 

along P respectively,  $1 \le i \le l$ . Set  $B := \{b_1, b_2, ..., b_l\}, D := \{d_1, d_2, ..., d_l\}$ .

Since  $d(u, v) \ge 3$ , uq and vq cannot be in E simultaneously. Thus the remainder of our proof can be divided into the following cases.

Case 1.  $u \neq a_1$  and  $v \neq a_l$ .

Clearly,  $B \cup \{q\}$  is independent and  $N(b_i) \cap N(q) \cap (V(G) - V(P)) = \emptyset$  for each  $i, 1 \le i \le l$ . Moreover,  $d(q, b_i) = 2$  and  $a_i \in N(q) \cap N(b_i)$  for each  $i, 1 \le i \le l$ . Since G is an  $L_1$  – graph, we have

$$|N(q) \cap N(b_i)| \ge |N(a_i) - (N(q) \cup N(b_i))| - 1.$$

Obviously,  $N_B(a_i) \subseteq N(a_i) - (N(q) \cup N(b_i) \cup \{q\})$ . Thus,

$$|N_B(a_i)| \leq |N(a_i) - (N(q) \cup N(b_i))| - 1$$
. Therefore,

$$|N_B(a_i)| \leq |N(q) \cap N(b_i)| = |N_A(b_i)|$$
. Hence,

$$e(A,B) = \sum_{i=1}^{l} |N_B(a_i)| \le \sum_{i=1}^{l} |N_A(b_i)| = e(A,B).$$

It follows, for each  $i, 1 \leq i \leq l$ , that

$$N(a_i) - (N(q) \cup N(b_i) \cup \{q\}) = N_B(a_i) \subseteq B. \tag{1}$$

Similarly, for each  $i, 1 \leq i \leq l$ ,

$$N(a_i) - (N(q) \cup N(d_i) \cup \{q\}) = N_D(a_i) \subseteq D.$$
 (2)

We claim that for each  $i, 1 \leq i \leq l, b_i d_i \in E$  and for each  $i, 1 \leq i \leq l-1, b_{i+1} \neq d_i$ . First of all, we show that  $b_1 d_1 \in E$ . Suppose not. Then  $b_1 \in N(a_1) - (N(q) \cup N(d_1) \cup \{q\})$  and by (2) we have  $b_1 \in D$ , a contradiction. Since  $b_1 d_1 \in E$ ,  $b_2 \neq d_1$ ; otherwise P would not be a longest path connecting u and v. Using a similar argument as before, we have  $b_2 d_2 \in E$  and  $b_3 \neq d_2$ . Repeating this process, we have for each  $i, 1 \leq i \leq l, b_i d_i \in E$  and for each  $i, 1 \leq i \leq l-1, b_{i+1} \neq d_i$ .

Let s be the first vertex on  $\overrightarrow{P}[d_1,b_2]$  such that  $b_1s \notin E(G)$ . The existence of s is guaranteed by the fact that  $b_2 \notin N(b_1)$ . Also observe that  $s \notin N(a_1)$ ; otherwise by (1) we have  $s \in N(a_1) - (N(q) \cup N(b_1) \cup \{q\}) = N_B(a_1) \subseteq B$ , so  $s = b_2$ . Then G has a path

$$\overrightarrow{P}[u,b_1]\overrightarrow{P}[d_1,b_2]a_1q\overrightarrow{P}[a_2,v]$$

between u and v which is longer than P, contradicting the choice of P. Similarly, there exists a vertex t which is the first vertex on  $\overrightarrow{P}[d_2, b_3]$  such that  $b_2t \notin E(G)$  and  $t \notin N(a_2)$ .

The proof for this case is completed by counting the degree sum of the vertices q, s, and t and arriving at a contrdiction. To accomplish this, we set

$$V_{1} = \overrightarrow{P}[u, b_{1}],$$
 $V_{2} = \overrightarrow{P}[a_{1}, s^{-}],$ 
 $V_{3} = \overrightarrow{P}[s, b_{2}],$ 
 $V_{4} = \overrightarrow{P}[a_{2}, t^{-}],$ 
 $V_{5} = \overrightarrow{P}[t, v],$ 
 $V_{6} = V(G) - V(P).$ 

In the remainder of our proof, we, for each vertex w in G, simplify some notation letting  $N_i(w)$  replace  $N_{V_i}(w)$ ,  $|N_i(w)| = d_i(w)$ ,  $(N_i(w))^- = N_i^-(w)$ , and  $(N_i(w))^+ = N_i^+(w)$ .

Clearly,  $d_1(q) = 0$ . Also  $N_1^+(s) \cap N_1(t) = \emptyset$ ; otherwise in G there is a path between u and v which is longer than P. Therefore,

$$d_1(q) + d_1(s) + d_1(t) = |N_1^+(s)| + |N_1(t)| = |N_1^+(s) \cup N_1(t)| \le |V_1|.$$

Notice that  $N(q) \cap (V_2 - \{a_1\}) = \emptyset$  and  $N(t) \cap V_2 = \emptyset$ ; otherwise G has paths between u and v which are longer than P. Therefore,

$$d_2(q) + d_2(s) + d_2(t) \le 1 + |V_2| - 1 = |V_2|.$$

Clearly,  $d_3(q) = 0$ . Also  $N_3(s) \cap N_3^+(t) = \emptyset$ ; otherwise in G there is a path between u and v which is longer than P. Therefore,

$$d_3(q)+d_3(s)+d_3(t)=|N_3(s)|+|N_3^+(t)|=|N_3(s)\cup N_3^+(t)|\leq |V_3-\{s\}|=|V_3|-1.$$

Notice that  $N(q) \cap (V_4 - \{a_2\}) = \emptyset$  and  $N(s) \cap V_4 = \emptyset$ ; otherwise G has paths between u and v which are longer than P. Therefore,

$$d_4(q) + d_4(s) + d_4(t) \le 1 + |V_4| - 1 = |V_4|.$$

We further notice that  $N_5(q) \cap N_5(s) = \emptyset$ ,  $N_5(s) \cap N_5^-(t) = \emptyset$ , and  $N_5^-(t) \cap N_5(q) = \emptyset$ ; otherwise in G there are again paths between u and v which are longer than P. Therefore,

$$d_5(q) + d_5(s) + d_5(t) = |N_5(q)| + |N_5(s)| + |N_5^-(t)| = |N_5(q) \cup N_5(s) \cup N_5^-(t)| \le |V_5|.$$

Obviously, 
$$d_6(q) + d_6(s) + d_6(t) \le |V_6| - 1$$
.

Hence,  $n \leq d(q) + d(s) + d(t) \leq \sum_{i=1}^{6} (d_i(q) + d_i(s) + d_i(t)) \leq n - 2$ , a contradiction.

Case 2.  $u = a_1$  and  $v \neq a_i$ .

Notice that in this case we still have

$$N(a_i) - (N(q) \cup N(d_i) \cup \{q\}) = N_D(a_i) \subseteq D. \tag{*}$$

Subase 2.1.  $d_i \neq b_{i+1}$  for each  $i, 1 \leq i \leq l-1$ .

Because of  $(\star)$ , we can still prove that  $b_id_i \in E$  for each  $i, 2 \leq i \leq l$ . Let s be the first vertex on  $P[b_2, d_1]$  such that  $d_2s \notin E(G)$  and t be the first vertex on  $P[b_3, d_2]$  such that  $d_3t \notin E(G)$ . The existence of s and t is ensured by the facts of  $d_2d_1 \notin E$  and  $d_3d_2 \notin E$ . As before,  $s \notin N(a_2)$  and  $t \notin N(a_3)$  (in fact,  $s \notin N(a_i)$  and  $t \notin N(a_i)$  for each  $i, 2 \leq i \leq l$ ). Next we again count the degree sum of vertices q, s, and t and derive a contradiction. Set

$$V_1 = \overrightarrow{P}[u, s],$$
  
 $V_2 = \overrightarrow{P}[s^+, a_2],$   
 $V_3 = \overrightarrow{P}[d_2, t],$   
 $V_4 = \overrightarrow{P}[t^+, a_3],$   
 $V_5 = \overrightarrow{P}[d_3, v],$   
 $V_6 = V(G) - V(P).$ 

Clearly,  $d_1(q) = 1$ . Also  $N_1^+(s) \cap N_1(t) = \emptyset$ ; otherwise in G there is a path between u and v which is longer than P. Therefore,

$$d_1(q) + d_1(s) + d_1(t) = 1 + |N_1^+(s)| + |N_1(t)| = 1 + |N_1^+(s) \cup N_1(t)| \le 1 + |V_1|.$$

Notice that  $N(q) \cap (V_2 - \{a_2\}) = \emptyset$  and  $N(t) \cap V_2 = \emptyset$ ; otherwise G has paths between u and v which are longer than P. Therefore,

$$d_2(q) + d_2(s) + d_2(t) < 1 + |V_2| - 1 = |V_2|$$

Clearly,  $d_3(q) = 0$ . Also  $N_3(s) \cap N_3^+(t) = \emptyset$ ; otherwise in G there is a path between u and v which is longer than P. Therefore,

$$d_3(q) + d_3(s) + d_3(t) = |N_3(s)| + |N_3^+(t)| = |N_3(s) \cup N_3^+(t)| \le |V_3 - \{d_2\}| = |V_3| - 1.$$

Notice that  $N(q) \cap (V_4 - \{a_3\}) = \emptyset$  and  $N(s) \cap V_4 = \emptyset$ ; otherwise G has paths between u and v which are longer than P. Therefore,

$$d_4(q) + d_4(s) + d_4(t) \le 1 + |V_4| - 1 = |V_4|.$$

We further notice that  $N_5^-(q) \cap N_5(s) = \emptyset$ ,  $N_5(s) \cap N_5^-(t) = \emptyset$ , and  $N_5^-(t) \cap N_5^-(q) = \emptyset$ ; otherwise in G there are again paths between u and v which are longer than P. Therefore,

$$d_5(q) + d_5(s) + d_5(t) = |N_5^-(q)| + |N_5(s)| + |N_5^-(t)| = |N_5^-(q) \cup N_5(s) \cup N_5^-(t)| \le |V_5|.$$

Obviously, 
$$d_6(q) + d_6(s) + d_6(t) \le |V_6| - 1$$
.

Hence,  $n \leq d(q) + d(s) + d(t) \leq \sum_{i=1}^{6} (d_i(q) + d_i(s) + d_i(t)) \leq n - 1$ , a contradiction.

**Subcase 2.2.** There exist i and j,  $1 \le i, j \le l-1$ , such that  $d_i = b_{i+1}$  and  $d_i \ne b_{i+1}$ .

Let  $k:=\min\{j: d_j\neq b_{j+1}, 1\leq j\leq l-1\}$ . Then using  $(\star)$  we can prove that  $b_md_m\in E$  and  $b_m\neq d_{m-1}$  for each  $m, k+1\leq m\leq l$ . Since the set  $\{i: d_i=b_{i+1}, 1\leq i\leq l-1\}$  is nonempty, we have  $k\geq 2$  and  $d_i=b_{i+1}$  for each  $i, 1\leq i\leq k-1$ . Let  $s=u^+$  and  $t=b_{k+1}$ . Again, we derive a contradiction by finding a upper bound on the degree sum of vertices q, s,

and t. Set

$$V_1 = \overrightarrow{P}[u, s],$$

$$V_2 = \overrightarrow{P}[s^+, a_k],$$

$$V_3 = \overrightarrow{P}[d_k, t],$$

$$V_4 = \overrightarrow{P}[a_{k+1}, a_l],$$

$$V_5 = \overrightarrow{P}[d_l, v],$$

$$V_6 = V(G) - V(P).$$

Clearly,  $d_1(q) = d(s) = 1$  and  $st \notin E$ . Notice that  $ut \notin E$ ; otherwise by  $(\star)$  we have  $t \in D$ , a contradiction. Therefore,

$$d_1(q) + d_1(s) + d_1(t) = 2 = |V_1|.$$

Clearly,  $sd_i \notin E$  and  $td_i \notin E$  for each  $i, 2 \le i \le k-1$ . Also  $ta_i \notin E$  for each  $i, 2 \le i \le k-1$ ; otherwise by  $(\star)$  we have  $t \in D$ , a contradiction. Therefore,

$$d_2(q) + d_2(s) + d_2(t) \le (|V_2| + 1)/2 + (|V_2| + 1)/2 + |\{a_k\}| = |V_2| + 2.$$

Clearly,  $d_3(q) = 0$ . Also  $N_3(s) \cap N_3^+(t) = \emptyset$ ; otherwise in G there is a path between u and v which is longer than P. Therefore,

$$\begin{aligned} d_3(q) + d_3(s) + d_3(t) &= |N_3(s)| + |N_3^+(t)| = |N_3(s) \cup N_3^+(t)| \le |V_3 - \{d_k\}| &= |V_3| - 1. \end{aligned}$$

Notice that  $N_4(q) \cap N_4^+(s) = \emptyset$ ,  $N_4^+(s) \cap N(t) = \emptyset$  and  $N(t) \cap N(q) = \emptyset$ ; otherwise G has paths between u and v which are longer than P. Clearly,  $a_l \notin N_4(s)$ ,  $b_l \notin N_4(q)$ , and  $b_l \notin N_4(t)$ . It is observed that  $b_l \notin N_4^+(s)$ ; otherwise G has a path

$$us \overleftarrow{P}[b_l^-, s^+]qa_lb_l^-\overrightarrow{P}[b_l^+, v]$$

between u and v which is longer than P, a contradiction. Therefore,

$$d_4(q) + d_4(s) + d_4(t) = |N_4(q)| + |N_4^+(s)| + |N(t)| = |N_4(q) \cup N_4^+(s) \cup N(t)| \le |V_4 - \{b_l\}| = |V_4| - 1.$$

Clearly,  $d_5(q) = 0$ . Notice that  $N_5^+(s) \cap N_5(t) = \emptyset$ ; otherwise G has a path from u to v which is longer than P. Since  $d(u, v) \geq 3$ ,  $v \notin N(s)$ . Thus  $N_5^+(s) \subseteq V_5$ . Therefore,

$$d_5(q) + d_5(s) + d_5(t) = |N_5^+(s)| + |N_5(t)| = |N_5^+(s) \cup N_5(t)| \le |V_5|.$$

Obviously,  $d_6(q) + d_6(s) + d_6(t) \le |V_6| - 1$ .

Hence,  $n \leq d(q) + d(s) + d(t) \leq \sum_{i=1}^{6} (d_i(q) + d_i(s) + d_i(t)) \leq n - 1$ , a contradiction.

Subcase 2.3.  $d_i = b_{i+1}$  for each  $i, 1 \le i \le l-1$ .

Firstly, we prove that  $V(H) = \{q\}$ . Suppose not, then for any vertex w in V(H) it is obvious that  $wd_i \notin E$  and  $wa_i \notin E$  for each  $i, 1 \le i \le l$ ; otherwise G contains paths between u and v which are longer than P. Since G is 3 - connected,  $G[V(G) - \{q, v\}]$  is connected. Thus there exist vertex  $w \in V(H) - \{q\}$  and vertex  $p \in \overrightarrow{P}[d_l^+, v^-]$  such that  $wp \in E$ . Let  $s = d_1$  and  $t = p^+$ . Set

$$V_1 = \overrightarrow{P}[u, a_l],$$
  
 $V_2 = \overrightarrow{P}[d_l, p],$   
 $V_3 = \overrightarrow{P}[t, v],$   
 $V_4 = V(G) - V(P).$ 

Clearly,  $sd_i \notin E$  and  $td_i \notin E$  for each  $i, 1 \leq i \leq l$ . Also  $ta_i \notin E$  for each  $i, 1 \leq i \leq l$ ; otherwise by  $(\star)$  we have  $t \in D$ , a contradiction. Therefore,

$$d_1(q) + d_1(s) + d_1(t) \le (|V_1| + 1)/2 + (|V_1| + 1)/2 = |V_1| + 1.$$

Clearly,  $d_2(q) = 0$ . Notice that  $N_2^-(s) \cap N_2(t) = \emptyset$ ; otherwise G has a path between u and v which is longer than P. Therefore,

$$d_2(q) + d_2(s) + d_2(t) = |N_2^-(s)| + |N_2(t)| = |N_2^-(s) \cup N_2(t)| \le |V_2|.$$

Clearly,  $d_3(q) = 0$ . Notice that  $N_3(s) \cap N_2^-(t) = \emptyset$ ; otherwise G has a path between u and v which is longer than P. Since  $d(u, v) \geq 3$ ,  $v \notin N(s)$ . Thus  $N_3(s) \subseteq V_3 - \{v\}$ . Therefore,

 $d_3(q)+d_3(s)+d_3(t)=|N_3(s)|+|N_3^-(t)|=|N_3(s)\cup N_3^-(t)|\leq |V_3-\{v\}|\leq |V_3|-1.$ 

Obviously,  $d_4(q) + d_4(s) + d_4(t) \le |V_4| - 1$ .

Hence,  $n \leq d(q) + d(s) + d(t) \leq \sum_{i=1}^{4} (d_i(q) + d_i(s) + d_i(t)) \leq n - 1$ , a contradiction.

Secondly, we prove that G[V(G)-V(P)] has only one component. Suppose not, let  $H_1$  be any component of G[V(G)-V(P)-V(H)] and  $q_1$  a vertex in  $H_1$  such that  $|N(q_1)\cap V(P)|\geq 3$ . Clearly,  $uq_1\not\in E$ ; otherwise  $(\star)$  implies that  $q_1\in D$ , which is impossible. Moreover, we have  $a_iq_1\not\in E$  for each  $i,1\leq i\leq l$ . Let C be the set  $N(q_1)\cap V(P):=\{c_1,c_2,...,c_{l_1}\}$  with the  $c_i$ 's ordered with increasing index in the reverse direction of P.

If  $c_1 \neq v$ , then using a similar argument as in Case 1, we can derive a contradiction. If  $c_1 = v$ , then  $c_i^- = c_{i+1}^+$  for each  $i, 1 \leq i \leq l_1 - 1$ ; otherwise using similar arguments as in Subcase 2.1 and Subcase 2.2, we can derive contradictions. Furthermore, using a similar argument as in the first part of Subcase 2.3, we can show that  $H_1 = \{q_1\}$ . Since  $d(q) \geq n/3$ ,  $d(q_1) \geq n/3$ , and  $a_l q_1 \notin E$ ,  $b_l q_1 \in E$ ,  $d_l q_1 \in E$ . Thus G has a path

$$\overrightarrow{P}[u, a_{l-1}]qa_lb_lq_1\overrightarrow{P}[d_l, v]$$

between u and v which is longer than P, a contradiction.

Finally, we derive the last contradiction. Since G is a 3 – connected  $L_1$  – graph and any graph in the family  $\mathcal K$  contains no pair of vertices of distance at least three, by Lemma 3 we have  $\omega(G-S) \leq |S|-1$  for every subset S of vertex set V(G) with  $\omega(G-S)>1$ . Clearly,  $|\overrightarrow{P}[d_l,v]| \neq 1$ ; otherwise  $l-1 \geq \omega(G-\{a_1,a_2,...,a_l\})=l+1$ . Also  $|\overrightarrow{P}[d_l,v]| \neq 2$ ; otherwise  $l \geq \omega(G-\{a_1,a_2,...,a_l,v\})=l+1$ . Thus  $|\overrightarrow{P}[d_l,v]| \geq 3$ . Since  $\omega(G-\{a_1,a_2,...,a_l,v\}) \leq l$ , there exists a vertex in  $\{d_1,d_2,...,d_{l-1}\}$ , say  $d_r, 1 \leq r \leq l-1$ , and a vertex w in  $|\overrightarrow{P}[d_l,v^-]|$  such that  $d_rw \in E(G)$ . Now consider the vertex  $w^+$ . We will show that  $N(w^+) \cap \overrightarrow{P}[u,d_l] = \emptyset$ . If there exists some vertex, say  $d_m$ , in  $\{d_1,d_2,...,d_r\}$  that is also in  $N(w^+)$ , then G has a path

$$\overrightarrow{P}[u, a_m]q\overrightarrow{P}[a_{r+1}, w]\overleftarrow{P}[d_r, d_m]\overrightarrow{P}[w^+, v]$$

between u and v which is longer than P, a contradiction. If there exist some vertex, say  $d_m$ , in  $\{d_{r+1}, d_{r+2}, ..., d_l\}$  that is also in  $N(w^+)$ , then G has a path

 $\overrightarrow{P}[u,a_r]q\overleftarrow{P}[a_m,d_r]\overleftarrow{P}[w,d_m]\overrightarrow{P}[w^+,v]$ 

between u and v which is longer than P, a contradiction. If some vertex  $a_m$ ,  $1 \le m \le l$ , is in  $N(w^+)$ , then by  $(\star)$  we have  $w^+ \in D$ , which is impossible. Hence,  $n = |\{q\}| + |V(P)| = 1 + |\overrightarrow{P}[u, d_l]| + |\overrightarrow{P}[d_l^+, v]| \ge 1 + 2d(q) + d(w^+) + 1 \ge 3\delta(G) + 2 \ge n + 2$ , a contradiction.

Case 3.  $u \neq a_1$  and  $v = a_l$ .

This case is symmetric to Case 2. The arguments in Case 2 can be symmetrically applied to this case and we can arrive at a contradiction.

The combination of proofs for Cases 1, 2, and 3 completes the proof of Theorem 3.

# References

- [1] A.S. Asratian, Some properties of graphs with local Ore condition, Ars Combinatoria 41 (1995), 97 106.
- [2] A.S. Asratian, H.J. Broersma, J. van den Heuvel, and H.J. Veldman, On graphs satisfying a local Ore – type condition, J. Graph Theory 21 (1996), 1 – 10.
- [3] A.S. Asratian, R. Häggkvist, and G.V. Sarkisian, A characterization of panconnected graphs satisfying a local Ore type condition, *J. Graph Theory* 22(1996), 95 103.
- [4] A.S. Asratian, N.H. Khachatrian, Some localization theorems on hamiltonian circuits, J. Combin. Theory Ser. B 49(1990), 287 294.
- [5] A.S. Asratian and G.V. Sarkisian, Some panconnected and pancyclic properties of graphs with a local Ore - type condition, Graphs and Combinatorics 12(1996), 209 - 219.
- [6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- [7] H. Enomoto, K. Hirohata and K. Ota, Long cycles passing through a specified edge in a 3 – connected graph, J. Graph Theory 24 (1997), 273 – 279.
- [8] R. Li and R. H. Schelp, Some hamiltonian properties of  $L_1$  graphs, to appear in Discrete Mathematics.

- [9] M.M. Matthews and D.P. Sumner, Longest paths and cycles in  $K_{1,3}$  free graphs, J. Graph Theory 9 (1985), 269 277.
- [10] O. Ore, Hamiltonian connected graphs, J. Math. Pure Appl. 42 (1963), 21 27.
- [11] A. Saito, A local Ore-type conditions for graphs of diameter two to be Hamiltonian, J. Comb. Math. Comb. Comput.2(1996), 155 159.