Knight Independence on Triangular Hexagon Boards
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ABSTRACT. The independence number 8, for knights on equilateral
triangular boards T}, of regular hexagons is determined for all n.

1. Introduction

Triangular hexagon boards T, with n consecutive hexagons at each side are
parts of the regular hexagonal tessellation of the plane (see 713 in Figure
1). Corresponding to knights on chess boards we consider knights on 7T,
which can move as indicated in Figure 1 (from the center to the hexagons
marked with stars). The independence number 3, is the maximum number
of pairwise nonattacking knights on Tj,.
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Figure 1. Knight’s moves on 713. Figure 2. General lower bound.

In [1] partial results and exact values of B, for n<14 are given. Here
we will present g, for all n.

Theorem 1. For knights the independence number B, on triangular
hezxagon boards is

n(n+1)
6

Bn = |- ] for n > 30,

and all smaller values are as in Table 1.
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Pn |47|54(62|70(70|77|85|95(105 (109117126 | 136|147

Table 1.

It can be remarked that 8,=[n(n+1)/6] also holds for n=1,20,21, 22,
25, 26, 27, and 28. For the remaining small values of n the independence
numbers exceed one third of the number of hexagons of T}, at least by one.

The independence numbers for rooks and for two types of kings on T,
have been settled in [4] and [2], respectively. Independence numbers and
similar invariants for different chess pieces on square boards are surveyed
in (3].
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2. Proof of Theorem 1

For n<14 the values 8, have been determined in [1].

As a general lower bound we obtain 8,>[n(n+1)/6]=b, if in rows =1,
2, and 0 (mod 3) knights are placed in positions =1, 0,2 (mod 3), respectively
(see Figure 2). Figures 3 and 4 show exceptional lower bounds for n=16
and 17. For the remaining values n=15, 18, 19, 23, 24, and 29 lower bounds
>bn are obtained if in rows =2, 3, and 4 (mod 5) knights are placed in
positions =1and 2, in positions 1,2,and 3, and in positions 2 and 3 (mod 5),
respectively (see Figure 5 for n=15).

To prove the upper bounds for small values of n we use a computer
together with the following method of [1]. We choose a partition of the
hexagons into a number B of triples, pairs and singles such that every pair
and every triple can contain at most one independent knight. By computer
we try to find this upper bound B rather close to the asserted value of 3.

Figure 4. Lower bound for Tj7.
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Figure 5. Lower bound for T15.  Figure 6. Last 8 positions of TR,,.

Then we try by a backtracking algorithm to place independent knights on as
many as possible of the chosen tuples. If in all end situations the hexagons
of at least B—f tuples are attacked by knights from other tuples then 3 is
proved as an upper bound. In case of T}, this procedure was successful for

n = 15, 16, 17, 18, 19, 20, 23, 24, 25, and 29,
and as induction basis for
n = 21, 22, 26, 27, 28, 32, 33, 34, and 38.

Thus we have obtained all values 3, of Table 1.

For n>30 we use induction on n modulo 9. Let TR,y; denote the
trapezium consisting of the last 9 rows of 7}, 4 and Bﬂ+ 1 its independence
number. If 8,=b,, and E,,.,.l <3n+15 is assumed then

n+9)(n+ 10)]
6
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With the basis of above the induction is complete if
B,,S3n+12 forn =22, 23 and n > 27

which remains to be proved.

For the asserted values of n<34 we have proved Bn <3n+12 by using
the same algorithm as before. By computer we have checked that for every
independent set of knights in TR, an ¢ with 1<i<8 exists such that at
most 37 knights are contained in the last i hexagons of all 9 rows. This
may be done by a backtracking algorithm starting with all possible sets of
knights in the last positions of the 9 rows. Then in the preceding positions,
simultaneously for all rows, all independent sets of knights are considered.
Whenever the number of placed knights does not exceed one third of the
so far considered hexagons then one can go back. In Figure 6 the unique
possibility is shown that more then 37 knights are in the last 7 hexagons of

131



all 9 rows for i=1,...,7, however, the last 8 hexagons can have at most 24
knights.

_ For n>35 induction from n-i to n for 1<i<8 finishes the proof of
Bn<3n+12 by addition if the eight consecutive numbers n=27,...,34 are
used as basis. Thus the proof of Theorem 1 is complete.

3. Remarks

In a hexagonal tessellation of the plane a knight attacks 12 hexagons
and every free hexagon is attacked by at most 6 independent knights. Thus
an independent set of knights can cover at most one third of the plane. For
n>30 the ratio of independent knights against all hexagons of T;, cannot
exceed one third. For smaller values of n more knights near the border
allow a large ratio.

For TR,, (trapezium with 9 rows) we can use knights as in Figure 2 to
prove 8,>3n+12 in general, that is one third of all hexagons. Only for
n<12 and n=14, 15, 16, 20, 21, 26 the independence number B, exceeds
3n+12.

In general we may ask to characterize all parts of the regular hexag-
onal tessellation for which the border allows an independence number 8
exceeding one third of all hexagons at least by one.
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