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Abstract

It was conjectured by Lee that a cubic simple graph with 4k + 2
vertices is edge-magic [5]. In this paper we show that the conjecture
is not true for multigraphs or disconnected simple graphs in general.
Several new classes of cubic edge-magic graphs are exhibited.
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1 Introduction, Notations and Basic Concepts

In this paper, the term “graph” means finite multigraph (not necessary
connected) having no loop and no isolated vertex. All undefined symbols
and concepts may be looked up from [1]. A graph G = (V,E) is a (p, q)-
graph if p and q are its order and size respectively, i.e. |V| = p and |E| = ¢.

Let G = (V, E) be a (p,q)-graph. Let f : E - {d,d+1,...,d+q—1}
be a bijection for some d € Z. The induced mapping f* : V = Z, of f

is defined by f*(u) = 3. f(uv) for u € V, the sum is taken in Z, for
uwveEE
some r > 0. Note that we denote Z by Zg. If f* is a constant mapping,
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then G is called d-edge-magic over Z,. If d = 1, then G is simply called
edge-magic over Z,, f an edge-magic labeling of G over Zr and the value
of f*+ an edge-magic value of G over Z,. Moreover, G being edge-magic
over Z, or Z is called edge-magic or supermagic, the labeling f is called
an edge-magic labeling or supermagic labeling, respectively. These concepts
were introduced by Lee, Seah and Tan in 1992 [4] and Stewart in 1966 [9]
respectively. Note that edge-magic value is not unique in general. A nec-
essary condition of a (p, g)-graph being edge-magic is

g(g+1)=0 (modp) (1.1)

It is easy to see the following theorem.

Theorem 1.1: Suppose G is d-edge-magic over Z,,v > 0. Then G is
d-edge-magic over Z;, if s is a factor of r.

Let G be a graph and let k be a positive integer. G[k] is a graph
which is made up of k copies of G with the same set of vertices. We call
G[k] the k-fold of G. kG denote the disjoint union of k copies of G, ie.,
kG =G +---+G, it is called k-duplicate graph of G.

e ——
k times

Let S be a set. We use S x n to denote the multiset of n-copies of
S. Note that S may be a multiset itself. From now on, the term “set”
means multiset. Set operations are viewed as multiset operations. Let S be
a set containing mn elements. Let &2 be a partition of S. If each class of &
contains n elements, then 4 is called an (m,n)-partition of S. Moreover,
if S is a set of numbers and the sum of numbers in each class is a constant,
then 2 is called an (m,n)-balance partition of S. We shall use [r] to denote
the set {1,2,...,7} for r > 1. Some special cases of balance partitions were
considered in [2].

In 1993 the second author proposed the following conjecture (5] :

Conjecture: Every cubic simple graph of order p =2 (mod 4) is edge-
magic (over Z,). '

Several classes of edge-magic cubic graphs were exhibited in [5]. In
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this paper we want to show that the conjecture is not true for multigraphs
or disconnected simple graphs in general. Some new classes of edge-magic
cubic multigraphs are introduced in this paper.

2 Some Non-edge-magic Cubic Multigraphs

In this section, we shall show some connected cubic multigraphs which
are not edge-magic.

Before showing some examples, we would like to make some conventions.
Let S and T be sets of integers. S = T (mod r) means that two sets
are equal after their elements are taken modulo r, where r > 2. Since
all arithmetic will be taken in Z, for finding an edge-magic labeling of a
graph G over Z,, the labels may be taken modulo r before labeling the
edges. Therefore, the requirement of edge-magic over Z, is equivalent to
the following.

Let G = (V,E) be a (p,q)-graph and let S = {1,2,...,¢—1} (mod r).
There exists a bijection f : V — S such that its induced mapping f¥* :
V — Z, is a constant mapping.

Example 2.1: The graph described in Figure 2.1 is not edge-magic.

Figure 2.1

If the above graph is edge-magic then three single edges must be labeled
by z for some z. But there are at most 2 labels can be the same. It is a
contradiction. - |

Example 2.2: The graph G described in Figure 2.2 is not edge-magic

over Zs.
Suppose the graph G = (V, E) has an edge-magic labeling over Z5. Then
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the labels must be assigned as in Figure 2.2, for some z,y, z,a and b in Zs.

Figure 2.2

In this example, the arithmetic is taken in Zs. Then the mapping g : E —
[15] = [5] x 3, defined by g(e) = f(e) — = for any e € E, is a (1 — z)-edge-
magic labeling over Zs. Since {g(e)|e € E} = {k—z|k € [15]} = [5] x 3, ¢
is also an edge-magic labeling of G over Zs. Thus we may assume z = 0.

Then z + (a + b —y) + (b — y) = z + a implies 2(b - y) = 0 and hence
b = y. Thus Figure 2.2 becomes

Figure 2.3

Since z,z—y,a+ z — y, v, 0 are distinct, i.e., {z,z—y,a+2z—y,y,0} = Zs.
Sinccea€Zsanda#0,a#yora#a+z—y,a=zora=z-y.

If @ = 2, then we have to label two copies of a — y and 2a — y to the
unlabeled edges such that edge-magic value over Zs is 2a. We list all com-
binations as follows:

+ | a-y 2a —y
a—y | 20-2y 3a-2y
20—y | 3a—2y 4a—2y

We need one of the three values equals to 2a. Because a # y and y # 0,
the possible case is 3a — 2y = 2a, i.e., a = 2y. In this case, consider the
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upper right corner vertex of the graph, we have (3a — 2y) + y # 2a. Thus
this is not an edge-magic labeling.

If a = z — y, then we have to label two copies of a + y and 2a to the
unlabeled edges such that edge-magic value over Zs is 2a + y. We list all
combinations as follows:

+ | a+y 2
e+y|2a+2y 3a+ty
2a Ja+y 4a

We need one of the three values equals to 2a + y. But this is impossible
because a # 0, y # 0 and 2a # y. 1

3 A Class of Supermagic Duplicate Graphs

In this section we shall show that mKs[n] is supermagic when n is even
or both m and n are odd. In particular, the duplicate cubic graph mK>,[3)
is supermagic when m is odd.

Lemma 3.1 ([6, Lemmas 3.1 and 3.3]): Suppose m,n > 2. If n is
even or both m and n are odd, then [mn] has an (m,n)-balance partition.

Theorem 3.2: For m, n > 2, mKs[n] ts supermagic if and only if n
is even or both m and n are odd.
Proof: If mK>[n] is supermagic, from (1.1) mn(mn + 1) =0 (mod 2m)
or equivalently n(mn +1) =0 (mod 2). Then n is even or both m and n
are odd.

Conversely, by Lemma 3.1 we have an (m,n)-balance partition & of
[mm]. Elements of each class of &2 are labeled to edges of a copy of K>[n]}

Corollary 3.3: If m is odd, then mK;[3] is supermagic.

Example 3.1: {{1,5,9},{2,6,7},{3,4,8}} is a (3,3)-balance partition
of [9]. We label 3K>[3] as follows :
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More classes of supermagic graphs were exhibited in [3, 7, 8, 9, 10].

4 A Class of Edge-magic Connected Graphs

In this section we shall give a class of edge-magic connected cubic graph.
For n > 1, let L, = (V, E), a ladder graph, where

V = {0, U1y, Un; V0, V1s- -5 ¥Un}
and
E= {ui_luill <1< n}U{vi_l'ui|1 <i< n}U{ujv,-|0 <3< n}U{eo,en},

eo and e, are parallel edges of ugvg and unv, respectively.
Note that there are two parallel edges incident with uo,vo and un,vn re-
spectively.

Theorem 4.1: Ly, is edge-magic for ¢t > 1.
Proof: In this proof, the arithmetic is taken in Z4y42. Define f : E —
[4t 4+ 2] U [2t + 1] by

_ [ 2t+1-5L ifiisodd oy
S = fwe) = {5 i e 1S 652
fluju) = 242450552

and

fleo) = flez) =t + 1.

It is easy to see that f is a bijection and f*(w) =t+2foreachwe V. 1

Example 4.1: Consider Ly. An edge-magic labeling is
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There are other edge-magic labelings for Ly and Lg with edge-magic values
0 and 3 described below, respectively.

5 Some Edge-magic Disconnected Cubic Graphs

In this section, we shall consider the edge-magicness of two classes of
cubic graphs mKy + nK>[3] and mK, + nK3 3 for m > 0 and n > 0. They
are (4m+2n,6m+3n)- and (4m + 6n, 6m + 9n)-graphs respectively. If they
are edge-magic, then from (1.1), n must be odd. For m = 0 we have shown
that nK>(3] is supermagic. nK33 is also supermagic. In [8], there is a
general result on supermagicness of sK, ,. We shall provide a construction
of an edge-magic labeling of nK3 3 over Z below. Thus we assume that n
is odd and m > 1.

Theorem 5.1: Suppose m,n > 1 and n is odd. If n < m, then H =
mK, +nK»[3] is not edge-magic over Zomin. The graph n(Ky + K»[3)) is
edge-magic over Zs,.

Proof: In this proof, the arithmetic is taken in Z,,,,.. Let H; = mK, and
Hz = nK,[3). Suppose there is an edge-magic labeling f of H over Zomin-
Let the labels be assigned on a component of H;, which is isomorphic to

K4, as Figure 5.1 (a):
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b+c-d
Figure 5.1 (a) Figure 5.1 (b)

Then (a+¢c—d)+ (b+c—d) = a+b, and hence ¢ = d. Since
[6m + 3n) = [2m + n] x 3, a,b and c are distinct. Thus two copies
of three distinct numbers are labeled in each component of H; and num-
bers labeled in difference components of H; are distinct. Therefore, there
are two copies of 3m distinct numbers labeled on components of Hy, hence
n>m.

Now we consider H = n(K4 + K»(3]). We also let H; = nK, and
H», = nkK,[3]. By Lemma 3.1, [3n] has an (n,3)-balance partition &.
Since [9n) = [3n] x 3, we have 3 copies of &. For each class of &, say
C = {a,b,c}, we use elements of two copies of C to label a component of
H, as Figure 5.1 (b) and one copy to label a component of H, arbitrarily.
Then this is an edge-magic labeling of H over Z3n. |

Corollary 5.2: If n > 1 and n is odd, then n(Ky + K2[3]) is edge-magic.
Proof : We keep the notations of the proof of Theorem 5.1. It suffices to
extend the edge-magic labeling over Z3, obtained in the proof of Theorem
5.1 to an edge-magic labeling of H. For each component of H;, we add the
numbers which are labeled on the exterior triangle by 3n. Then this is an
edge-magic labeling of H. |

Example 5.1: Consider H = K4 + K>[3]. Figure 5.2 (a) is an edge-magic

labeling f of H over Z3 and Figure 5.2 (b) is an edge-magic labeling of H
extended from f. Note that this labelings are unique up to isomorphism.

& @ 3 & @ 3
1 4
Figure 5.2 (a) Figure 5.2 (b)
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Example 5.2 : One can show that K, + 2K>[3] is not edge-magic over Z,.
But Ky + 3K3[3] is edge-magic. Here is an edge-magic labeling of it:

Lemma 5.3 [8]: If n is odd then nK3 3 is supermagic.

Proof : To show nK3 3 being supermagic is equivalent to find n 3 x 3
matrices A;,1 <4 < n, such that the set of all entries of these matrices is
[97] and row sums and columns sums of these matrices are the same. For
n =1, it is known that K33 is supermagic [3,7,9]. Thus we may assume
n 2> 3.

By Lemma 3.1, [3n] has an (n, 3)-balance partition 2. Let Cy,Cs,...,Cp

be its classes. Let
01 2
and Y= 2 0 1 |.
1 2 0

X

Clearly they are two orthogonal Latin squares. Using elements of C; and the
format of X we obtain a Latin square L;,1 < i < n. Then 4; = 3nY + L;
are required matrices. |

b
c
a

O o8
oD O

Theorem 5.4: Suppose m,n > 1 and n is odd. If 3n < m, then H =
mKy +nKj 3 is not edge-magic over Zomy3n. The graph 3nKy +nK3 3 is
edge-magic over Zgy,.

Proof: Let H, = mK, and H> = nKj33. The first part of the theorem
follows from the same argument of the first part of the proof of Theorem
5.1.

For the second part, similar to the proof of the second part of Theorem
5.1, we have 3 copies of a (3n,3)-balance partition & of [9n]. Use two
copies of & to label the components of H,. Then the edge-magic value
over Zgy, is ﬂa—';"—ll Now we have to label the elements of [97n2] to the edges
of Hy. Since H is supermagic, there is a supermagic labeling of H; and the
edge-magic value over Z is 202+1) . Since 307l = 3Gn+l) (104 9p), H
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has an edge-magic labeling over Zg,. |

Corollary 5.5: 3nK, + nKj 3 is edge-magic.
Proof : Same proof as the proof of Corollary 5.2. |

Example 5.3: Consider H = 3Ky + K3 3. Use the (3,3)-balance par-
tition of [9] described in Example 3.1 to label three K4 components. Let

2 9 4

M= ( 7 56 3 ) be a magic square (for the case of n = 1, we use magic
6 1 8

square to construct a supermagic labeling of K3 3). Hence Figure 5.3 (a) is

an edge-magic labeling f of H over Zg and Figure 5.3 (b) is an edge-magic
labeling of H extended from f.

Figure 5.b (a)

Example 5.4: H = K4 + K33 is not edge-magic over Zs.

In this example the arithmetic is taken in Zs. If H has an edge-magic
labeling f over Zs, then by the proof of Theorem 5.1 or 5.4 the K4 com-
ponent is labeled as Figure 5.1 (b) for some a,b and c in Zs. Let the
other two numbers differing from a,b and ¢ be = and y. We have to fill
{a,b,¢c,z,z,z,y,y,y} into a matrix A such that its row sums and column
sums are the same. If two of a,b and c are in the same row (similarly col-
umn) then the other one must lie in the same row. If this is a case, since

a b c
T # y, the unique assignment is ( T T z ) . It is impossible because of
vy vy

a,b and c are distinct. Thus a, b and ¢ must be filled in the diagonal (under
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an isomorphism). If two z lie in the same row, without loss of generality,
we may assume (a, z, z) is the first row of A, then the first column must be
(a,y,9)T. Since z # y, it is impossible. Thus each row contains z and y.
Since a, b and ¢ are distinct, it is also impossible. |

Example 5.5: H = 2K, + K33 is edge-magic.

Suppose H has an edge-magic labeling over Z;. Let ay,b;,c; and
a2, b2,c2 be numbers in Z; that labeled on edges of two K4 components
and d be the rest number.

Then
a;+by+cr=as+bs+co=3d (mod 7).

We list all the possible cases below (up to isomorphism):

d (mod 7) 1 2 3 4 5 6 7
{a1,b1,¢1} (mod 7) | {2,3,5}{1,5,7} {1,2,6} {1,5,6} {1,3,4} {1,3,7} {1,2,4}
Sum; (mod 14) 10 13 9 12 8 11 7
{a2,b2,¢2) (mod 7) | {4,6,7}{3,4,6} {4,5,7} {2,3,7} {2,6,7} {2,4,5} {3,5, 6}
Sumz (mod 14) 3 13 2 12 1 1t 0
3d+7 (mod 14) 11 13 2 5 8 11 0
Sum; + 21 (mod 14) 3 6 2 5 1 1 0
Sumz +21 (mod 14) 10 6 9 5 8 4 7

Table 5.1

We have to fill {a1,b1,¢1,a2,b2,¢2,d,d,d} into a 3 x 3 matrix A such that
its row sums and columns are the same. By similar argument in Example
5.4, we can show that there is the unique assignment (up to isomorphism)

ay bl C1
whichis | a2 by c¢o |,wherea;+as =bj+bs=c;+c2 =2d (mod 7).
d d d
1 2 4
For example, [ 6 5 3 |. In each possible case an edge-magic labeling
777 ’

of H over Z+ can be constructed.

Now if H has an edge-magic labeling. Then this labeling must be ex-
tended from one of the above labelings. If it is possible, then seven distinct
numbers among all the labels must be increased by 7. We shall call these
numbers to be added numbers. Then each row sum of Ais 3d+7 (mod 14).
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Therefore, the edge-magic value of H (over Z,4) is 3d + 7.

If all added numbers are labeled in the K33 component, then Sum,,
Sums, (the edge-magic values come from two K4 components), Sum; + 21
(the edge-magic values come from the K3 3 component) and 3d + 7 are the
same modulo 14. Table 5.1 shows that it is impossible. Thus there is at
least one added number, without loss of generality say a;, which is labeled
in a K4 component. Then one of b, and one of c; in that component must
be increased by 7. Thus the first row sum of A is a1 + b, + ¢ = Sum,
(mod 14). Only the 2nd and the 5th columns of Table 5.1 will be possible.
By considering the edge-magic value come from the other K4 component,
the 5th column is not a possible case. Fortunately, an edge-magic labeling
can be extended from the case when d = 2. Namely,

1 5 7
A= 3 6 4 |.
9 2 2

We invite the reader to consider the following unsolved problems.
Question 1: Is K4 + nK;([3] edge-magic for odd n > 57
Question 1’ : Is mKj +nkK;[3] edge-magic forodd n > 5and 1 <m < n?
Question 1" :Is mK4 + nK[3] edge-magic over Zym 4., for even n > 2 and
m > 17
Question 2 : Is K4 + nKj3 3 edge-magic for odd n > 37
Question 2’ : Is mK4+nKj3 3 edge-magic foroddn >3and 1 <m < 3n?
Question 2" : Is mKy + nK3 3 edge-magic over Zam43n for even n > 2
andm>17

Finally we propose a modified conjecture below

Conjecture: Every connected cubic simple graph of order n = 2 {mod 4)
is edge-magic.
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