Chromatic Index Critical Graphs of Odd Order with Five Major Vertices Zi-Xia Song* Department of Mathematics National University of Singapore 10 Kent Ridge Crescent Singapore, 119260 ABSTRACT. In an earlier paper [11], we proved that there does not exist any Δ -critical graph of even order with five major vertices. In this paper, we prove that if G is a Δ -critical graph of odd order 2n+1 with five major vertices, then $e(G)=n\Delta+1$. This extends an earlier result of Chetwynd and Hilton, and also completes our characterization of graphs with five major vertices. In [9], we shall apply this result to establish some results on class 2 graphs whose core has maximum degree two. #### 1. Introduction Throughout this article, all graphs we deal with are finite, simple, and undirected. We use V(G), |G|, E(G), e(G), o(G), and o(G) to denote respectively the vertex set, order, edge set, size, maximum degree, and minimum degree of a graph o(G). We also use o(G), o(G), o(G), and o(G) to denote respectively the complete graph of order o(G), null graph of order o(G), cycle of order o(G), union of two vertex-disjoint graphs o(G) and o(G), and vertex-disjoint union of o(G) copies of a graph o(G). The o(G) two vertex-disjoint graphs o(G) and o(G) is the graph with the vertex set o(G) and edge set o(G) is the graph with the vertex set o(G) in o(G) and edge set o(G) if o(G ^{*}E-mail: song@math.gatech.edu graph obtained by deleting the set of vertices A from G, and use G[A] (or simply $G[x_1, x_2, \dots, x_k]$ if $A = \{x_1, x_2, \dots, x_k\}$) to denote the subgraph of G induced by A. If A and B are disjoint subsets of V(G), we use $e_G(A, B)$ (or simply $e_G(x, B)$ if $A = \{x\}$) to denote the number of edges joining A with B. If $F \subseteq E(G)$, we use G - F to denote the graph obtained by deleting F from G. An edge-colouring of a graph G is a map $\pi: E(G) \to C$, where C is a set of colours, such that no two adjacent edges receive the same colour. If π is an edge-colouring of G with |C|=k, then π is called a k-colouring of G. The chromatic index $\chi'(G)$ of G is the least value of |C| for which an edge-colouring $\pi: E(G) \to C$ exists. A well-known theorem of Vizing [12] states that, for any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$. A graph G is said to be of class i, where i=1,2, if $\chi'(G)=\Delta(G)+i-1$. A graph G is overfull if $e(G) \geq \Delta \lfloor \frac{|G|}{2} \rfloor + 1$. It is easy to see that if G is overfull, then G is of class 2. The core G_{Δ} of a graph G is the subgraph of G induced by the major vertices of G. We use $d_{\Delta}(v)$ to denote the number of major vertices of G adjacent to v. If G is a connected class 2 graph with $\Delta(G) = \Delta$ and $\chi'(G-e) < \chi'(G)$ for each edge $e \in E(G)$, then G is said to be Δ -critical. From Vizing's Adjacency Lemma (abbreviated as VAL) (see Lemma 2.2 below) we know that if G is Δ -critical, then $|G_{\Delta}| \geq 3$. In an earlier paper [11], we proved the following result. **Theorem 1.1.** There does not exist any Δ -critical graph of even order with five major vertices. In this paper, we shall apply Theorem 1.1 (together with many other results) to prove Theorem 1.2, which is an extension of a result of Chetwynd and Hilton (see [4] and [5]). **Theorem 1.2.** Let G be a graph of odd order $2n + 1 \ge 7$ with maximum degree $\Delta \ge 3$. Suppose G is Δ -critical and $|G_{\Delta}| = 5$. Then $e(G) = n\Delta + 1$. kThe graph G of Fig.1 is obtained from the Petersen graph by removing one vertex. Observe that G is 3-critical with six major vertices, and $e(G) = 12 < 4 \times 3 + 1$, which indicates that Theorem 1.2 cannot be further extended in general. Fig. 1. G ### 2. Some useful results In this section we give a list of results which we shall apply later. Proofs of Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 can be found, for instance, in [14]. Lemma 2.6 to Lemma 2.8 were due to Chetwynd and Hilton ([4],[5]). Alternative/shorter proofs of these results and a proof of Lemma 2.10 can be found in Yap and Song [15]. **Lemma 2.1** [12]. For any graph G, $\chi'(G) \leq \Delta(G) + 1$. **Lemma 2.2** [13]. Suppose G is a Δ -critical graph and $vw \in E(G)$, where d(v) = k. Then - (i) $d_{\Delta}(w) \geq \Delta k + 1$ if $k < \Delta$; - (ii) $d_{\Delta}(w) \geq 2$ if $k = \Delta$; - (iii) $|G_{\Delta}| \geq max\{3, \Delta \delta(G) + 2\}.$ **Lemma 2.3** [12]. Let G be a class 2 graph. Then G contains a k-critical subgraph for each k satisfying $2 \le k \le \Delta(G)$. **Lemma 2.4** [8]. There are no regular Δ -critical graphs for any $\Delta \geq 3$. **Lemma 2.5** [5]. Let e = vw be an edge of a graph G. Suppose $d_{\Delta}(w) = 1$. Then $\Delta(G - w) = \Delta(G)$ implies that $\chi'(G - w) = \chi'(G)$. **Lemma 2.6** [5]. Let G be a connected graph of order n with $\Delta = \Delta(G) \geq 3$. Suppose $|G_{\Delta}| = 3$. Then G is of class 2 if and only if $G \cong (n-2)^{n-3}(n-1)^3$ (and thus n is odd). **Lemma 2.7** [4]. There does not exist any Δ -critical graph of even order with four major vertices. **Lemma 2.8** [4]. Let G be a Δ -critical graph of order 2n+1 with $|G_{\Delta}|=4$. Then either (i) $G \cong (2n-2)^{2n-3}(2n-1)^4$ or (ii) $G \cong (2n-2)(2n-1)^{2n-4}(2n)^4$. In particular, $e(G) = n\Delta + 1$. **Lemma 2.9** [7]. If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2}$, then G has a Hamilton cycle. Let J_s be a graph of order s and $G_0 = J_s + O_{s+2}$, and let G'_0 be a spanning subgraph of G_0 such that each vertex of O_{s+2} is joined to at least s-1 vertices of J_s and at least one vertex of O_{s+2} is joined to exactly s-1 vertices of J_s . Lemma 2.10 [15]. A graph G of order 2n has a 1-factor if - (i) $\delta(G) \geq n-1$ except when $G = G_0$. - (ii) $\delta(G) = n-2$ except when $G = G'_0$ or $G = 3K_3 + K_1$. **Lemma 2.11** [10]. Let G be a graph of order 2n. If $\delta(G) \ge n + |G_{\triangle}| - 2$, then G is of class 1. We observe that by following the proof of Lemma 2.11 given in [10] and choosing two nonadjacent major vertices z_1 and z_2 of G, we obtain the following result. **Lemma 2.12.** Suppose G is a graph of order 2n and G_{Δ} has a maximal matching $M = \{z_1 z_r, z_2 z_{r-1}, \cdots, z_k z_{r+1-k}\}$, where $r = |G_{\Delta}|, k \geq 2$, and $z_1 z_2 \notin E(G)$. If $\delta(G) \geq n + |G_{\Delta}| - 3$, then G is of class 1. **Lemma 2.13.** Suppose G is a Δ -critical graph of order $2n+1 \geq 11$ with $|G_{\Delta}| = 5$ and $\delta(G) \leq \Delta - 2$. Let $x \in V(G)$ be such that $d(x) = \delta(G)$. Then G - x contains a 1-factor. **Proof.** Let $\delta = \delta(G)$, and let A be the set of major vertices of G. By VAL, $5 = |G_{\Delta}| \ge \Delta - \delta + 2$, and so $\Delta - 3 \le \delta \le \Delta - 2$. By VAL again, for any $v \in N(x)$, $d_{\Delta}(v) \ge \Delta - \delta + 1$. Hence by counting the number of edges incident with A in two different ways, we have $$(\Delta - \delta + 1)\delta + 2((2n+1) - \delta) \le 5\Delta. \tag{1}$$ Furthermore, if there is a vertex $u \in N(x)$ such that $d(u) = \delta$, then for any $v \in N[x]$, $d_{\Delta}(v) \geq \Delta - \delta + 1$, and we have the following better inequality: $$(\Delta - \delta + 1)(\delta + 1) + 2((2n+1) - (\delta + 1)) \le 5\Delta. \tag{2}$$ We next show that $\delta(G-x) \geq n-2$. Suppose $\delta = \Delta - 3$. Then (1) implies that $\Delta \geq n + 1$. Hence, if $d(v) \geq \Delta - 2$ for any $v \in N(x)$, then $\delta(G - x) \geq \Delta - 3 \geq n - 2$. On the other hand, if $d(v) = \delta$ for some $v \in N(x)$, then we need only to consider the case $\Delta = n+1$. However, when $\Delta = n+1$, (2) implies that $n \leq 5$ and thus $\Delta = n+1 \leq 6$, which contradicts the fact that $\Delta - 3 = \delta = d(x) \geq d_{\Delta}(x) \geq \Delta - \delta + 1 = 4$. Suppose $\delta = \Delta - 2$. Then (1) implies that $\Delta \geq n$. Hence, if $d(v) \geq \Delta - 1$ for any $v \in N(x)$, then $\delta(G - x) \geq \Delta - 2 \geq n - 2$. On the other hand, if $d(v) = \delta$ for some $v \in N(x)$, then by (2), $\Delta \geq n + 1$, and again $\delta(G - x) \geq \Delta - 3 \geq n - 2$. From the above discussion, we have the following observation: $\Delta \geq n$ and $\Delta = n$ only if $\delta = \Delta - 2$ and the equality in (1) holds. By Lemma 2.10, G-x has a 1-factor except when $G-x \in \{G_0, G'_0, 3K_3 + K_1\}$. However, since $\Delta(G-x) - \delta(G-x) \le \Delta - (\delta-1) \le 4 < 6 = \Delta(3K_3 + K_1) - \delta(3K_3 + K_1)$, we have $G-x \ne 3K_3 + K_1$. Suppose $G-x = G_0$ or $G-x = G'_0$. Then s = n-1. We next show that $A \subseteq V(J_s)$. Suppose otherwise. Let $a \in A \cap V(O_{s+2})$. Since $d_G(a) = \Delta \geq n = s+1$, we have $ax \in E(G)$ and a is adjacent to every vertex $v \in V(J_s)$. Now $\Delta - 1 = d_{G-x}(a) \le s$, together with the inequality $\Delta \ge n = s + 1$, implies that $\Delta = n = s + 1$. Thus from the above observation, it follows that $\delta = \Delta - 2$ and the equality in (1) holds. Since $ax \in E(G)$ and the equality in (1) holds, we have $|A \cap V(J_s)| = d_{\Delta}(a) = \Delta - \delta + 1 = 3$ and G has exactly $\delta = \Delta - 2 = n - 2$ vertices v with $d_{\Delta}(v) = \Delta - \delta + 1 = 3$. Moreover, these n-2 vertices are all in N(x) and G has no vertex v with $d_{\Delta}(v) \geq 4$. Let $B = V(O_{s+2}) \setminus N(x)$. Since $|N(x)| = \Delta - 2 = n - 2$, we have $|B| \geq (s+2) - (n-2) = 3$. If $v \in B$ is adjacent to every vertex of J_s in G, then $d_{\Delta}(v) = |A \cap V(J_s)| = 3$, which contradicts the fact that all the vertices $v \in V(G)$ with $d_{\Delta}(v) = 3$ are in N(x). On the other hand, if $v \in B$ is adjacent to s-1 vertices of J_s in G, then $d_G(v) = s-1 = \Delta - 2$. However, since $a \in N(x)$ and $a \notin N(v)$, we have
$N(x) \neq N(v)$, and thus there exists $w \in N(v) \setminus N(x)$ such that $d_{\Delta}(w) \geq \Delta - (\Delta - 2) + 1 = 3$, again contradicting the fact that all the vertices $v \in V(G)$ with $d_{\Delta}(v) = 3$ are all in N(x) and G has no vertex v with $d_{\Delta}(v) \geq 4$. Hence $A \subseteq V(J_s)$ as required. Finally, let $Y = G - V(O_{s+2})$. Since $A \subseteq V(J_s)$, we have $A \subseteq V(Y)$. As for any $u \in N(x) \cap A$, $d_Y(u) \ge d_{\Delta}(u) \ge 3$, we have $\Delta(Y) \ge 3$. This, together with the fact that $d_Y(v) \ge d_{\Delta}(v) \ge 2$ for any $v \in V(Y)$, implies that $e(Y) \ge s+2$. Thus $(s+2)\delta \le e(V(O_{s+2}),V(Y)) = \sum_{v \in V(Y)} d_G(v) - 2e(Y) \le 5\Delta + (s-5)(\Delta - 1) + \delta - 2(s+2) = s\Delta - 3s + \delta + 1 \le s(\delta + 3) - 3s + \delta + 1$, and it follows that $\delta \le 1$, which is false. Hence $G - x \ne G_0$, G'_0 , and thus G - x has a 1-factor. ### 3. Proof of Theorem 1.2 **Proof.** Let $A = \{w_1, w_2, w_3, w_4, w_5\}$ be the set of major vertices of G, let $B = V(G) \setminus A$, and let $\delta = \delta(G)$. As G is Δ -critical, we have $$e(G) \le n\Delta + 1. \tag{3}$$ Since each $v \in V(G)$ is adjacent to at least two major vertices of G, we have $2(2n+1) \leq 5\Delta$. Hence $$\Delta \ge \frac{4n+2}{5}.\tag{4}$$ The results of Beineke and Fiorini [1] as well as Chetwynd and Yap [6] on Δ -critical graphs of order 7 and order 9 confirm that this theorem is true for n=3,4. Hence, from now on, we assume that $$n \ge 5. \tag{5}$$ We shall now prove this theorem by induction on Δ . For $\Delta \leq 4$, by (4), we have $n \leq 4$, and so this theorem is true. Hence, from now on, we assume that $\Delta \geq 5$. By VAL, $5 = |A| \geq \Delta - \delta + 2$, and it follows that $$\delta > \Delta - 3. \tag{6}$$ By Lemma 2.4, $\delta \neq \Delta$. Hence, from (6), we have two cases to consider. Case 1. $\delta \leq \Delta - 2$. Let $x \in V(G)$ be of degree δ . By Lemma 2.13, G - x has a 1-factor F. Clearly, $G^* = G - F$ is of class 2, $\Delta(G^*) = \Delta - 1$ and $N_{G^*}(A) = V(G^*)$. By Lemma 2.3, G^* contains a $(\Delta - 1)$ -critical subgraph H with at most five major vertices. Suppose H has five major vertices. Then $N_{G^*}(A) = V(G^*)$ implies that $V(H) = V(G^*)$. Thus by the induction hypothesis on Δ , $e(H) = n(\Delta - 1) + 1$, and so $e(G) \ge e(H) + n = n\Delta + 1$. This, together with (3), yields $e(G) = n\Delta + 1$. Suppose H has four major vertices, say w_2, w_3, w_4, w_5 . Since for any $v \in V(G)$, $d_{\Delta}(v) \geq 2$, we have $x \in V(H)$ and $w_1 \in V(H)$. We claim that $V(H) = V(G^*)$. Suppose otherwise. By Lemma 2.7 and Lemma 2.8, $|G^*| - |H| \geq 2$ and $\delta(H) \geq \Delta(H) - 2 = \Delta - 3$. Since for any $v \in V(G^*) \setminus V(H)$, $d_{\Delta}(v) \geq 2$, we have $vw_1 \in E(G^*)$. As $d_H(w_1) \geq \delta(H) \geq \Delta - 3$, it follows that $2 \leq |V(G^*) \setminus V(H)| \leq d_{G^*}(w_1) - d_H(w_1) \leq (\Delta - 1) - (\Delta - 3) = 2$. Thus, $|V(G^*) \setminus V(H)| = 2$ and $d_H(w_1) = \Delta - 3$. By Lemma 2.8 again, $\Delta = \Delta(H) + 1 = |H| = (2n+1) - 2 = 2n - 1 \geq 9$ (by (5)). Now let $y \in V(G^*) \setminus V(H)$. Then $d_{\Delta}(y) = 2$ (otherwise H has at most three major vertices) and thus $d_G(y) \geq \delta \geq \Delta - 3 \geq 6$. This, however, implies that H contains another vertex $v' \neq w$ such that $d_H(v') \leq \Delta - 3 = \Delta(H) - 2$, which contradicts Lemma 2.8. Hence $V(H) = V(G^*)$ as claimed. By Lemma 2.8, $e(H) = n(\Delta - 1) + 1$, and so $e(G) \geq e(H) + n \geq n\Delta + 1$. This, together with (3), yields $e(G) = n\Delta + 1$. Suppose H has three major vertices, say w_1 , w_2 and w_3 . By Lemma 2.6, $\delta(H) = \Delta(H) - 1$, |H| is odd, and $|H| = \Delta(H) + 1 = \Delta < |G|$. Let $U = V(G^*) \setminus V(H)$. Then $|U| (\geq 2)$ is even. Since w_i (i = 1, 2, 3) is adjacent to every other vertex of H in G^* , we have $\{w_1u_1, w_2u_2, w_3u_3\} \subset F$, where u_1 , u_2 , and u_3 are distinct vertices in U. Hence $|U| \geq 4$. As each minor vertex $v(\neq x, w_4, w_5)$ of H is of degree $\Delta - 1$ in G, we have $$e_{G^*}(\{w_1, w_2, w_3\}, U) = 0$$ and $e_{G^*}(V(H), U) \le 2.$ (7) Suppose $A \subset V(H)$. Then the fact that $d_{\Delta}(u) \geq 2$ for any $u \in U$ implies that $e_{G^*}(U,A) \geq 4$, contradicting (7). Hence $A \cap U \neq \phi$. Let $w_5 \in A \cap U$. Then $d_{\Delta}(w_5) = 2$ (otherwise H cannot have exactly three major vertices), $w_5 \in \{u_1, u_2, u_3\}$, and $w_5w_4 \in E(G^*)$. Since $d_{\Delta}(w_5) = 2$ and $d(x) = \delta \leq \Delta - 2$, by VAL, $w_5x \notin E(G)$. Thus $\{w_1, w_2, w_3\} \cap N(x) \neq \phi$, which in turn implies that $x \in V(H)$ (otherwise $e_{G^*}(\{w_1, w_2, w_3\}, U) \neq 0$, which contradicts (7)). Hence, by VAL, $d_{\Delta}(w_i) \geq \Delta - d(x) + 1 \geq 3$, from which (by (7)) it follows that $w_4 \in V(H)$. Finally, by (7), we have $|U| \not\geq 6$. Hence |U| = 4 and $\Delta = |H| = (2n+1) - |U| = 2n-3 \geq 7$ (by (5)). However, as $w_5 \in U$, |U| = 4 and $e_{G^{\bullet}}(V(H), U) \leq 2$, we have $\Delta = d_G(w_5) \leq 5$, a contradiction. Case 2. $\delta = \Delta - 1$. Suppose $e(G) \le n\Delta$. Then $((2n+1)-5)(\Delta-1)+5\Delta=2e(G) \le 2n\Delta$, and it follows that $$\Delta$$ is even and $\Delta \leq 2n-4$. (8) Since $\Delta \geq 5$, by (8), $$\Delta \ge 6. \tag{9}$$ We shall use the following claims to settle Case 2. Claim 1. Suppose $min\{d_{\Delta}(v): v \in B\} \geq 3$. Then $G_{\Delta} \cong K_5$. **Proof.** We prove this claim by contradiction. Suppose $\delta(G_{\Delta}) \leq 3$. Then, by VAL, $2 \leq \delta(G_{\Delta}) \leq 3$. Suppose $\delta(G_{\Delta})=2$. Let w_1 be such that $d_{\Delta}(w_1)=2$ and let w_1w_2 , $w_1w_3\in E(G)$, where $d_{\Delta}(w_2)\geq d_{\Delta}(w_3)$. By (8), G has a minor vertex, say u, such that $w_1u\notin E(G)$. We next show that $G'=G-\{w_1,w_2,u\}$ has a 1-factor F. Since for any $v \in B$, $d_{\Delta}(v) \geq 3$, by VAL, $3((2n+1)-5) \leq 5(\Delta-2)$. This, together with (5), implies that $$\Delta > n + 1. \tag{10}$$ Hence $\delta(G') \geq (\Delta-1)-3 \geq (n-1)-2$. By Lemma 2.10, G' has a 1-factor F except when $G' \in \{G_0, G'_0, 3K_3+K_1\}$. However, since $\Delta(G')-\delta(G') \leq 4 < 6 = \Delta(3K_3+K_1)-\delta(3K_3+K_1)$, we have $G' \neq 3K_3+K_1$. Suppose $G' = G_0$ or $G' = G'_0$. Then 2s+2=(2n+1)-3 and $\Delta-4 \leq \delta(G') \leq s$, and it follows that s=n-2 and $\Delta \leq s+4$. Let $Y=G-V(O_{s+2})$. Then |Y|=s+3 and $w_1, w_2 \in V(Y)$. Since $w_1w_4, w_1w_5 \notin E(G)$, we have $d_{G'}(w_i) \geq \Delta-2 \geq s+1$, i=4,5. Thus $w_4, w_5 \in V(J_s) \subset V(Y)$. If $w_3 \in V(O_{s+2})$, then $\Delta-3 \leq d_{G'}(w_3) \leq s=n-2 \leq \Delta-3$ (by (10)), which implies that w_3 is adjacent to all the vertices of V(Y) in G. Hence $d_{\Delta}(w_2) \geq d_{\Delta}(w_3) = 4$. By VAL, $3((2n+1)-5) \leq 3(\Delta-2)+2(\Delta-4)$. This, together with (5), implies that $\Delta \geq n+2$, a contradiction. Hence $w_3 \in V(Y)$. We now have $A \subset V(Y)$ and $|V(Y) \setminus A| = s-2$. Since for any $v \in V(Y) \setminus A$, $d_{\Delta}(v) \geq 3$, and by VAL, $e(G_{\Delta}) \geq 5$, we have $e(Y) \geq 3|V(Y) \setminus A| + e(G_{\Delta}) \geq 3(s-2) + 5 = 3s-1$. Now by counting the number of edges joining $V(O_{s+2})$ and V(Y) in two different ways, we have $$(s+2)(\Delta-1) = e_G(V(O_{s+2}), V(Y)) \le 5\Delta + (s-2)(\Delta-1) - 2e(Y).$$ It follows that $\Delta \geq 2e(Y) - 4 \geq 2(3s - 1) - 4 = 6s - 6$, which, together with the fact that $\Delta \leq s + 4$, yields $6s \leq 10$, contradicting the fact that $s = n - 2 \geq 3$. Hence G' has a 1-factor F. Clearly, $G^* = G - (F \cup \{w_1w_2\})$ is of class 2, $\Delta(G^*) = \Delta - 1$, and $A \cup \{u\}$ is the set of major vertices of G^* . Since w_1 is adjacent to only one major vertex w_3 in G^* , and $\Delta(G^* - w_1) = \Delta(G^*)$, by Lemma 2.5, $G^* - w_1$ is of class 2. By Lemma 2.3, $G^* - w_1$ contains a $(\Delta - 1)$ -critical subgraph H, which has at most four major vertices u, w_2, w_4, w_5 . By (8), Δ is even, and so by Lemma 2.6 and Lemma 2.7, $|H| = \Delta(H) + 2 = \Delta + 1$ and $\delta(H) = \Delta(H) - 1$. Since for any $v \in N(w_1) \setminus A$, $d_{G^* - w_1}(v) = \Delta - 3 = \Delta(H) - 2$, we have $v \notin V(H)$. Thus $(N(w_1) \setminus A) \cap V(H) = \phi$. Hence $\Delta + 1 = |H| \leq |G^* - w_1| - |N(w_1) \setminus A| = 2n - (\Delta - 2)$, and it follows that $\Delta \leq n$, which contradicts (10). Next suppose $\delta(G_{\Delta}) = 3$. Then $G_{\Delta} \cong 3^2 4^3$ or $G_{\Delta} \cong 3^4 4^1$. In either case we can rename the major vertices, if necessary, so that $w_1 w_2 \notin E(G)$ (and $w_3w_4 \notin E(G)$ if $G_{\Delta} \cong 3^44^1$). By (8), there exist two minor vertices, say x and y, of G such that $xw_1, yw_1 \notin E(G)$. Since $d_{\Delta}(y) \geq 3$, by symmetry of w_3 and w_4 , we may assume that $yw_4 \in E(G)$. Clearly, $e(G_{\Delta}) \geq 8$. Now by VAL, $3(2n-4) \leq 5\Delta - 2e(G_{\Delta})$, and it follows that $$\Delta \ge n + 2. \tag{11}$$ Furthermore, if $w_3w_4 \in E(G)$, then $e(G_{\Delta}) = 9$. By VAL again, we have the following better inequality: $$\Delta \ge n + 3. \tag{12}$$ Now by (8) and (11), we have $n \geq 6$, and thus $$\Delta \ge n + 2 \ge 8. \tag{13}$$ We next show that G-x has a 1-factor F_1 containing w_1w_4 and w_3w_5 , and $G-F_1-y$ has a 1-factor F_2 containing w_1w_3 . Let $G' = G - \{x, w_1, w_3, w_4, w_5\}$. By (11), $\delta(G') \geq (\Delta - 1) - 5 \geq (n-2) - 2$. Thus by Lemma 2.10, G' has a 1-factor F' except when $G' \in \{G_0, G'_0, 3K_3 + K_1\}$. However, since $\Delta(G') - \delta(G') \leq 3$, we have $G' \neq 3K_3 + K_1$. Suppose $G' = G_0$ or $G' =
G'_0$. Then s = n-3 and $\Delta - 6 \leq \delta(G') \leq s$. This, together with (11), implies that $s + 5 \leq \Delta \leq s + 6$. Let $Y = G - V(O_{s+2})$. Then |Y| = s + 5 and $\{x, w_1, w_3, w_4, w_5\} \subset V(Y)$. Since $w_1 w_2 \notin E(G)$, we have $d_{G'}(w_2) \geq \Delta - 4 \geq s + 1$. Hence $w_2 \in V(Y)$. Thus $A \subset V(Y)$ and $|V(Y)\backslash A| = (s + 5) - 5 = s$. As $e(G_\Delta) \geq 8$ and $d_\Delta(v) \geq 3$ for any $v \in V(Y)\backslash A$, we have $e(Y) \geq 3|V(Y)\backslash A| + e(G_\Delta) \geq 3s + 8$. Thus $$(s+2)(\Delta-1) = e_G(V(O_{s+2}), V(Y)) = 5\Delta + s(\Delta-1) - 2e(Y),$$ and it follows that $6s + 14 \le 3\Delta$, which, together with the inequality $\Delta \le s + 6$, implies that $3s \le 4$, contradicting the fact that $s = n - 3 \ge 2$. Hence $G' \ne G_0$, G'_0 , and G' has a 1-factor F'. Let $F_1 = F' \cup \{w_1w_4, w_3w_5\}$ and let $z \in B$ (z could be y) be such that $zw_2 \in F_1$. We now show that $G - F_1 - y$ has a 1-factor F_2 containing w_1w_3 . Let $G'' = G - F_1 - \{y, w_1, w_3\}$. By (11), $\delta(G'') \geq \Delta - 5 \geq (n-1) - 2$. Thus by Lemma 2.10, G'' has a 1-factor F'' except when $G'' \in \{G_0, G'_0, 3K_3 + K_1\}$. Since $\Delta(G'') - \delta(G'') \leq (\Delta - 1) - (\Delta - 5) = 4$, $G'' \neq 3K_3 + K_1$. Suppose $G'' = G_0$ or $G'' = G'_0$. Then s = n - 2 and $\Delta - 5 \leq \delta(G'') \leq s$. This, together with (11), implies that $s + 4 \leq \Delta \leq s + 5$. Let $Y = G - V(O_{s+2})$. Then |Y| = s + 3 and $w_1, w_3 \in V(Y)$. Since $xw_1, w_1w_2, w_1w_4, w_3w_5 \notin E(G - F_1)$, $d_{G''}(v) \geq \Delta - 3 \geq s + 1$ for any $v \in \{x, w_2, w_4, w_5\}$. Hence $x, w_2, w_4, w_5 \in V(J_s) \subset V(Y)$. We now have $(A \cup \{x\}) \subset V(Y)$ and $|V(Y) \setminus A| = (s + 3) - 5 = s - 2$. As $e_{G - F_1}(A, A) \geq 6$, and for any $v \in \{x, w_3, w_4, w_5 \in V(Y) \setminus A = s + 3 = s - 2$. $V(Y)\backslash A,\ e_{G-F_1}(v,A)\ge 2,$ we have $e(Y)\ge 2|V(Y)\backslash A|+e_{G-F_1}(A,A)\ge 2(s-2)+6=2s+2.$ Thus $$(s+2)(\Delta-2) = e_{G-F_1}(V(O_{s+2}), V(Y)) = 6(\Delta-1) + (s-3)(\Delta-2) - 2e(Y),$$ and it follows that $\Delta \geq 2e(Y) - 4 \geq 2(2s+2) - 4 = 4s$, which, together with the inequality $\Delta \leq s+5$, implies that $3s \leq 5$, contradicting the fact that $s=n-2 \geq 3$. Hence $G' \neq G_0$, G'_0 , and G'' has a 1-factor F''. Clearly, $F_2 = F'' \cup \{w_1w_3\}$ is a 1-factor of $G-F_1-y$. Let $z', w, w' \in V(G'')$ (each of z', w, w' could be any vertex in V(G'')) be such that $z'w_2, ww_4, w'w_5 \in F_2$. Let $G^* = G - F_1 - F_2$. Then G^* is of class 2, and $A \cup \{x,y\}$ is the set of major vertices of G^* . Since w_1 is adjacent to only one major vertex w_5 in G^* and $\Delta(G^* - w_1) = \Delta(G^*)$, by Lemma 2.5, $G^* - w_1$ is of class 2. By Lemma 2.3, $G^* - w_1$ has a $(\Delta - 2)$ -critical subgraph H with at most five major vertices w_2 , w_3 , w_4 , x, and y. Suppose H has five major vertices. Since $e_{G^*}(w_5,\{w_2,w_4\}) \geq 1$, we have $w_5 \in V(H)$. From the choice of F_1 and F_2 , it follows that, for any $v \in B \setminus \{z,z',w,w'\}$, $e_{G^*}(v,A) \geq 3$. Thus $(B \setminus \{z,z',w,w'\}) \subset V(H)$, and $2n = |G^*-w_1| \geq |H| \geq |G^*-\{w_1,z,z',w,w'\}| \geq 2n-4$. By Theorem 1.1, |H| is odd, and so either |H| = 2n-1 or |H| = 2n-3. By the induction hypothesis on Δ , we have $e(H) = (\Delta-2)\frac{|H|-1}{2} + 2$. Suppose |H| = 2n-1. Then $e(H) = (\Delta-2)(n-1) + 1$ and so $e(G) \geq e(H) + |F_1| + |F_2| + 2(\Delta-3) \geq n\Delta + \Delta - 3 \geq n\Delta + 5$ (by (13)), contradicting the assumption that $e(G) \leq n\Delta$. Next suppose |H| = 2n-3. Then $e(H) = (\Delta-2)(n-2) + 1$ and so $e(G) \geq e(H) + |F_1| + |F_2| + 4(\Delta-3) - 6 \geq n\Delta - 2\Delta - 13 \geq n\Delta + 3$ (by (13)), again contradicting the assumption that $e(G) \leq n\Delta$. Hence H has at most four major vertices. Suppose H has four major vertices. By (8), Δ is even, and so by Lemma 2.7 and Lemma 2.8, $|H| = \Delta(H) + 1 = \Delta - 1$. Since $w_2w_3, yw_4 \in E(G^*)$, we have $w_2, w_3, w_4 \in V(H)$ (otherwise H would have at most three major vertices), and at least one of w_3 and w_4 , say w_3 , is a major vertex in H. As $|H| = \Delta(H) + 1$, it follows that w_3 is adjacent to all the other vertices in H. In particular, w_3 is adjacent to w_4 in H. Thus $w_3w_4 \in E(G)$, and so by (12), $\Delta \geq n+3$. However, since for any $v \in N(w_1) \setminus A$, $d_{G^*-w_1}(v) = \Delta - 4 = \Delta(H) - 2$, by Lemma 2.8, H contains at most one vertex $v \in N(w_1) \setminus A$. Thus $\Delta - 1 = |H| \leq |G^* - w_1| - (|N(w_1) \setminus A| - 1) = 2n - (\Delta - 4)$, and it follows that $\Delta \leq n+2$, which is a contradiction. Suppose H has three major vertices. Then by Lemma 2.6, $|H| = \Delta(H) + 1 = \Delta - 1$ and $\delta(H) = \Delta(H) - 1 = |H| - 2$. Since for any $v \in N(w_1) \setminus A$, $d_{G^*-w_1}(v) = \Delta - 4 = \Delta(H) - 2$, we have $v \notin V(H)$. Thus $(N(w_1)\backslash A)\cap V(H)=\phi$ and so $\Delta-1=|H|\leq |G^*-w_1|-|N(w_1)\backslash A|=2n-(\Delta-4)$. This, together with (11), implies that $\Delta=n+2$ and $|H|=|G^*-w_1|-|N(w_1)\backslash A|$. Hence $w_2,w_3,w_4,w_5\in V(H)$. As $w_3w_5\in F_1$, $w_3w_5\notin E(H)$. Since $\delta(H)=\Delta(H)-1=|H|-2$, w_3 is adjacent to any other vertex of H except w_5 . In particular, w_3 is adjacent to w_4 in H. Thus $w_3w_4\in E(G)$. By (12), $\Delta\geq n+3$, which contradicts the fact that $\Delta=n+2$. Claim 2. If $6 \le \Delta \le n$ and G[B] has a maximum matching M with $|M| \ge n-3$, then $\Delta(G_{\Delta}) \ge 3$. In particular, $e(G_{\Delta}) \ge 6$. **Proof.** Suppose otherwise that $\Delta(G_{\Delta}) = 2$. Then by VAL, $\Delta(G_{\Delta}) = \delta(G_{\Delta}) = 2$, and so $G_{\Delta} \cong C_5$. Assume that $G_{\Delta} \cong (w_1, w_2, w_3, w_4, w_5)$. We first show that G[B] has a matching M' of size n-3 such that one of the two M'-unsaturated vertices is adjacent to at most four major vertices in G. Since $|M| \geq n-3$, if |M| = n-2, then by (8), there exists $x \in B$ such that $xw_1 \notin E(G)$. Let $xy \in M$. Then $M' = M - \{xy\}$ is a required matching because $d_{\Delta}(x) \leq 4$. On the other hand, if |M| = n-3, let u and v be the two M-unsaturated vertices. Then $uv \notin E(G)$. If $min\{d_{\Delta}(u), d_{\Delta}(v)\} \leq 4$, then M' = M is a required matching of G[B]. Hence we assume that $d_{\Delta}(u) = d_{\Delta}(v) = 5$. Let $x_1x_1', \cdots, x_tx_t' \in M$ and $y_1y_1', \cdots, y_sy_s' \in M$ be such that $ux_i, ux_i', uy_j \in E(G)$ and $uy_j' \notin E(G)$, where $2t + s = |N_G(u)\backslash A| = (\Delta - 1) - 5 = \Delta - 6$, $i = 1, 2, \cdots, t$, $j = 1, 2, \cdots, s$. Let $C = \{x_1, x_1', \cdots, x_t, x_t', y_1', \cdots, y_s'\}$. Since M is a maximum matching of G[B], v is not adjacent to any vertex of C. Suppose $d_{\Delta}(w) = 5$ for any $w \in C$. Then by VAL, $2((2n-4)-|C\cup\{u,v\}|)+5|C\cup\{u,v\}| \leq 5(\Delta-2)$, which implies that $\Delta \geq 2n-5$, contradicting the fact that $6 \leq \Delta \leq n$. Hence there exists $w \in C$ such that $d_{\Delta}(w) \leq 4$. Let $ww' \in M$. Then $uw' \in E(G)$. Now $M' = (M-\{ww'\}) \cup \{uw'\}$ is a required matching of G[B]. The above shows that in either case, G[B] has a matching M' of size n-3 such that one of the M'-unsaturated vertices is adjacent to at most four major vertices in G. Let $x,y\in B$ be the two M'-unsaturated vertices and let $d_{\Delta}(x)\leq 4$. As $G_{\Delta}\cong C_5$, assume that $xw_1\notin E(G)$. We next show that G-x has a 1-factor. Since $d_{\Delta}(y) \geq 2$ and $G_{\Delta} \cong C_5$, we may choose $w_k \neq w_1 \in A$ such that $yw_k \in E(G)$ and $d_G(w_1, w_k) = mim\{d_G(w_1, w_j) : j = 2, 3, 4, 5\}$. Clearly, $G_{\Delta} - w_k$ has a 1-factor $\{w_1w_j, e\}$, where $j \in \{2, 5\}$, and $e \in E(G_{\Delta})$. By the symmetry of w_2 and w_5 , assume that j = 2. Now $F = M' \cup \{w_1w_2, e, yw_k\}$ is a 1-factor of G - x. Finally, let $G^* = G - F$. Then G^* is of class 2 and $A \cup \{x\}$ is the set of major vertices. As $d_{\Delta}(w_1) = 2$, $w_1 w_2 \in F$, and $x w_1 \notin E(G)$, it follows that w_1 is adjacent to only one major vertex, namely w_5 , in G^* . Since $\Delta(G^*-w_1)=\Delta(G^*)$, by Lemma 2.5, G^*-w_1 is of class 2, and so by Lemma 2.3, $G^* - w_1$ contains a $(\Delta - 1)$ -critical subgraph H with at most four major vertices y, w_2, w_3, w_4 . By (8), Δ is even, and so by Lemma 2.6, Lemma 2.7, and Lemma 2.8, $|H| \neq \Delta(H) + 1 = (\Delta - 1) + 1 = \Delta$. Thus by Lemma 2.6 and Lemma 2.8, $|H| = \Delta(H) + 2 = \Delta + 1$ and H has exactly four major vertices y, w_2, w_3, w_4 . Note that $w_2w_4 \notin E(H)$. Thus $yw_2 \in E(H)$ (because $d_H(w_2) = \Delta(H) = |H| - 2$). By the assumption of w_k , it follows that $w_k =$ w_5 . Now $yw_5 \in F$. This, together with the fact that w_4 is a major vertex in H, implies that $w_5w_4 \in E(H)$. Thus $w_5 \in V(H)$ (otherwise H would have at most three major vertices). Hence $\{w_2, w_3, w_4, w_5\} \subset V(H)$. As w_2 is a major vertex in H and $w_1w_2 \in F$, it follows that $(N_G(w_2)\backslash A) \subset V(H)$. Hence $|H| \geq |N_G(w_2) \setminus A| + |\{w_2, w_3, w_4, w_5\}| = (\Delta - 2) + 4 = \Delta + 2$, which contradicts the fact that $|H| = \Delta + 1$. In what follows, we use m_i (i = 2, 3, 4, 5) to denote the number of minor vertices of G each of which is adjacent to exactly i major vertices in G. We are now in a position to prove Case 2. **Subcase 2.1.** $min\{d_{\Delta}(v) : v \in B\} = 4$. By Claim 1, $G_{\Delta} \cong K_5$. By VAL and (8), $4m_4 + 5m_5 = e_G(B, A) = 5(\Delta - 4) \leq 5((2n - 4) - 4)$. This, together with $m_4 + m_5 = |B| = 2n - 4$, implies that $m_4 \geq 20$
. Now from $2n - 4 = |B| = m_4 + m_5$, it follows that $n \geq \frac{1}{2}m_5 + 12 \geq 12$. By VAL again, $4(2n - 4) \leq e_G(B, A) = 5(\Delta - 4)$. This, together with the inequality $n \geq 12$, yields $$\Delta \ge n + 8. \tag{14}$$ By (8), there exists $x_i \in B$ (i=1,2,3) satisfying $w_1x_i \notin E(G)$. By (14) and Dirac's theorem (see Lemma 2.9), $G - \{x_1, w_1, w_2, w_3, w_4\}$ has a 1-factor F_1' . Let $F_1 = F_1' \cup \{w_1w_2, w_3w_4\}$. By (14) and Dirac's theorem, $G - F_1 - \{x_2, w_1, w_3\}$ has a 1-factor F_2' . Let $F_2 = F_2' \cup \{w_1w_3\}$. Then by (14) and Dirac's theorem again, $G - F_1 - F_2 - \{x_3, w_1, w_4\}$ has a 1-factor F_3' . Let $F_3 = F_3' \cup \{w_1w_4\}$. Clearly, $G^* = G - F_1 - F_2 - F_3$ is of class 2 and $A \cup \{x_1, x_2, x_3\}$ is the set of major vertices of G^* . Since w_1 is adjacent to only one major vertex w_5 in G^* and $\Delta(G^* - w_1) = \Delta(G^*)$, by Lemma 2.5, $\chi'(G^* - w_1) = \chi'(G^*)$, and so $G^* - w_1$ is of class 2 with six major vertices $w_2, w_3, w_4, x_1, x_2, x_3$. However, from the choice of F_1 , F_2 and F_3 , it follows that $w_3w_4 \notin E(G^* - w_1)$ and $w_3x_3, w_4x_2 \in E(G^* - w_1)$. Therefore the core of $G^* - w_1$ has a maximal matching containing w_3x_3, w_4x_2 . Since $G^* - w_1$ has six major vertices and by (14), $\delta(G^* - w_1) \geq \delta(G^*) - 1 =$ $(\delta(G)-3)-1=\Delta-5\geq n+6-3$. Thus by Lemma 2.12, G^*-w_1 is of class 1, which is a contradiction. **Subcase 2.2.** $min\{d_{\Delta}(v) : v \in B\} = 3.$ By Claim 1, $G_{\Delta} \cong K_5$. By VAL, $3((2n+1)-5) \leq e_G(B,A) = 5(\Delta-4)$. This, together with (5), implies that $$\Delta \ge n + 3. \tag{15}$$ By (8) and (15), we have $$n \ge 7. \tag{16}$$ Let $x \in B$ satisfying $d_{\Delta}(x) = 3$. Suppose there exists a vertex $y \in B \setminus N[x]$ such that $d_{\Delta}(y) = 3$. Since $G_{\Delta} \cong K_5$, we may assume that $xw_i \in E(G)$ (i = 1, 2, 3) and $yw_1, yw_j, yw_k \in E(G)$, where $w_j, w_k \in A$ and $w_j \neq w_2$. By (8), there exists another vertex $z(\neq y) \in B$ such that $xz \notin E(G)$. We next show that G - z has a 1-factor F_1 containing $xw_2, yw_j, G - F_1 - y$ has a 1-factor F_2 containing xw_3 , and $G - F_1 - F_2 - \{x, y, z\}$ has a 1-factor F_3 . Let $G_1 = G - \{x, y, z, w_2, w_j\}$. By (15), $\delta(G_1) \geq (\Delta - 1) - 5 \geq (n - 2) - 1$. By Lemma 2.10, G_1 has a 1-factor F_1' except when $G_1 = G_0$. Suppose $G_1 = G_0$. Then s = n - 3 and $\Delta - 6 \leq \delta(G_1) \leq s$. Thus $\Delta \leq s + 6$. This, together with (15), implies that $\Delta = s + 6$ and $\delta(G_1) = \Delta - 6 = s$. As $d_{\Delta}(w_2) = 4$ and $xw_2 \in E(G)$, it follows that w_2 is adjacent to at most $\Delta - 5 = s + 1$ vertices of $B \setminus \{x, y, z\}$ in G_1 . Thus G_1 has at most s + 1 vertices of degree $\delta(G) = \Delta - 6 = s$, which contradicts the fact that $G_1 = G_0$ has s + 2 vertices of degree s. Hence $G_1 \neq G_0$ and thus G_1 has a 1-factor F_1' . Clearly, $F_1 = F_1' \cup \{xw_2, yw_j\}$ is a 1-factor of G - z. Let $G_2=G-F_1-\{x,y,w_3\}$. By (15), $\delta(G_2)\geq (\Delta-2)-3\geq (n-1)-1$. By Lemma 2.10 again, G_2 has a 1-factor F_2' except when $G_2=G_0$. Suppose $G_2=G_0$. Then s=n-2 and $\Delta-5\leq \delta(G_2)=\delta(G_0)=s$. Thus $\Delta\leq s+5$. This, together with (15), implies that $\Delta=s+5$ and $\delta(G_2)=\Delta-5=s$. As $xw_3\in E(G_2)$ and $e_{G_2}(w_3,\{w_1,w_2,w_4,w_5\})\leq 4$, it follows that w_3 is adjacent to at most $\Delta-5=s$ vertices of $B\setminus\{x,y,z\}$ in G_2 . Thus G_2 has at most s vertices of degree $\delta(G_2)=\Delta-5=s$, which contradicts the fact that $G_2=G_0$ has s+2 vertices of degree s. Hence $G_2\neq G_0$ and thus G_2 has a 1-factor F_2' and $F_2=F_2'\cup\{xw_3\}$ is a 1-factor of G-y. Let $G_3 = G - F_1 - F_2$ and $G_4 = G_3 - \{x, y, z\}$. By (15), $\delta(G_4) \ge (\Delta - 3) - 3 \ge (n - 1) - 2$. By (16) and Lemma 2.10, G_4 has a 1-factor F_3 except when $G_4 \in \{G_0, G_0'\}$. Suppose $G_4 \in \{G_0, G_0'\}$. Then s = n - 2 and $\Delta - 6 \le \delta(G_4) \le s$. Thus $\Delta \le s + 6$. By (15), we have $s + 5 \le \Delta \le s + 6$. Since $xv \notin E(G_3)$ for any $v \in \{w_2, w_3, w_4, w_5\}$, we have $d_{G_4}(v) \geq \Delta - 4 \geq s + 1$, and so $w_2, w_3, w_4, w_5 \in V(J_s)$. Suppose $w_1 \in V(J_s)$. Then $A \subset V(J_s)$. Observe that for any $u \in V(O_{s+2})$, $d_{G_4}(u) \geq \Delta - 6 \geq$ (s+5)-6=s-1. This, together with $A\subset V(J_s)$, implies that each vertex of O_{s+2} is adjacent to at least four vertices of A in G_4 . Hence $d_{\Delta}(u) \geq 4$ for any $u \in V(O_{s+2})$. As $min\{d_{\Delta}(v) : v \in B\} = 3$, by VAL, it follows that $3|B\setminus V(O_{s+2})|+4|O_{s+2}|\leq e_G(B,A)=5(\Delta-4)$. But then $\Delta\geq s+7$ (because $s = n - 2 \ge 5$ (by (16))), contradicting the fact that $\Delta \le s + 6$. Suppose $w_1 \in V(O_{s+2})$. Then $\Delta - 5 \leq d_{G_4}(w_1) \leq s = n-2 \leq \Delta - 5$ (by (15)), which implies that $s = \Delta - 5$ and w_1 is adjacent to all the vertices of J_s . Thus there exists $u \in V(O_{s+2})$ such that $w_1u \in F_1$. Since $d_{G_4}(u) \geq \delta(G_4) \geq \Delta - 6 = s - 1, |J_s| = s, \text{ and } w_2, w_3, w_4, w_5 \in V(J_s), \text{ it}$ follows that u is adjacent to at least three vertices of w_2, w_3, w_4, w_5 in G. This, together with the fact that $uw_1 \in E(G)$, implies that $d_{\Delta}(u) \geq 4$. As $d_{\Delta}(v) \geq 3$ for any $v \in B$, by VAL, $3(2n-4-1)+4 \leq e_G(B,A) = 5(\Delta-4)$, which, by (16), implies that $\Delta \geq n+4=s+6$ (because s=n-2), contradicting the fact that $s = \Delta - 5$. Hence $G_4 \notin \{G_0, G_0'\}$. Consequently, G_4 has a 1-factor F_3' . Finally, let $G^* = G_3$ if $yz \notin E(G)$ or $G^* = G_3 - (F_3 \cup \{yz\})$ if $yz \in E(G)$. Then G^* is of class 2. As x is adjacent to only one major vertex w_1 in G^* and $\Delta(G^*-x)=\Delta(G^*)$, by Lemma 2.5, G^*-x is of class 2 with six major vertices y, z, w_2, w_3, w_4, w_5 . From the choice of F_1 , F_2 and F_3 , it follows that y is adjacent to only one major vertex w_k in $G^* - x$. Observe that $\Delta(G^* - \{x,y\}) = \Delta(G^* - x)$. By Lemma 2.5, $G^* - \{x,y\}$ is of class 2 with four major vertices. By Lemma 2.3, $G^* - \{x, y\}$ contains a Δ' -critical subgraph H with at most four major vertices, where $\Delta' = \Delta - 2$ if $G^* = G_3$, and $\Delta' = \Delta - 3$ if $G^* = G_3 - (F \cup \{yz\})$. Note that, if $\Delta' = \Delta - 2$, then $|H| \ge \Delta(H) + 1 = (\Delta - 2) + 1 = \Delta - 1$. If $\Delta' = \Delta - 3$, by (8), Δ is even, and so by Lemma 2.6 and Lemma 2.8, $|H| = \Delta(H) + 2 = (\Delta - 3) + 2 =$ $\Delta - 1$. Hence in both cases, we have $|H| \geq \Delta - 1$. Observe that for any $v \in N_{G^*-\{x,y\}}(x) \setminus A, d_{G^*-\{x,y\}}(v) \le \Delta' - 2 = \Delta(H) - 2$. By Lemma 2.6 and Lemma 2.8 again, H contains at most one vertex $v \in N(x) \setminus A$. Thus $\Delta - 1 \le |H| \le |G^* - \{x, y\}| - (|N_{G^* - \{x, y\}}(x) \setminus A| - 1) \le (2n - 1) - (\Delta - 5)$, and it follows that $\Delta \leq n+2$, contradicting (15). Hence for any $v \in B \setminus N[x]$, $d_{\Delta}(v) \geq 4$ and G[C] is a complete subgraph of order m_3 in G, where $C = \{v \in B : d_{\Delta}(v) = 3\}.$ As $d_{\Delta}(v) \geq 4$ for any $v \in B \setminus N[x]$, we have $m_3 \leq |N[x] \cap B| = \Delta - 3$. By VAL, $$3(\Delta - 3) + 4(2n - \Delta - 1) \le e_G(B, A) = 5(\Delta - 4). \tag{17}$$ This, together with (16), implies that $\Delta \geq n+4$. Suppose $\Delta = n+4$. Then (8) and (17) imply that n=8 and $\Delta = n+4=12$. Since $m_3=1$ $(2n-4)-(m_4+m_5)$ and by VAL, $3m_3+4m_4+5m_5=5(\Delta-4)=5n$, we have $m_4+2m_5=4$. As $m_3\leq \Delta-3=9$, it follows that $m_3=9$, $m_4=2$, and $m_5=1$ or $m_3=8$, $m_4=4$, and $m_5=0$. In both cases, as $G[C]=K_{m_3}$, by counting the number of edges joining C with $B\setminus C$ in two different ways, we have $14=2(11-4-2)+(11-5-2)\leq e_G(B\setminus C,C)\leq 8$, which is a contradiction. Hence $$\Delta \ge n + 5. \tag{18}$$ Since $xw_i \in E(G)$ (i = 1, 2, 3), we have $xw_5 \notin E(G)$. By (8), there exist another two vertices $y, z \in B$ such that $yw_5, zw_5 \notin E(G)$. As $d_{\Delta}(y)$, $d_{\Delta}(z) \geq 3$, we may assume that $yw_2, zw_2 \in E(G)$. We next show that G - z has a 1-factor F_1 containing w_5w_2 , $G - F_1 - y$ has a 1-factor F_2 containing w_5w_3 , and $G - F_1 - F_2 - x$ has a 1-factor containing w_5w_4 . Let $G_1 = G - \{w_5, w_2, x, y, z\}$ if $xy \in E(G)$ (or $G_1 = G - \{w_5, w_2, w_3, w_4, z\}$ if $xy \notin E(G)$). By (18), $\delta(G_1) \geq (\Delta - 1) - 5 \geq n - 1$. By Dirac's Theorem, G_1 has a 1-factor F_1' . Let $F_1 = F_1' \cup \{w_5w_2, xy\}$ (or $F_1 = F_1' \cup \{w_5w_2, w_3w_4\}$) and let $G_2 = G - F_1 - \{w_5, w_3, x, y, z\}$ if $xz \in E(G)$ (or $G_2 = G - F_1 - \{w_5, w_3, w_2, w_4, y\}$ if $xz \notin E(G)$). By (18), $\delta(G_2) \geq (\Delta - 2) - 5 \geq n - 2$. By Dirac's Theorem again, G_2 has a 1-factor F_2' . Let $F_2 = F_2' \cup \{w_5w_3, xz\}$ (or $F_2 = F_2' \cup \{w_5w_3, w_2w_4\}$) and let $G_3 = G - F_1 - F_2 - \{w_5, w_4, x\}$. By (18), $\delta(G_3) \geq (\Delta - 3) - 3 \geq n - 1$. Thus by Dirac's Theorem, G_3 has a 1-factor F_3' . Let $F_3 = F_3' \cup \{w_5w_4\}$. Next, let $G^* = G - F_1 - F_2 - F_3$. Then G^* is of class 2, and $A \cup \{x, y, z\}$ is the set of major vertices of G^* . As w_5 is adjacent to only one major vertex w_1 in G^* and $\Delta(G^* - w_5) = \Delta(G^*)$, by Lemma 2.5, $G^* - w_5$ is of class 2, and x is adjacent to only two major vertices w_2 and w_3 in $G^* - w_5$. We now show that $G^* - w_5$ has a 1-factor F_4 containing xw_2 . Let $G_4=G^*-\{w_5,w_2,x\}$.
By (18), $\delta(G_4)\geq (\Delta-4)-3\geq (n-1)-1$. By Lemma 2.10, G_4 has a 1-factor F_4' except when $G_4=G_0$. Suppose $G_4=G_0$. Then s=n-2 and $\Delta-7\leq \delta(G_4)=\delta(G_0)\leq s$. Thus $\Delta\leq s+7$. This, together with (18), implies that $\Delta=s+7$ and $\delta(G_4)=\Delta-7=s$. As w_2 is adjacent to at most $\Delta-7=s$ vertices of $B\setminus\{x,y,z\}$ in G^*-w_5 , it follows that G_4 has at most s vertices of degree $\delta(G_4)=\Delta-7=s$, which contradicts the fact that $G_4=G_0$ has s+2 vertices of degree s. Hence $G_4\neq G_0$ and thus G_4 has a 1-factor F_4' . Let $F_4 = F_4' \cup \{xw_2\}$ and let $G^{**} = G^* - w_5 - F_4$. Then G^{**} is of class 2 and x is adjacent to only one major vertex w_3 in G^{**} . Since $\Delta(G^{**} - x) = \Delta(G^{**}) = \Delta - 4$, by Lemma 2.5, $G^{**} - x$ is of class 2, and y, z, w_2, w_4 are the four major vertices of $G^{**} - x$. By Lemma 3, $G^{**} - x$ contains a $(\Delta - 4)$ -critical subgraph H with at most four major vertices y, z, w_2, w_4 . Observe that for any $v \in N_{G^{\bullet\bullet}}(x)\backslash A$, $d_{G^{\bullet\bullet}-x}(v) = (\Delta - 5) - 1 = \Delta(H) - 2$. By Lemma 2.6 and Lemma 2.8, $N_G(x)\backslash A$ and V(H) have at most one vertex in common. Thus $\Delta - 3 = \Delta(H) + 1 \le |H| \le |G^{**} - x| - (|(N_{G^{\bullet\bullet}}(x)\backslash A)| - 1) \le (2n-1) - ((\Delta - 4) - 1)$, and so $\Delta \le n + 3$, which contradicts (18). **Subcase 2.3.** $min\{d_{\Delta}(v) : v \in B\} = 2.$ In this case, we first show that there exist $x \in B$ and $y \in B \setminus N[x]$ such that $d_{\Delta}(x) = 2$ and G - y has a 1-factor F containing xw, where $w \in A$. We consider the following three cases. Case i: $\Delta \geq n+1$ Since $min\{d_{\Delta}(v):v\in B\}=2$, let $x\in B$ be such that $d_{\Delta}(x)=2$. By (8), there exists $y \in B$ such that $xy \notin E(G)$. Assume that $xw_i \in E(G)$, where i = 1, 2. By symmetry of w_1 and w_2 , assume that $d_{\Delta}(w_1) \geq d_{\Delta}(w_2)$. Let $G' = G - \{x, y, w_1\}$. As $\Delta \geq n + 1$, it follows that $\delta(G') \geq \Delta$ $4 \ge (n-1)-2$. By Lemma 2.10, G' has a 1-factor F' except when $G' \in \{G_0, G'_0, 3K_3 + K_1\}$. However, as $\Delta(G') - \delta(G') \leq \Delta - (\Delta - 4) = 4$, $G' \neq 3K_3 + K_1$. Suppose $G' = G_0$ or $G' = G'_0$. Then s = n - 2 and $\Delta - 4 \le \delta(G') \le s$. Thus $s + 3 = n + 1 \le \Delta \le s + 4$. Let $Y = G - V(O_{s+2})$. Then |Y| = s + 3, $w_1 \in V(Y)$ and $V(J_s) \subset V(Y)$. Since $xw_i \notin E(G)$, i = 3, 4, 5, we have $d_{G'}(w_i) \ge \Delta - 2 \ge s + 1$. Thus $w_i \in V(J_s) \subset V(Y)$. Suppose $w_2 \in V(J_s)$. Then $A \subset V(Y)$. This, together with the fact that $d_{\Delta}(v) \geq 2$ for any $v \in V(Y)$, yields that $e(Y) \geq e(G_{\Delta}) + 2|Y \setminus A| =$ 5 + 2((s+3) - 5) = 2s + 1. Now $(s+2)(\Delta - 1) = e_G(V(O_{s+2}), V(Y)) =$ $5\Delta + (s-2)(\Delta-1) - 2e(Y)$ implies that $\Delta \geq 4s-2 \geq s+7$ because $s = n - 2 \ge 3$, contradicting the fact that $\Delta \le s + 4$. Next, suppose $w_2 \in V(O_{s+2})$. As $d_G(w_2) = \Delta \geq s+3$ and |Y| = s+3, it follows that w_2 is adjacent to all the vertices of Y in G and thus $\Delta = s + 3$. In particular, w_2 is adjacent to w_1 , w_3 , w_4 , and w_5 in G. Thus $d_{\Delta}(w_2) = 4$. Since $d_{\Delta}(w_1) \geq d_{\Delta}(w_2)$, we have $d_{\Delta}(w_1) = d_{\Delta}(w_2) = 4$ and so $e(G[A - w_2]) \geq 3$. This, together with the fact that $d_{\Delta}(v) \geq 2$ for any $v \in V(Y)$, implies that $e(Y) \ge e(G[A - w_2]) + |Y \setminus A| \ge 3 + ((s+3) - 4) = s + 2$. Now $(s+1)(\Delta-1) + \Delta = e_G(V(O_{s+2}), V(Y)) = 4\Delta + (s-1)(\Delta-1) - 2e(Y)$ yields that $\Delta \geq 2s + 2 \geq s + 5$ (because $s = n - 2 \geq 3$), which contradicts the fact that $\Delta = s + 3$. Hence $G' \notin \{G_0, G'_0\}$ as desired and G' has a 1-factor F'. Clearly, $F = F' \cup \{xw_1\}$ is a 1-factor of G - y. Case ii: $\Delta = n$ and $G[B] \cong J_{n-2} \cup J'_{n-2}$, where $m_2 \geq n$, and J_{n-2} and J'_{n-2} are graphs of order n-2 with $\Delta(J_{n-2}) = \Delta(J'_{n-2}) = n-3$. In this case, $n=\Delta\geq 6$ (by (9)). Let $x\in V(J_{n-2})$ and $y\in V(J'_{n-2})$ be such that $d_{\Delta}(x)=d_{\Delta}(y)=2$. Clearly, $xy\notin E(G)$. Assume that $xw_1,xw_2\in E(G)$, and $yw_k,yw_j\in E(G)$, where $w_k,w_j\in A$. By symmetry of w_1 and w_2 and symmetry of x and y, assume that $d_{\Delta}(w_1) \geq d_{\Delta}(w_2)$, and $d_{\Delta}(w_1) \leq \max\{d_{\Delta}(w_k), d_{\Delta}(w_j)\}$. Let $G' = G - \{x, y, w_1\}$. As $\Delta = n$ and $(N_G(x) \cap N_G(y)) \cap B = \phi$, it follows that $\delta(G') = \Delta - 3 = (n-1) - 2$. By Lemma 2.10, G' has a 1-factor F' except when $G' \in \{G'_0, 3K_3 + K_1\}$. However, as $\Delta(G') - \delta(G') \leq \Delta - (\Delta - 3) = 3$, $G' \neq 3K_3 + K_1$. Suppose $G' = G'_0$. Then 2s + 2 = 2n - 2. Thus s = n - 2 and $\Delta = n = s + 2$. Let $Y = G - V(O_{s+2})$. Then |Y| = s + 3 and $w_1 \in V(Y)$. Observe that for any $v \in V(O_{s+2}) - A$, $d_G(v) = \Delta - 1 = s + 1$ and v is adjacent to at most one of x and y. If $|A \cap V(Y)| \geq 4$, then $|A \cap V(O_{s+2})| \leq 1$ and each vertex $v \in V(O_{s+2}) - A$ is adjacent to at least three vertices of A in G. Thus $m_3 + m_4 + m_5 \geq |V(O_{s+2}) - A| = |O_{s+2}| - |A \cap V(O_{s+2})| \geq (s+2) - 1 = n - 1$, and so $m_2 \leq |B| - (m_3 + m_4 + m_5) \leq (2n - 4) - (n - 1) = n - 3$, which contradicts the fact that $m_2 \geq n$. Hence $|A \cap V(Y)| \leq 3$. On the other hand, by VAL, $d_{\Delta}(v) \geq 2$ for any $v \in V(O_{s+2}) - A$, we have $|A \cap V(Y)| \geq 2$. Thus $2 \leq |A \cap V(Y)| \leq 3$. Suppose $|A \cap V(Y)| = 2$. By VAL, for any $w \in A \cap V(O_{s+2})$, $d_{\Delta}(w) = 2$ and $ww_1 \in E(G)$. Thus $d_{\Delta}(w_1) = 3$. As $xw_i \notin E(G)$ (i = 3, 4, 5), it follows that for any $w \in \{w_3, w_4, w_5\} \cap V(O_{s+2})$, $xw \notin E(G)$. Now $d_G(w) = \Delta = s + 2$ and |Y - x| = s + 2 imply that $yw \in E(G)$. Thus $w_k, w_j \in V(O_{s+2})$ and $max\{d_{\Delta}(w_k), d_{\Delta}(w_j)\} = 2$, which contradicts the assumption that $3 = d_{\Delta}(w_1) \le max\{d_{\Delta}(w_k), d_{\Delta}(w_j)\}$. Suppose $|A \cap V(Y)| = 3$. We claim that $e(Y) \geq s$. Since $N_G(x) \setminus A$ and $N_G(y)\setminus A$ have no vertices in common, if $w_2\notin V(O_{s+2})$, then $e_G(\{x,y\},$ $V(O_{s+2}) \le s+2$ and so $e(Y) \ge d_G(x) + d_G(y) - e_G(\{x,y\}, V(O_{s+2})) \ge d_G(x) + d_G(y) - d_G(x)$ 2(s+1)-(s+2)=s. On the other hand, if $w_2\in V(O_{s+2})$, then $e_G(\{x,y\},V(O_{s+2})) \le s+3$. Let $\{w,w_2\} = A \cap V(O_{s+2})$. Then $xw \notin E(G)$. Now $d_G(w) = \Delta = s+2$ and |Y-x| = s+2 imply that $yw \in E(G)$ and w is adjacent to the other three vertices of $A \cap V(Y)$. Thus $d_{\Delta}(w) = 3$. Observe that $d_{\Delta}(w_1) \geq d_{\Delta}(w_2)$. This, together with the fact that the number of vertices of odd degrees in G_{Δ} is even, implies that $e(G[A \cap V(Y)]) \geq 1$. Hence $e(Y) \ge (d_G(x) + d_G(y) - e_G(\{x,y\}, V(O_{s+2}))) + e(G[A \cap V(Y)]) \ge$ 2(s+1)-(s+3)+1=s. Thus, in both cases, we have $e(Y) \geq s$ as claimed. Now by counting the number of edges joining V(Y) and $V(O_{s+2})$ in two different ways, we have $2\Delta + s(\Delta - 1) = e_G(V(O_{s+2}), V(Y)) = 3\Delta + s(\Delta - 1)$ $1)-2e(Y) \leq 3\Delta-s(\Delta-1)-2s$, and it follows that $\Delta \geq 2s \geq s+4$ (because $s = n - 2 \ge 6 - 2 = 4$), which contradicts the fact that $\Delta = n = s + 2$. Hence $G' \neq G'_0$ and G' has a 1-factor F' and $F = F' \cup \{xw_1\}$ is a 1-factor of G-y. Case iii: $\Delta \leq n-1$ or $\Delta = n$ and $G[B] \not\cong J_{n-2} \cup J'_{n-2}$, where $m_2 \geq n$, and J'_{n-2} and J'_{n-2} are graphs of order n-2 with $\Delta(J_{n-2}) = \Delta(J'_{n-2}) = n-3$. In this case, $n \geq \Delta \geq 6$ (by (9)). We first show that G[B] has a maximal matching M of size n-3 and one of the two M-unsaturated vertices is adjacent to exactly two major vertices in G. Since $min\{d_{\Delta}(v): v \in B\} = 2$, $\Delta(G[B]) = \Delta - 3$. By Lemma 2.1, $\chi'(G[B]) \leq \Delta - 2$. Let π be a $(\Delta - 2)$ -colouring of G[B] and let $E_1, E_2, \dots, E_{\Delta-2}$ be the colour classes, where $|E_1| \geq |E_2| \geq \dots \geq |E_{\Delta-2}|$. Suppose $|E_1| \leq n-4$. By VAL, $e(G_{\Delta}) \geq 5$ and $e_G(A, B) = 5\Delta - 2e(G_{\Delta}) \leq 5\Delta - 10$. Now $(2n-4)(\Delta-1) - e_G(A, B) = 2e(G[B]) = 2\sum_{i=1}^{\Delta-2} |E_i| \leq 2(\Delta - 2)(n-4)$ implies that $\Delta \geq 2n-2$, contradicting (8). Hence $|E_1| \geq n-3$. Let M' be a maximum matching of G[B]. Then $|M'| \geq |E_1| \geq n-3$. Since |B| = 2n-4, we have $n-3 \leq |M'| \leq n-2$. Suppose |M'|=n-3. Let u and v be the two M'-unsaturated vertices. Then $uv \notin E(G)$. Clearly, if $d_{\Delta}(u)=2$ or $d_{\Delta}(v)=2$, then M=M' is a maximal matching of G[B] as required. Hence we assume that $d_{\Delta}(u), d_{\Delta}(v) \geq 3$. Let $x_1x_1', \cdots, x_tx_t' \in M'$ and $y_1y_1', \cdots, y_sy_s' \in M'$ be such that $ux_i, ux_i', uy_j \in E(G)$ and $uy_j' \notin E(G)$, where $2t+s=|N_G(u)\setminus A|=(\Delta-1)-d_{\Delta}(u), \ i=1,\cdots,t, \ j=1,\cdots,s.$ Let $C=\{x_1,x_1',\cdots,x_t,x_t',y_1',\cdots,y_s'\}$. Since M' is a maximum matching of G[B],v is not adjacent to any vertex of C in G. Suppose $d_{\Delta}(w) \geq 3$ for any $w \in C$. Then by VAL and Claim 2, $2((2n-4)-|C\cup\{u,v\}|)+3|C\cup\{v\}|+d_{\Delta}(u)\leq e_G(B,A)=5\Delta-2e(G_{\Delta})\leq 5\Delta-12$, and it follows that $\Delta\geq n+1$, which contradicts the fact that $\Delta\leq n$. Hence there exists $w\in C$ such that $d_{\Delta}(w)=2$. Let $ww'\in M'$. Then $uw'\in E(G)$ and $vw\notin E(G)$. Now $M=(M'-\{ww'\})\cup\{uw'\}$ is a maximal matching of G[B] as required. Next suppose
M'| = n - 2. By Claim 2, $e(G_{\Delta}) \ge 6$. Thus by VAL, $2(2n-4) \le e_G(B,A) = 5\Delta - 2e(G_{\Delta}) \le 5\Delta - 12$ and $2m_2 + 3(2n-4-m_2) \le e_G(B,A) = 5\Delta - 2e(G_{\Delta}) \le 5n - 12$. It follows that $$\Delta \ge \frac{4n+4}{5} \quad \text{and} \quad m_2 \ge n \ge 6. \tag{19}$$ Since $m_2 \geq n$ and |M'| = n-2, there exists $uv \in M'$ such that $d_{\Delta}(u) = d_{\Delta}(v) = 2$. Let $x_1x_1', \cdots, x_tx_t' \in M'$ and $y_1y_1', \cdots, y_sy_s' \in M'$ be such that $ux_i, ux_i', uy_j \in E(G)$ and $uy_j' \notin E(G)$, where $2t+s = |N_G(u)\setminus (A \cup \{v\})| = (\Delta-1)-(2+1)=\Delta-4, \ i=1,\cdots,t, \ j=1,\cdots,s.$ Let $C=\{x_1,x_1',\cdots,x_t,x_t',y_1',\cdots,y_s'\}$. Suppose there exists $w \in C$ such that $vw \notin E(G)$. Let $ww' \in M'$. Then $uw' \in E(G)$. Now $(M'-\{uv,ww'\}) \cup \{uw'\}$ is a maximal matching of G[B] as required. Hence we assume that v is adjacent to all the vertices of C, and thus v is not adjacent to any vertex of $\{y_1,\cdots,y_{\Delta-4-2t}\}$ in G. Let $D=(N(u)\cup N(v))\cap B$. If there exist $y \in B\setminus D$ and $z \in D$ such that $yz \in E(G)$, let $yy',zz' \in M'$. Then $y'u,y'v \notin E(G)$. By symmetry of u and v, we may assume that $vz' \in E(G)$. Now $M=(M'-\{uv,yy',zz'\}) \cup \{vz',yz\}$ is a maximal matching of G[B] as required. Hence $e_G(B \setminus D, D) = 0$. Since $2t + s = \Delta - 4$, either $s \ge 1$ or s = 0. Suppose $s \geq 1$. We claim that there exists $y_j \in \{y_1, \cdots, y_s\}$ (or $y_j' \in \{y_1', \cdots, y_s'\}$) such that y_j (or y_j') is adjacent to some vertex $z \in \{x_1, x_1', \cdots, x_t, x_t', y_1, \cdots, y_s\}$ (or $z \in \{x_1, x_1', \cdots, x_t, x_t', y_1', \cdots, y_s'\}$) in G. Suppose otherwise. Then $(N_G(y_j) \setminus A) \subseteq \{u, y_1', y_2', \cdots, y_s'\}$ and $(N_G(y_j') \setminus A) \subseteq \{v, y_1, y_2, \cdots, y_s\}$, where $1 \leq j \leq s$. Let $l = \min\{d_{\Delta}(v) : v \in \{y_1, y_1', \cdots, y_s, y_s'\}\}$. Without loss of generality, we assume that $d_{\Delta}(y_1) = l$. Then $2 \leq l \leq 5$ and $|\{y_1', \cdots, y_s'\}| \geq |N_G(y_1) \setminus (A \cup \{u\})| = (\Delta - 1) - (l + 1) = \Delta - l - 2$. Thus $|\{y_1, y_1', \cdots, y_s, y_s'\}| = 2|\{y_1', \cdots, y_s'\}| \geq 2(\Delta - l - 2) = 2\Delta - 2l - 4$. We claim that l = 2. Suppose $5 \ge l \ge 3$. Then $t \ge 1$ (otherwise if t = 0, then $s = \Delta - 4$ and $m_3 + m_4 + m_5 \ge |\{y_1, y_1', \cdots, y_s, y_s'\}| = 2s = 2(\Delta - 4)$. By (19), $n \le m_2 = |B| - (m_3 + m_4 + m_5) \le (2n - 4) - (2\Delta - 8)$, and it follows that $\Delta \le \frac{n+4}{2}$, which contradicts (19)). Thus $ux_1, ux_1' \in E(G)$ and so $\Delta - 1 = d_G(u) \ge d_\Delta(u) + |\{v, x_1, x_1', y_1\}| = 6$. This, together with (8), implies that $$n \ge \Delta \ge 8. \tag{20}$$ On the other hand, by VAL and Claim 2, $l(2\Delta-4-2l)+2((2n-4)-(2\Delta-4-2l)) \le e_G(B,A) \le 5\Delta-12$, and it follows that $$(l-2)(2\Delta - 4 - 2l) + 4n - 8 \le 5\Delta - 12. \tag{21}$$ If l=5, then (21) implies that $\Delta+4n\leq 38$, which contradicts (20). If l=4, then (21) again implies that $\Delta\geq 4n-20$, which contradicts (20). If l=3, then $2\Delta-10=2\Delta-4-2l\leq |\{y_1,y_1',\cdots,y_s,y_s'\}|\leq m_3+m_4+m_5=|B|-m_2=(2n-4)-n=n-4$, and it follows that $\Delta\leq \frac{n+6}{2}$. However, by (21), $\Delta\geq n+\frac{n-6}{3}$, which contradicts (20). Hence l=2 as claimed and so $s=\Delta-4$ and t=0. Thus $|D|=|\{u,v,y_1,y_1',\cdots,y_{\Delta-4},y_{\Delta-4}'\}|=2\Delta-6$ and $|B\backslash D|=(2n-4)-(2\Delta-6)=2n-2\Delta+2$. Let $w\in B\backslash D$ be such that $d_{\Delta}(w)=\min\{d_{\Delta}(v):v\in B\backslash D\}$. Then $2n-2\Delta+2=|B\backslash D|\geq |N[w]|-d_{\Delta}(w)=\Delta-d_{\Delta}(w)$, and it follows that $$\Delta \le \frac{2n+2+d_{\Delta}(w)}{3}.\tag{22}$$ By VAL and Claim 2, $d_{\Delta}(w)|B\setminus D|+2|D|\leq e_G(B,A)\leq 5\Delta-12$. Thus $$d_{\Delta}(w)(2n - 2\Delta + 2) + 2(2\Delta - 6) \le e_G(B, A) \le 5\Delta - 12.$$ (23) If $d_{\Delta}(w) = 2$, then by (22), $\Delta \leq \frac{2n+4}{3}$, which contradicts (19). If $d_{\Delta}(w) = 3$, by (22), $\Delta \leq \frac{2n+5}{3}$. However, by (23), $\Delta \geq \frac{6n+6}{7}$, which contradicts (20). If $d_{\Delta}(w) = 4$, by (23), $\Delta \geq \frac{8n+8}{9}$. However, by (22), $\Delta \leq \frac{2n+6}{3}$, which contradicts (20). If $d_{\Delta}(w) = 5$, by (23), $\Delta \geq \frac{10n+10}{11}$. However, by (22), $\Delta \leq \frac{2n+7}{3}$, which, again, contradicts (20). Hence by symmetry of u and v, we can claim from above that there exists $y_j \in \{y_1, \dots, y_s\}$ such that y_j is adjacent to some vertex $z \in \{x_1, x_1', \dots, x_t, x_t', y_1, \dots, y_s\}$ in G. Let $zz' \in M'$. Then $vz' \in E(G)$. Now $M = (M' - \{uv, y_j y_j', zz'\}) \cup \{y_j z, vz'\}$ is a maximal matching of G[B] as required. Suppose s=0. Then $t=\frac{\Delta-4}{2}$ and $|D|=\Delta-2\leq n-2$. As $m_2\geq n$, there exists $w \in B \setminus D$ such that $d_{\Delta}(w) = 2$. If $\Delta = n$, then |D| = n - 2and $|B\setminus D|=(2n-4)-(n-2)=n-2$. Since $e_G(D,B\setminus D)=0$, we have $G \cong J_{n-2} \cup J'_{n-2}$, which contradicts our assumption. Hence $\Delta \leq n-1$. By VAL, $2m_2 + 3((2n-4) - m_2) \le 5\Delta - 12 \le 5(n-1) - 12$, and it follows that $m_2 \ge n+5$. Thus $n+5 \le m_2 \le |B| = 2n-4$, which implies that $n \ge 9$. If there exists $u'v' \in M' \cap E(G[B\backslash D])$ such that $d_{\Delta}(u') = d_{\Delta}(v') = 2$, then as similar to the case that $uv \in M'$ with $d_{\Delta}(u) = d_{\Delta}(v) = 2$ as shown above, we have $|D'| = \Delta - 2$ and $e_G(D', B \setminus (D' \cup D)) = 0$, where $D' = (N(u') \cup N(v')) \cap B$. We claim that $D' = B \setminus D$. Suppose otherwise. Since for any $w \in B \setminus (D \cup D')$, $d_G(w) = \Delta - 1$ and $d_{\Delta}(w) \leq 5$, we have $(2n-4)-2(\Delta-2)=|B\setminus (D\cup D')|\geq |N_G[w]|-d_{\Delta}(w)\geq \Delta-5, \text{ and }$ it follows that $\Delta \leq \frac{2n+5}{3}$, which contradicts (19) because $n \geq 9$. Hence $D' = B \setminus D$ as claimed. Now $(\Delta - 2) + (\Delta - 2) = |D| + |D'| = |B|$ 2n-4 implies that $\Delta=n$, which contradicts the fact that $\Delta\leq n-1$. Hence for any $u'v' \in M' \cap E(G[B\backslash D])$, $max\{d_{\Delta}(u'), d_{\Delta}(v')\} \geq 3$ and so $m_3 + m_4 + m_5 \ge |M' \cap E(G[B \setminus D])| = (n-2) - \frac{\Delta-2}{2}$. Thus $n+5 \le$ $m_2 = (2n-4) - (m_3 + m_4 + m_5) \le (2n-4) - ((n-2) - \frac{\Delta-2}{2})$, and it follows that $\Delta \geq 16$, and so $n \geq \Delta + 1 \geq 17$. By VAL and Claim 2, $2((2n-4)-(m_3+m_4+m_5))+3(m_3+m_4+m_5)\leq e_G(B,A)\leq 5\Delta-12.$ This, together with the inequality $m_3 + m_4 + m_5 \ge n - 2 - \frac{\Delta - 2}{2}$, implies that $\Delta \geq \frac{10n+6}{11}$. As $m_2 \geq n+5$ and $\Delta \leq n-1$, there exist $w,w' \in B \setminus D$ such that $d_{\Delta}(w) = 2$ and $ww' \notin E(G)$. Observe that $\delta(G[B \setminus D] - \{w, w'\}) \ge$ $(\Delta - 1) - 5 - 2 = \Delta - 8 \ge \frac{2n - \Delta - 4}{2}$ (because $\Delta \ge \frac{10n + 6}{11}$ and $n \ge 17$). By Dirac's Theorem, $G[B\backslash D] - \{w, w'\}$ has a 1-factor F', and thus M = $(M' \cap E(G[D])) \cup F'$ is a maximal matching of G[B] as required. We thus conclude that G[B] has a maximal matching M of size n-3 and one of the two M-unsaturated vertices is adjacent to exactly two major vertices in G. Let $x,y \in B$ be the two M-unsaturated vertices and let $d_{\Delta}(x)=2$. Since M is maximal, $xy \notin E(G)$. Assume that $xw_i \in E(G)$ (i=1,2). By symmetry of w_1 and w_2 , we may assume that $d_{\Delta}(w_1) \leq d_{\Delta}(w_2)$. We next show that $G_{\Delta}-w_1$ has a perfect matching. As $d_{\Delta}(w) \geq 2$ for any $w \in A$ and $d_{\Delta}(w_1) \leq d_{\Delta}(w_2)$, it follows that $G_{\Delta}-w_1$ has a perfect matching $\{e_1,e_2\}$ except when $G_{\Delta}\cong 2^34^2$ or $G_{\Delta}\cong 2^34^2$ 2^33^2 , and in both cases w_1 and w_2 are the two major vertices in G_{Δ} . Suppose $G_{\Delta}\cong 2^34^2$ or $G_{\Delta}\cong 2^33^2$. We first show that G-x has a 1factor F_0 . If y is adjacent to one vertex of w_3 , w_4 , w_5 , say w_3 , in G, then $F_0 = M \cup \{w_1w_4, yw_3, w_2w_5\}$ is a 1-factor of G - x. On the other hand, if y is adjacent to only two major vertices w_1 and w_2 in G, let $x_1x_1', \dots, x_tx_t', y_1y_1', \dots, y_sy_s' \in M$ be such that $yx_i, yx_i', yy_j \in E(G)$ and $yy_i' \notin E(G)$, where $2t+s = |N_G(y)\setminus A| = (\Delta-1)-2 = \Delta-3$, $i=1,\cdots,t$, $j = 1, \dots, s$. Let $C = \{x_1, x_1', \dots, x_t, x_t', y_1', \dots, y_s'\}$. Clearly, |C| = 2t + s = 1 $\Delta - 3$. Since $d_{\Delta}(w_1) \geq 3$ and $xw_1, yw_1 \in E(G)$, there must exist a vertex $z \in C$ such that $zw_1 \notin E(G)$ (otherwise $d_G(w_1) \geq d_{\Delta}(w_1) + |C \cup \{x,y\}| \geq$ $3 + (\Delta - 3) + 2 = \Delta + 2$, which is false). As $d_{\Delta}(z) \geq 2$, z is adjacent to one of w_3, w_4, w_5 , say w_3 , in G. Let $zz' \in M$. Then $yz' \in E(G)$. Now $F_0 = (M - \{zz'\}) \cup \{yz', zw_3, w_1w_4, w_2w_5\}$ is a 1-factor of G - x. In either case, let $G^* = G - F_0$. Then G^* is of class 2. Observe that w_4 is adjacent to only one major vertex w_2 in G^* and w_5 is adjacent to only one major vertex $w_1 \text{ in } G^*$. Since $\Delta(G^* - w_4) = \Delta(G^*)$ and $\Delta(G^* - \{w_4, w_5\}) = \Delta(G^* - w_4)$, by Lemma 2.5, it follows that $G^* - \{w_4, w_5\}$ is of class 2 with only two major vertices w_3 and x, which, by VAL, is false. Hence $G_{\Delta} \not\cong 2^3 4^2$ and $G_{\Delta} \not\cong 2^3 3^2$, and so $G_{\Delta} - w_1$ has a perfect matching $\{e_1, e_2\}$ as desired. Let $F = M \cup \{xw_1, e_1, e_2\}$ and let $G^* = G - F$. Then F is a perfect matching of G - y containing xw_1 and G^* is of class 2. Since x is
adjacent to only one major vertex w_2 in G^* and $\Delta(G^* - x) = \Delta(G^*)$, by Lemma 2.5, $G^* - x$ is of class 2. Observe that $\{w_1, w_3, w_4, w_5, y\}$ is the set of major vertices of G^* . By Lemma 2.3, G^* has a $(\Delta - 1)$ -critical subgraph H which has at most five major vertices. Suppose H has five major vertices. By VAL, $5 \geq \Delta(H) - \delta(H) + 2$, and so $\delta(H) \geq \Delta(H) - 3 = \Delta - 4$. As $e_{G^*}(w_2, A) \geq 1$, we have $w_2 \in V(H)$ (otherwise H has at most four major vertices) and so $A \subset V(H)$. This, together with the fact that $d_{\Delta}(v) \geq 2$ for any $v \in V(G^*) \setminus V(H)$, implies that $vw_2 \in E(G^*)$ (otherwise H would have at most four major vertices). Thus $|V(G^*) \setminus V(H)| \leq d_{G^*}(w_2) - d_H(w_2) \leq (\Delta - 1) - (\Delta - 4) = 3$, and it follows that $2n \geq |G^* - x| \geq |H| \geq |G^*| - |V(G^*) \setminus V(H)| \geq (2n + 1) - 3 = 2n - 2$. By Theorem 1.1, |H| = 2n - 1. By the induction hypothesis on Δ , $e(H) = (n-1)(\Delta-1) + 1$. Let $\{z\} = V(G^* - x) \setminus V(H)$. Then $e(G) \geq e(H) + |F| + d_{G^*}(x) + d_{G^* - x}(z) \geq ((n-1)(\Delta-1) + 1) + n + (\Delta - 2) + (\Delta - 3) > n\Delta + 1$ (by (9)), which contradicts the assumption that $e(G) \leq n\Delta$. Suppose H has at most four major vertices. By (8), Δ is even, and so by Lemma 2.6, Lemma 2.7, and Lemma 2.8, |H| is odd and $|H| \neq \Delta(H) + 1 = \Delta$. By Lemma 2.6 and Lemma 2.8 again, $|H| = \Delta(H) + 2 = \Delta + 1$, $\delta(H) = \Delta(H) - 1 = \Delta - 2$, and H has exactly four major vertices. Thus $3 \le |A \cap V(H)| \le 5$. Suppose $|A \cap V(H)| = 5$. Then $A \subset V(H)$. As $d_{\Delta}(v) \geq 2$ for any $v \in N[x] \setminus A$, $e_{G^*}(N[x] \setminus A, A) \geq |N[x] \setminus A| = \Delta - 2 \geq 6 - 2 = 4$ (by (9)). However, since $\delta(H) = \Delta(H) - 1$ and H has exactly four major vertices, we have $e_{G^*}(A, N(x) \setminus A) \leq 2$, which is a contradiction. Suppose $|A \cap V(H)| = 4$. As w_2 is a minor vertex in $G^* - x$, $\delta(H) = \Delta(H) - 1$, and H has exactly four major vertices, we have $w_2 \notin V(H)$. Thus $d_{\Delta}(w_2) = 2$ and there exists $w_j \in A$ such that $w_2w_j \in F$ (otherwise H would have at most three major vertices). This, together with the fact that $xw_1 \in F$ and $\delta(H) = \Delta(H) - 1$, implies that $e_G(A \cap V(H), N(x) \setminus A) \leq 2$. However, since $d_{\Delta}(v) \geq 2$ for any $v \in N(x) \setminus A$, we have $e_G(N(x) \setminus A, A \cap V(H)) \geq |N(x) \setminus A| = \Delta - 3 \geq 6 - 3 = 3$, which is a contradiction. Suppose $|A \cap V(H)| = 3$. As H has exactly four major vertices, it follows that y is a major vertex in H and $e_{G^*}(V(G^*)\backslash V(H), A\cap V(H))=0$. Let $\{w_k, w_j\} = A \setminus V(H)$. Then by VAL, $d_{\Delta}(w_k) = 2 = d_{\Delta}(w_j)$ and $w_k w_i \in E(G)$. Since $x w_1 \in F$, from the choice of F, there exist $w'_k, w'_i \in$ $A - \{w_1, w_k, w_i\}$ such that $w_k w_k', w_i w_i' \in F$ (otherwise H would have at most three major vertices), and thus $yw_k, yw_j \notin E(G)$. Clearly, $xw'_k, xw'_j \notin$ E(G). Since $xw_1 \in F$, $d_{\Delta}(x) = 2$, and $e_{G^*}(V(G^*)\setminus V(H), A\cap V(H)) =$ 0, we may assume that $xw_k \in E(G)$. Now $xw_1, w_k w'_k, w_j w'_i \in F$ and w_1, w_k', w_j' are major vertices in H. Thus for any $v \in N[x], d_{\Delta}(v) = 2$. If $w_k'w_i' \notin E(G)$, then $w_1w_k', w_1w_i' \in E(G)$ and thus $G_{\Delta} \cong C_5$. Since $\delta(H) = \Delta(H) - 1$ and $e_{G^*}(V(G^*) \setminus V(H), A \cap V(H)) = 0$, by Lemma 2.10, there exists exactly one vertex $z \in V(H) \setminus A$ such that $d_{\Delta}(z) = 2$ and for any $v \in V(H) \setminus (A \cup \{z\})$, $d_{\Delta}(v) = 3$. Thus, by VAL, $5\Delta - 11 =$ $2((\Delta - 2) + 1) + 3((\Delta + 1) - 4) = 2|N[x] \cup \{z\}| + 3(|V(H) \setminus (A \cup \{z\})| \le 2((\Delta - 2) + 1) + 3((\Delta + 1) - 4) = 2|N[x] \cup \{z\}| + 3(|V(H) \setminus (A \cup \{z\})| \le 2((\Delta - 2) + 1) + 3((\Delta + 1) - 4) = 2|N[x] \cup \{z\}| + 3(|V(H) \setminus (A \cup \{z\})| \le 2((\Delta + 1) - 4)) = 2|N[x] \cup \{z\}| + 3(|V(H) \setminus (A \cup \{z\})| \le 2((\Delta + 1) - 4)) = 2|N[x] \cup \{z\}| + 3(|V(H) \setminus (A \cup \{z\})| \le 2((\Delta + 1) - 4)) = 2(|V(H) \setminus (A$ $e_G(B,A) = 5\Delta - 2e(G_\Delta) = 5\Delta - 10$, which is false. Hence $w_k'w_j' \in E(G)$. Now replace F by $F^* = (F - \{w_k w_k', w_j w_i'\}) \cup \{w_k w_j, w_k' w_i'\}$. Then in $G^{**} - x$ (where $G^{**} = G - F^*$), w_k is adjacent to only one major vertex w'_k , and w_j is adjacent to only one major vertex w'_i . Observe that $\Delta(G^{**} \{x, w_k, w_i\} = \Delta(G^{**} - x)$. By Lemma 2.5, $G^* - \{x, w_k, w_i\}$ is of class 2 with only two major vertices w_1 and y, which, by VAL, is false. The proof of Theorem 1.2 is thus completed. Corollary 3.1. Let G be a graph of order $2n+1 \ge 7$ with $|G_{\Delta}| = 5$, where $\Delta = \Delta(G) \ge 3$. Then G is Δ -critical if and only if (i) $$G \cong (2n-3)^{2n-4}(2n-2)^5$$; (ii) $$G \cong (2n-3)(2n-2)^{2n-5}(2n-1)^5$$; (iii) $$G \cong (2n-2)^2(2n-1)^{2n-6}(2n)^5$$; or (iv) $$G \cong (2n-3)(2n-1)^{2n-5}(2n)^5$$. **Proof.** Necessity. Let $\delta = \delta(G)$. Then by Lemma 2.4, $\delta \leq \Delta - 1$. As G is Δ -critical, by VAL, $\delta = |G_{\Delta}| \geq \Delta - \delta + 2$. It follows that $\Delta - 1 \geq \delta \geq \Delta - 3$. Suppose $\delta = \Delta - 1$. Then $G \cong (\Delta - 1)^{2n-4}\Delta^5$. By Theorem 1.2, $2(n\Delta + 1) = 2e(G) = \sum_{v \in V(G)} d_G(v) = (2n - 4)(\Delta - 1) + 5\Delta$, which implies that $\Delta = 2n - 2$. Thus $G \cong (2n - 3)^{2n-4}(2n - 2)^5$. Suppose $\delta = \Delta - 2$. Then $G \cong (\Delta - 2)^x (\Delta - 1)^{2n-4-x} \Delta^5$, where $x \ge 1$. By Theorem 1.2, $2(n\Delta + 1) = 2e(G) = \sum_{v \in V(G)} d_G(v) = x(\Delta - 2) + (2n - 4-x)(\Delta - 1) + 5\Delta$, and it follows that $\Delta = 2n-2+x$. As $\Delta \le |G|-1 = 2n$ and $x \ge 1$, we have $1 \le x \le 2$. Hence $G \cong (2n-3)(2n-2)^{2n-5}(2n-1)^5$ or $G \cong (2n-2)^2(2n-1)^{2n-6}(2n)^5$. Suppose $\delta = \Delta - 3$. Then $G \cong (\Delta - 3)^x (\Delta - 2)^y (\Delta - 1)^{2n-4-x-y} \Delta^5$, where $x \geq 1$ and $y \geq 0$. By Theorem 1.2 again, $2(n\Delta + 1) = 2e(G) = \sum_{v \in V(G)} d_G(v) = x(\Delta - 3) + y(\Delta - 2) + (2n - 4 - x - y)(\Delta - 1) + 5\Delta$, which implies that $\Delta = 2n - 2 + 2x + y$. As $\Delta \leq |G| - 1 = 2n$ and $x \geq 1$, we have x = 1 and y = 0. Thus $\Delta = 2n$ and $G \cong (2n - 3)(2n - 1)^{2n-5}(2n)^5$. Sufficiency. Suppose G satisfies one of (i), (ii), (iii) and (iv). Then $\Delta \geq 2n-2$ and $e(G)=n\Delta+1$. Thus G is of class 2. We next show that G is Δ -critical. Suppose otherwise. Then by Lemma 2.3, G contains a Δ -critical subgraph H with at most five major vertices. Since G is of class 2 and G is not Δ -critical, we have e(H) < e(G). By Theorem 1.1, Lemma 2.6 and Lemma 2.7, |H| is odd. Observe that $|H| \geq \Delta(H) + 1 \geq (2n-2) + 1 \geq 2n-1$. Thus either |H| = 2n + 1 or |H| = 2n - 1 (in this case, $\Delta = 2n - 2$). Suppose |H|=2n+1. Then by Lemma 2.6, Lemma 2.8, and Theorem 1.2, $e(H)=n\Delta+1$. But then $e(G)>e(H)=n\Delta+1$, contradicting the fact that $e(G)=n\Delta+1$. Suppose |H| = 2n - 1. Then $\Delta = 2n - 2$. Thus $G
\cong (2n - 3)^{2n - 4}(2n - 2)^5$. Let $\{x,y\} = V(G) \setminus V(H)$. Then $d_G(x), d_G(y) \geq 2n - 3 = \Delta - 1$. By Lemma 2.6, Lemma 2.8, and Theorem 1.2 again, $e(H) = (n - 1)\Delta + 1$. Therefore $e(G) > e(H) + d_G(x) + d_{G-x}(y) \geq ((n - 1)\Delta + 1) + (\Delta - 1) + (\Delta - 2) = n\Delta + 1 + (\Delta - 3) > n\Delta + 1$ (because $\Delta = 2n - 2 \geq 5$), which again contradicts the fact that $e(G) = n\Delta + 1$. **Theorem 3.2.** Let G be a connected graph of order $2n + 1 \ge 7$ with $|G_{\Delta}| = 5$, where $\Delta = \Delta(G) \ge 3$. Then G is of class 2 if and only if (i) $$G \cong (2n-3)^{2n-4}(2n-2)^5$$; (ii) $$G \cong (2n-3)(2n-2)^{2n-5}(2n-1)^5$$; (iii) $$G \cong (2n-2)^2(2n-1)^{2n-6}(2n)^5$$; (iv) $$G \cong (2n-3)(2n-1)^{2n-5}(2n)^5$$; (v) $$G \cong (2n-1)^{2n-4}(2n)^5$$; - (vi) for some m < n, G contains a cut-edge e such that G e is the union of two disjoint graphs G_1 and G_2 , where $\Delta(G_1) \leq \Delta$ and, in G, e is incident with a vertex of degree in G_2 at most $\Delta 1$; and G_2 is Δ -critical and isomorphic to one of the following: $(2m-1)^{2m-2}(2m)^3$, $(2m-2)^{2m-3}(2m-1)^4$, $(2m-2)(2m-1)^{2m-4}(2m)^4$, $(2m-3)(2m-2)^{2m-5}(2m-1)^5$, $(2m-2)^2(2m-1)^{2m-6}(2m)^5$, and $(2m-3)(2m-1)^{2m-5}(2m)^5$; - (vii) for some m < n, G contains a cut set of two edges e_1 and e_2 such that $G \{e_1, e_2\}$ is the union of two disjoint graphs G_1 and G_2 , where $\Delta(G_1) \leq \Delta 1$ and, in G, e_i (i = 1, 2) is incident with a vertex of degree at most $\Delta 1$ in G_2 ; and G_2 is Δ -critical and isomorphic to one of the following: $(2m-1)^{2m-2}(2m)^3$, $(2m-2)(2m-1)^{2m-4}(2m)^4$, $(2m-2)^2(2m-1)^{2m-6}(2m)^5$, and $(2m-3)(2m-1)^{2m-5}(2m)^5$. **Proof.** Sufficiency. Suppose G satisfies one of (i), (ii), (iii), (iv), (v), (vi), and (vii). Then either G is overfull or G contains an overfull subgraph with the same maximum degree. Thus G is of class 2. Necessity. Suppose G is of class 2. If G is Δ -critical, then by Corallory 3.1, \overline{G} satisfies one of (i), (ii), (iii), and (iv). On the other hand, if G is not Δ -critical, then by Lemma 2.3, G contains a Δ -critical subgraph G_2 with at most five major vertices and $e(G_2) < e(G)$. Observe that $|G_2| \leq |G|$. If $|G_2| = |G|$, as G has exactly five major vertices and $e(G) > e(G_2)$, by Lemma 2.6, Lemma 2.8, and Corollary 3.1, $G_2 \cong (2n-1)^{2n-2}(2n)^3$, $G_2 \cong (2n-2)(2n-1)^{2n-4}(2n)^4$ or $G_2 \cong (2n-2)^2(2n-1)^{2n-6}(2n)^5$. In either case, $G \cong (2n-1)^{2n-4}(2n)^5$. If $|G_2| < |G|$, let $G_1 = G - V(G_2)$. Since G is connected, we have $e_G(V(G_1), V(G_2)) \geq 1$. On the other hand, as G_2 has at most five major vertices and G has exactly five major vertices, by Lemma 2.6, Lemma 2.8 and Corollary 3.1, we have $e_G(V(G_1), V(G_2)) \leq 2$. Thus $1 < e_G(V(G_1), V(G_2)) \leq 2$. Suppose $e_G(V(G_1),V(G_2))=1$. Then G has a cut-edge e connecting G_1 and G_2 in G. If G_2 has three major vertices, then $\Delta(G_1) \leq \Delta$, and by Lemma 2.6, $G_2 \cong (2m-1)^{2m-2}(2m)^3$ for some m < n. Thus either G_1 has exactly one vertex of degree Δ and e is incident with a vertex of degree at most $\Delta - 2$ in G_1 and a vertex of degree (2m-1) in G_2 , or $\Delta(G_1) \leq \Delta - 1$ and e is incident with a vertex of degree $\Delta - 1$ in G_1 and a vertex of degree (2m-1) in G_2 . If G_2 has exactly four major vertices, by Lemma 2.8, for some m < n, $G_2 \cong (2m-2)^{2m-3}(2m-1)^4$ (in this case $\Delta(G_1) \leq \Delta - 1$ and e is incident with a vertex of degree at most $\Delta - 2$ in G_1 and a vertex of degree (2m-2) in G_2 or $G_2\cong (2m-2)(2m-1)^{2m-4}(2m)^4$ (in this case, $\Delta(G_1)\leq \Delta$, and if $\Delta(G_1)=\Delta$, then G_1 has exactly one major vertex and e is incident with a vertex of degree at most $\Delta-2$ in G_1 and a vertex of degree (2m-1) in G_2 . If $\Delta(G_2)\leq \Delta-1$, then either e is incident with a vertex of degree $\Delta-1$ in G_1 and a vertex of degree (2m-2) in G_2 , or e is incident with a vertex of degree at most $\Delta-2$ in G_1 and a vertex of degree 2m-1 in G_2). If G_2 has five major vertices, by Corollary 3.1, for some m< n, $G_2\cong (2m-3)(2m-2)^{2m-5}(2m-1)^5$, $G_2\cong (2m-2)^2(2m-1)^{2m-6}(2m)^5$ or $G_2\cong (2m-3)(2m-1)^{2m-5}(2m)^5$. In either case, since G has exactly five major vertices, it follows that $\Delta(G_1)\leq \Delta-2$ and e is incident with a vertex of degree at most (2m-2) in G_2 . Suppose $e_G(V(G_1),V(G_2))=2$. Then G has two cut-edges e_1 and e_2 connecting G_1 and G_2 in G. If G_2 has three major vertices, by Lemma 2.6, $G_2\cong (2m-1)^{2m-2}(2m)^3$ for some m< n. Thus $\Delta(G_1)\leq \Delta-1$ and in G, e_1 and e_2 are incident with different vertices of degree (2m-1) in G_2 . If G_2 has exactly four major vertices, by Lemma 2.8, for some m< n, $G_2\cong (2m-2)(2m-1)^{2m-4}(2m)^4$. Thus $\Delta(G_1)\leq \Delta-1$ and either e_1 and e_2 are both incident with the vertex of degree (2m-2) in G_2 or e_1 and e_2 are incident with two vertices of degree (2m-2) and (2m-1) respectively in G_2 . If G_2 has five major vertices, by Corollary 3.1, for some m< n, $G_2\cong (2m-2)^2(2m-1)^{2m-6}(2m)^5$ (in this case e_1 and e_2 in G are incident with two vertices of degree (2m-2) respectively in G_2) or $G_2\cong (2m-3)(2m-1)^{2m-5}(2m)^5$ (in this case both e_1 and e_2 in G are incident with the vertex of degree (2m-3) in G_2). In either case, since G has exactly five major vertices, $\Delta(G_1)\leq \Delta-1$. Acknowledgment The author would like to express her sincere thanks to Prof. K. M. Koh and Prof. H. P. Yap for their valuable comments. ## References - [1] L. W. Beineke and S. Fiorini, On small graphs critical with respect to edge-colourings, Discrete Math. 16 (1976), 109-121. - [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan Press, London, 1976. - [3] G. Brinkmann and E. Steffen, Chromatic index critical graphs of orders 11 and 12, European J. Combin. 19 (1998), 889-900. - [4] A. G. Chetwynd and A. J. W. Hilton, The chromatic index of graphs with at most four vertices of maximum degree, Congr. Numer. 43 (1984), 221-248. [5] A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree - [5] A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree are 1-factorizable, Proc. London Math. Soc. (3) 50 (1985), 193-206. [6] A. G. Chetwynd and H. P. Yap, Chromatic index critical graphs of - [6] A. G. Chetwynd and H. P. Yap, Chromatic index critical graphs of order 9, Discrete Math. 47 (1983), 23-33. [7] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2(1952), 69-81. [8] S. Fiorini and R. J. Wilson, Edge-colouring of Graphs, Research notes in Mathematics, Vol. 16, Pitman, (1977). [9] K. M. Koh and Z. X. Song, On the size of graphs of class 2 whose core has maximum degree two, submitted. [10] T. Niessen and L. Volkmann, Class 1 conditions depending on the minimum degree and the number of vertices of maximum degree, J. Graph Theory 14 (1990), 225-246. [11] Z. X. Song and H. P. Yap, The chromatic index critical graphs of even order with five major vertices, submitted. [12] V. G. Vizing, On an estimate of the chromatic class of a p-graph (Russian), Disket. Analiz 3 (1964) 25-30. [13] V. G. Vizing, Critical graphs with a given chromatic class, Disket. Analiz 5 (1965), 9-17. [14] H. P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture Notes Vol. 108 (Cambridge Univ. Press, 1986). [15] H. P. Yap and Z. X. Song, 'Alternative proofs of three theorems of Chetwynd and Hilton', JCMCC, accepted.