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ABSTRACT. In 1976 Erdés asked about the existence of Steiner
triple systems that lack collections of j blocks employing just
j+2 points. This has led to the study of anti-Pasch, anti-mitre
and 5-sparse Steiner triple systems. Simultaneously generating
sets and bases for Steiner triple systems and t-designs have
been determined. Combining these ideas, together with the
observation that a regular graph is a 1-design, we arrive at a
natural definition for the girth of a design. In turn, this provides
a natural extension of the search for cages to the universe of all
t-designs. We include the results of computational experiments
that give an abundance of examples of these new definitions.

1 Imtroduction

This article discusses two questions concerning the absence of small config-
urations in designs. One question is old - it was posed by Erdos in 1976.
The second question is motivated by recent results about generating sets
for designs, and generalizes the search for cages among regular graphs. For
an introduction to designs see [4] or [20].

Erdés 8] posed the following question about Steiner triple systems.
Question 1.1 For any r > 4 does there exist a vo(r) so that whenever
v > vo(r) and v is admissible, there exists a Steiner triple system with the
property that no set of j blocks employs just 7+2 points, for all 2 < j < r?

For this reason, a set of j blocks on j+ 2 points has been called an Erdés
configuration. The simplest case occurs when r = 4 and the question then
asks about the values of v for which there exists a Steiner triple system that
lacks the Pasch configuration (also known as a quadrilateral, see Figure 1).
The question is still open in this case, though partial results cover most
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values of v. Erdds’ idea has been extended to other avoidance results, such
as studying Steiner triple systems that lack a mitre configuration.

Figure 1. Pasch configuration

This article surveys the current state of Erdds’ question in Section 2
and considers the problem of determining generating sets and linear bases
for configurations in a Steiner triple system in Section 3. Though it has
been used in similar settings for different purposes, in this setting the term
configuration is used to describe any collection of blocks from a Steiner triple
system. Given a Steiner triple system, the set of all configurations that have
the same number of blocks can be partitioned according to isomorphism,
and then we can ask about the size of each such class. Roughly speaking, a
generating set is a set of representatives of some isomorphism classes with
the property that if the sizes of their classes are known, then the sizes of all
the other isomorphism classes can be easily determined. Generating sets
for Steiner triple systems have been found for configurations with seven
or fewer blocks [10, 6, 12, 19]. For the smaller numbers of blocks, the
generating sets coincide with the configurations to be avoided in Erdés’
question. Horak, Phillips, Wallis and Yucas have taken these ideas further
and given a characterization of generating sets in Steiner triple systems for
configurations of arbitrary size [12]. In turn, this characterization has been
generalized to apply not just to Steiner triple systems but to all ¢-designs
[1]. It is this last result that motivates this paper and is the subject of
Section 4.

A regular graph can be viewed as a t-design (where ¢t = 1) and thus we
can specialize and describe generating sets for regular graphs. With such
a description, we can mimic one aspect of Erdos’ question and ask which
regular graphs contain no instances of these generating sets. It happens
that the question then becomes one of constructing a regular graph without
small cycles. Minimal regular graphs that have fixed girth (a lack of small
cycles) are known as cages and have been studied heavily [2, 16, 21]. This
connection is detailed in Section 5.
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So, for small r, Erdés’ original question is partially concerned with the
search for Steiner triple systems that avoid elements of a generating set.
When this criteria is applied to regular graphs, we arrive at the well-known
problem of determining cages. In Erdds’ question the problem is to guar-
antee, beyond a certain order, that for each greater admissible order there
is an instance of a Steiner triple system that lacks specific configurations.
In the search for cages, the problem is to find the smallest instance which
lacks certain configurations. For both problems a study of all the small
order cases is often required. With a characterization of generating sets
applicable to any t-design, we will argue in Section 5 that it is natural
to consider designs that lack elements of a generating set, in addition to
considering designs lacking Erdds configurations. In Section 6 we will then
present the results of exhaustive computations for small order cases.

2 Avoidance Results in Steiner Triple Systems

A Steiner triple system on v points is a pair (V,B) where V is a set of v
elements (called points or vertices) and B is a set of 3-element subsets of V'
(called blocks or lines) with the property that every 2-element subset of V'
is a subset of exactly one block in B.

Returning to Erdés’ question (Question 1.1) in the case when r = 4,
we will use the term anti-Pasch for a Steiner triple system that lacks a
Pasch configuration. The complete spectrum of admissible values of v for
which there exists an anti-Pasch configuration is still not determined. It
is known that when v = 13 there are no anti-Pasch Steiner triple systems
and when v = 15 there is an anti-Pasch Steiner triple system. For v > 19,
computational experiments indicate there is an abundance of anti-Pasch
Steiner triple systems [11, 15]. Thus it is conjectured that vo(4) = 13.

Results of Brouwer [3] and Doyen [7] provide the existence of anti-Pasch
Steiner triple systems for each v = 3 mod 6. When v = 1 mod 6, the
results are more complicated, but the results of several authors provide the
existence of anti-Pasch configurations in almost all of the cases (see [9] for
more details). For the remainder of these cases, the existence question has
not been settled.

The two Erdés configurations with 5 blocks are known as the mia and
mitre (see Figure 2 and Figure 3). Since the mia configuration can be ob-
tained from the Pasch configuration by adding a line, attention has focused
on Steiner triple systems lacking a mitre configuration, which are known as
anti-mitre. Progress on the question of the existence of anti-mitre Steiner
triple systems has been made by Colburn, Mendelsohn, Rosa and Siran [5].
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Figure 2. Mia configuration Figure 3. Mitre configuration

However, Erdos’ question in the case when r = 5 asks about Steiner
triple systems which simultaneously lack instances of the Pasch, mitre and
mia configurations. Since the absence of a Pasch configuration implies the
absence of a mia configuration, we are left determining the existence of
Steiner triple systems that are simultaneously anti-Pasch and anti-mitre.
Such systems have been called 5-sparse, while more generally a system that
has no Erdds configurations on j blocks, for all 2 < j < r, has been called
r-sparse. The elements of the first known infinite class of 5-sparse systems
are all Netto systems, and no example of a 6-sparse system is known [5].
A direct product construction [13] yields a further infinite class of 5-sparse
systems.

3 Generating Sets for Steiner Triple Systems

We begin this section with an example first reported by Grannell, Griggs
and Mendelsohn [10].

Given a Steiner triple system on v points, consider subsets of size 4 from
the set of blocks. Each of these is referred to as a 4-line configuration,
and will be one of 16 types (according to isomorphism). If we construct
the set of all such 4-line configurations from the design, we can then group
them into 16 isomorphism classes, and consider the size of each class. For
five of these classes the sizes are functions of v, and will not vary among
different designs with the same number of points. For example, the 4-star
is the configuration with exactly one point common to all 4 blocks, which
are otherwise pairwise disjoint (see Figure 4). The size of the class for this
configuration is v(v — 1)(v — 3)(v — 5)/(244!).

The remaining 11 classes will have variable sizes, depending on the triple
system itself. However, to determine these sizes, it is sufficient to know the
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size of just one class, the one represented by the Pasch configuration. The
sizes for the 10 other configurations can be determined from linear equations
using v, and the size of the class represented by the Pasch configuration.
For example, consider the configuration where the 4 blocks form 2 parallel
pairs. Within these pairs, the 2 blocks are disjoint, but any other pair of
blocks has a unique point in common (see Figure 5). Then, if P denotes
the number of Pasch configurations and S denotes the number of square
configurations, we have

S =v(v—-1)(v —3)(v-8)/8+3P.

{ !
—o—9 oo t ¢

Figure 4. A 4-star Figure 5. A square

So if a Steiner triple system is anti-Pasch, then because we know that
there are zero Pasch configurations, we can determine the size of each class
of 4-line configurations simply as functions of v. In particular, any two
anti-Pasch Steiner triple systems on the same number of points will have
an identical number of 4-line configurations of each type. Also, depending
on the sign of the coefficient of the number of Pasch configurations, the
equations in [10] show that anti-Pasch Steiner triple systems are extremal
with regard to the size of other classes.

Suppose that for Steiner triple systems we have a set of configurations,
G, and for any other configuration outside of G, with m or fewer blocks,
we can write a formula for the size of its class that is a linear combination
of the sizes of the classes in G where the coefficients are functions of v, but
otherwise are independent of any other property of the Steiner triple sys-
tem. Then we say that G is a generating set for the m-line configurations.
It is convenient to always include the empty configuration (no blocks) in
any generating set, and thereby avoid the distinction used by other au-
thors between “constant” and “variable” configurations. Finally, we call a
generating set a basis if no proper subset is also a generating set.

For a Steiner triple system, the isomorphism class of any configuration
with 3 or fewer blocks has a size that is just a function of » [10]. To illustrate
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the definition of a basis, the results above can be rephrased by saying that
the set of configurations containing the empty configuration and the Pasch
configuration forms a basis for the 4-line configurations of a Steiner triple
system.

With the appearance of this interesting result, it was natural to search for
bases for configurations with greater numbers of lines. Danziger, Mendel-
sohn, Grannell and Griggs [6] found a basis for the 5-line configurations of
a Steiner triple system. It has three elements, adding the mitre configura-
tion to the basis for the 4-line configurations. The mitre (see Figure 3) has
5 blocks on 7 points, and thus is an Erdos configuration (as is the Pasch
configuration).

Horak, Phillips, Wallis and Yucas [12] found a basis for the 6-line con-
figurations of a Steiner triple system, adding 5 new configurations to the
basis for the 5-line configurations. However, not all of these are Erdss
configurations. In [10] it was conjectured that the empty configuration to-
gether with the relevant Erdds configurations would form a generating set.
So the situation for 5-line configurations shows this conjecture to be false.
This begs the question: should avoidance results for Steiner triple systems
(anti-Pasch, anti-mitre) be viewed as questions about Steiner triple systems
that lack Erd6s configurations, or as Steiner triple systems that lack the
nontrivial elements of bases? We will return to this question once we have
more evidence to support an answer.

In [12], the following characterization of a generating set for the m-line
configurations of a Steiner triple system is given. The degree of a point in
a configuration is the number of blocks of which it is a member.

Theorem 3.1. ([12], Theorem 1) The set of all configurations with m or
fewer blocks, where each point occurs with degree two or more, forms a
generating set for the m-line configurations of a Steiner triple system.

Note that this theorem has been reworded slightly to allow the empty
configuration to be a member of the generating set. Urland [19] used this
characterization to enumerate the 27 configurations in a generating set for
the 7-line configurations, and then was able to show through extensive
computations that this generating set is also a basis. However, to establish
in general that the generating set described in Theorem 3.1 is a basis would
appear to be a difficult problem, despite the evidence that it is so.

4 Generating Sets for Designs

We now describe the generalization of the previous ideas to arbitrary de-
signs.

At —(v,k, )) design is a pair (V, B) where V is a set of v elements (called
points or vertices) and B is a set of k-element subsets of V' (called blocks
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or lines) with the property that every t-element subset of V is a subset of
exactly A blocks from B. As with Steiner triple systems, we can use the
term m-line configuration to refer to a subset of B with m blocks. If we
partition the set of all m-line configurations of a particular design according
to isomorphism, we can again consider the size of each class. As before, a
generating set will be a collection of configurations whose sizes are employed
in linear combinations that yield the sizes of any other class. Only now the
coefficients in these formulas are allowed to be expressions that involve A
in addition to v.

Definition 4.1. ([1], Definition 3.1) A generator is a configuration in a
t-design where each block has more than t points of degree two or more.

Theorem 4.2. ([1], Theorem 3.2) The set of all generators with m or fewer
blocks (including the empty configuration) for a t-design forms a generating
set for the m-line configurations of a t-design.

Notice how this theorem implies Theorem 3.1 in the case of Steiner triple
systems, since a Steiner triple system has k — ¢ = 1. While a design can
have several different generating sets, in the remainder when we refer to a
generating set for a design, we will mean the one described in this result.

We now turn our attention to applying this result to the special case of
regular graphs.

5 Generating Sets for Regular Graphs

A regular graph of degree r on n vertices can be construed as a ¢-design with
parameters 1 — (n, 2,r). Specializing, the elements of a generating set are
then configurations (edge-induced subgraphs) where each block (edge) has
strictly more than one point (vertex) of degree two or more. As was the case
with Steiner triple systems, because k — ¢t = 1, every vertex of the induced
subgraph must have degree two or more. Therefore these subgraphs lack
any vertices of degree one, and cannot be trees or forests, and thus must
contain cycles.

Which regular graphs lack non-trivial members of a generating set for the
m-line configurations? Each cycle on m or fewer edges will be a member of
the generating set (since all the vertices have degree exactly two), so such
a graph will not have any cycles with m or fewer edges.

Conversely, suppose we have a graph that has no cycles with m or fewer
edges. Each non-trivial element of a generating set for the m-line configu-
rations has m or fewer edges and contains a cycle. Since the graph has no
cycles with m or fewer edges, it cannot contain any non-trivial elements of
a generating set.

So we have established the following key theorem.
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Theorem 5.1. A regular graph has no cycles of length m or less if and
only if it has no non-trivial elements of the generating set for m-line con-
figurations (which are edge-induced subgraphs).

The girth of a graph is the length of its shortest cycle. This prompts the
following definition, which is the raison d’etre for this article.

Definition 5.2. At — (v, k, \) design has girth m if it has no non-trivial
configurations from the generating set for the (m — 1)-line configurations
and has at least one configuration from the generating set for the m-line
configurations.

As an illustration of this definition, we can now refer to a 5-sparse Steiner
triple system as being a design of girth 6 (or greater).

An (r, g)-cage is a regular graph with degree » and girth g having the
fewest number of vertices. Much attention has been given to the search
for these graphs, in part because they are often very interesting graphs for
other purposes. See [2, 16, 21] for more details.

With a definition of the girth of a design we can formulate an analogous
definition of a cage for designs.

Definition 5.3. A (¢, k, A, g)-cage is a design with specified values of t, k,
A, and girth g that has the fewest number of points.

We can now compare Erdds question (Question 1.1) with that of deter-
mining (¢, k, A, g)-cages. In the former, we wish to avoid Erdés configura-
tions in Steiner triple systems and find the smallest number of points so
that for any particular greater number, there will always be an example
of at least one Steiner triple system that lacks the specified configurations.
The latter asks about designs that avoid generating sets, and desires the
smallest number of points for the existence of a single example of a de-
sign that does so. Both questions require that the small order cases be
understood entirely.

A search for (2,3, 1, 7)-cages coincides with Erdés’ question in the search
for anti-Pasch and anti-mitre Steiner triple systems when r = 4,5 (re-
spectively), but diverges when r > 6, with Erdds question being the less
restrictive. The search for (1,2, r, g)-cages coincides exactly with the search
for cages among regular graphs. It is this last correspondence and the nat-
ural properties of generating sets (which we believe are also bases), which
have motivated the above definitions. One could also modify Erdos ques-
tion slightly and generalize it, asking for an order v(¢, k, A, 7) so that for
every admissible v > v(¢, k, A, r) there exists a ¢ — (v, k, ) design that lacks
every element of the generating set for the r-line configurations. Given the
difficulty in finding just »(2, 3,1,4) (the case of anti-Pasch Steiner triple
systems) this is likely to be a difficult question in general.
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6 Examples of the Girth of a Design

In this section we list combinations of our own computational experiments
and previously known results to determine various cages. Chiefly, we rely
on known results, and the tables of small 2-designs from [14] (as corrected)
for which we have exhaustively classified all small configurations into iso-
morphism classes. Note that we have not considered designs with repeated
blocks, since they will automatically have girth 2.

Three trends should be observed from studying these examples.

e Smaller values of k — ¢ are associated with larger girth, since in these
cases generators are “harder” to construct (thus explaining the greater
girths for regular graphs and Steiner triple systems).

e Smaller values of A are associated with larger girth.

o (t,k, )\, g)-cages typically have rich automorphism groups and are of-
ten transitive on the points.

6.1 1-(n,2,r) Designs (Regular Graphs)

Any (r, g)-cage (as defined for regular graphs) is automatically a (1,2, 7, g)-
cage (as defined for designs) by reason of Theorem 5.1. See [2, 16, 21] for
examples.

6.2 2-(v,3,1) Designs (Steiner Triple Systems)

6.2.1(2,3,1,4)-cage

The finite projective plane of order 3, which has 7 points and 7 blocks, has
no nontrivial elements of the generating set for 3-line configurations (no
Steiner triple system does) and it has 7 configurations isomorphic to the
Pasch configuration. Its automorphism group is transitive of order 168.
6.2.2 (2,3,1,5)-cage

The unique Steiner triple system on 9 pomts (14, Table 1.15] is anti-Pasch,
and contains 36 instances of the mitre configuration. Its automorphism
group is transitive of order 432.

6.2.3 (2,3,1,6)-cage

The two Steiner triple systems on 13 points [14, Table 1.20] each contain
instances of Pasch configurations, and so have girth 4. The 80 Steiner triple
systems on 15 points [14, Table 1.21] all contain Pasch configurations, with
one exception [14, Table 1.22]. This exceptional Steiner triple system has
30 instances of the mitre configuration, giving it girth 5. The Netto triple
system on 19 points has been shown to be anti-Pasch and anti-mitre [5] and
is therefore an instance of a (2,3,1,6)-cage, though it is not known if it is
unique.

105



6.3 2-Designs with k=3 and A >1

6.3.1 (2,3,2,4)-cage

The unique 2-(6,3,2) design [14, Table 1.11] lacks any element of the gener-
ating set for 3-line configurations. Notice that this is not the triviality that
it is for Steiner triple systems, since in the case where A = 2 a configuration
such as C; (whose point-block incidence graph is depicted in Figure 6) is
an element of the generating set for the 3-line configurations. However, this
design does have 5 instances of the Pasch configuration, in addition to 30
instances of the generator C with 4 blocks, whose point-block incidence
graph is depicted in Figure 7. Its automorphism group is transitive of order
60.

Figure 6. Incidence graph of C; Figure 7. Incidence graph of C;

6.3.2 (2,3,2,5)-cage

The unique 2-(7,3,2) design [14, Table 1.12] has girth 4 since it contains
14 instances of the Pasch configuration and 21 instances of configuration
C3. The thirteen 2-(9,3,2) designs [14, Table 1.16] have girth 3 or 4, so the
(2,3,2,5)-cage will have 10 or more points.

6.3.3 (2,3, 3,3)-cage

The unique 2-(5,3,3) design is complete and has girth 3, since it contains
20 instances of the configuration C; with 3 blocks, whose block-incidence

graph is depicted in Figure 6. Its automorphism group is transitive of order
120.

6.3.4 (2,3,3,4)-cage
The unique 2-(7,3,3) design [14, Table 1.13] has girth 3 since it contains 14

instances of the configuration Cj. So the (2,3,3,4)-cage will have 9 or more
points.

6.4 2-Designs with k=4

6.4.1 (2,4,1,4)-cage
The unique 2-(13,4,1) design [14, Table 1.19] has girth 4, since it has no el-
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ements of the generating set for 3-line configurations (such as configuration
C3) and it has 234 instances of the configuration with 4 blocks, Cg, whose
point-block incidence graph is pictured in Figure 13. Its automorphism
group is transitive of order 5616.

6.4.2 (2,4, 1,5)-cage

The unique 2-(16,4,1) design [14, Table 1.24] has girth 4, since it has 240
instances of configuration Cs. The eighteen 2-(25,4,1) designs [14, Table
1.27] [17] each has girth 4, and in each case the lone obstacle to greater
girth is instances of configuration C3. So a (2,4,1,5)-cage has 28 or more
points.

6.4.3 (2,4, 2, 3)-cages

The three 2-(10,4,2) designs [14, Table 1.18] all have girth 3. Since there
are no smaller 2-(10,4,2) designs, each is a (2,4,2,3)-cage. The obstacles to
greater girth are the configurations with three blocks, Cs, C4 and Cs whose
point-block incidence graphs are depicted in Figures 8, 9, 10.

Figure 8. Incidence graph of Cs Figure 9. Incidence graph of Cy

Figure 10. Incidence graph of Cs

For these three designs, one has an automorphism group of order 24
and has 3 instances of C3, 36 instances of Cy and 12 instances Cs. The

107



second one has an automorphism group of order 48 and has 7 instances of
C3, 24 instances of C4 and 8 instances of Cs. The third has a transitive
automorphism group of order 720 and just 15 instances of C3. Notice that
as the size of the automorphism groups increase, the obstacles to attaining
greater girth generally become fewer.

6.4.4 (2,4, 3,2)-cages

The four 2-(8,4,3) designs [14, Table 1.14] all have girth 2 since each has at
least one pair of blocks with three points in common.

6.4.5 (2,4, 3, 3)-cage

The eleven 2-(9,4,3) designs [14, Table 1.17] all have girth 2, with the ex-
ception of one design with girth 3. This exceptional design contains 12
instances of C3, 108 instances of C4 and 216 instances of Cs. Its automor-
phism group is transitive with order 144.

6.5 2-Designs with k >4

6.5.1 2 — (11, 5,2) Designs

The unique 2-(11,5,2) design has girth 3, since it has 55 instances of configu-
ration Cg and 110 instances of configuration C7. The point-block incidence
graphs of these configurations on 3 blocks are depicted in Figures 11 and
12. Interestingly, together these 165 configurations account for all of the
possible configurations with 3 blocks from this design. Its automorphism
group is transitive of order 660.

.__—
Figure 11. Incidence graph of Cg Figure 12. Incidence graph of C7

6.5.2 2 — (16, 6,2) Designs

Each of the three 2-(16,6,2) designs has girth 3. Remarkably, each has
exactly 240 instances of configuration Cg and 320 instances of configuration
Cio0. The point-block incidence graphs of these configurations on 3 blocks
are depicted in Figures 14 and 15. Each of these designs has a transitive
automorphism group, and their orders are 384, 768 and 11520.
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Figure 13. Incidence graph of Cg Figure 14. Incidence graph of Cy

Figure 15. Incidence graph of Cjp

6.5.3 2 — (15,7, 3) Designs

The three 2-(15, 7,3) designs each has girth 2. For each of these designs,
every pair of blocks has three points in common.

6.5.4 2 — (19, 9,4) Designs

The six 2-(19,9,4) designs each has girth 2. For each of these designs, every
pair of blocks has four points in common.

6.6 Designs with large ¢

Since examples of designs with large girth seem to have small values of
A and large, transitive, automorphism groups, we analyzed several designs
associated with the extended binary Golay code (see [18] for details on their
construction). These have larger values of ¢, A\ = 1, interesting automor-
phism groups, and in one case k — ¢t = 1. Here we describe the results of
computing their girths.

109



6.6.1 A 5— (12,6,1) Design

This design has girth 3, with 1980 instances of Cy; and 880 instances of
Cj2 (Figures 16 and 17).

6.6.2 A 4 —(23,7,1) Design

This design has girth 3, with 212520 instances of Cy3 (Figure 18).

6.6.3 A 5 — (24, 8,1) Design

This design also has girth 3, with 35240 instances of C14 and 2550240
instances of Cy5 (Figures 19 and 20).

Figure 18. Incidence graph of C;3 Figure 19. Incidence graph of Ci4
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Figure 20. Incidence graph of C;5

7 Questions

We end with several open questions and directions for further work.

1.
2.

Find a Steiner triple system with girth 7.

Find any non-trivial design, that is not a regular graph or a Steiner
triple system, with girth 5 or greater. Or prove that this is impossible.

. Extend any of the results in the previous section. For a fixed combi-

nation of ¢, k and ) find a cage for the next larger girth.

. Perhaps new techniques developed searching for (¢,k, ), g)-cages in

the more general setting of designs will specialize to the case of regular
graphs and yield improvements in the search for (r, g)-cages.

. The Moore bound is a simple function of » and g that provides a lower

bound on the number of vertices of an (r, g)-cage. Any (r, g)-cage that
meets this bound is called a Moore graph.

Is there an analagous function of ¢, k, A and g that provides a lower
bound for the order of (¢,k, A, g)-cages? Does this bound coincide
with the Moore bound in the case of regular graphs? Are there any
“Moore designs” ?

- Many of the generators that actually occur as obstacles to greater

girth (C; through C;) are very similar. In several cases, the removal
of vertices of degree 1 yield identical stuctures. For example, compare
Cs with the Pasch configuration. Or compare Cs, C; and Cjo with
C1. Are there more fundamental building blocks for configurations in
a design than generators?
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