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ABSTRACT. In an earlier paper [11], we proved that there does
not exist any A-critical graph of even order with five major
vertices. In this paper, we prove that if G is a A-critical graph
of odd order 2n+1 with five major vertices, then e(G) = nA+1.
This extends an earlier result of Chetwynd and Hilton, and
also completes our characterization of graphs with five major
vertices. In [9], we shall apply this result to establish some
results on class 2 graphs whose core has maximum degree two.

1. Introduction

Throughout this article, all graphs we deal with are finite, simple, and
undirected. We use V(G), |G|, E(G), e(G), A(G), and §(G) to denote
respectively the vertex set, order, edge set, size, maximum degree, and
minimum degree of a graph G. We also use K,,, O,,, Cr, GUH, and rG to
denote respectively the complete graph of order n, null graph of order n,
cycle of order n, union of two vertex-disjoint graphs G and H, and vertex-
disjoint union of r copies of a graph G. The join G+ H of two vertex-disjoint
graphs G and H is the graph with the vertex set V(G)UV (H) and edge set
E(G)UE(H)U{zy|z € V(G),y € V(H)}. Vertices of maximum degree in G
are called major vertices and others are called minor vertices. We write G =
71452 .- -i%* if G has n; vertices of degree i;, where j = 1,---,A = A(G).
If z,y € V(G), we use Ng(z) (or simply N(z)), N[z] = N(z) U {z}, dg(z)
(or simple d(x)), and dg(z,y) to denote respectively the neighborhood of
z, close neighborhood of z, degree of z, and distance between z and y in
G. If ACV(G), we use G — A (or simply G —z if A = {z}) to denote the
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graph obtained by deleting the set of vertices A from G, and use G[4] (or
simply G[zi,%2,---,%k] if A= {1,22,--,2x}) to denote the subgraph of
G induced by A. If A and B are disjoint subsets of V(G), we use eg(4, B)
(or simply eg(z, B) if A = {z}) to denote the number of edges joining A
with B. If F C E(G), we use G — F to denote the graph obtained by
deleting F from G.

An edge-colouring of a graph G is a map 7 : E(G) = C, where C is a
set of colours, such that no two adjacent edges receive the same colour. If
7 is an edge-colouring of G with |C| = k, then 7 is called a k-colouring of
G. The chromatic indez x'(G) of G is the least value of |C| for which an
edge-colouring 7 : E(G) — C exists. A well-known theorem of Vizing [12]
states that, for any graph G, A(G) < x'(G) £ A(G) + 1. A graph G is
said to be of class i, wherei =1, 2, if x'(G) = A(G) +i¢—1. Agraph G is
overfull if e(G) > A[]%lj + 1. It is easy to see that if G is overfull, then G
is of class 2.

The core Ga of a graph G is the subgraph of G induced by the major
vertices of G. We use da(v) to denote the number of major vertices of
G adjacent to v. If G is a connected class 2 graph with A(G) = A and
X' (G - €) < x'(G) for each edge e € E(G), then G is said to be A-critical.
From Vizing’s Adjacency Lemma (abbreviated as VAL) (see Lemma 2.2
below) we know that if G is A-critical, then |Ga| > 3.

In an earlier paper [11], we proved the following result.

Theorem 1.1. There does not erist any A-critical graph of even order
with five major vertices.

In this paper, we shall apply Theorem 1.1 (together with many other
results) to prove Theorem 1.2, which is an extension of a result of Chetwynd
and Hilton (see [4] and [5]).

Theorem 1.2. Let G be a graph of odd order 2n + 1 > 7 with mazimum
degree A > 3. Suppose G is A-critical and |Ga| = 5. Thene(G) =nA+1.

kThe graph G of Fig.1 is obtained from the Petersen graph by removing
one vertex. Observe that G is 3-critical with six major vertices, and e(G) =
12 < 4x 3+1, which indicates that Theorem 1.2 cannot be further extended
in general.
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Fig. 1. G

2. Some useful results

In this section we give a list of results which we shall apply later. Proofs of
Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 can be found, for instance, in [14]. Lemma
2.6 to Lemma 2.8 were due to Chetwynd and Hilton ([4],[5]). Alterna-
tive/shorter proofs of these results and a proof of Lemma 2.10 can be
found in Yap and Song [15].

Lemma 2.1 [12]. For any graph G, X'(G) < A(G) + 1.

Lemma 2.2 [13]. Suppose G is a A-critical graph and vw € E(G), where
d(v) = k. Then

(i) da(w) > A ~k+1 if k< A;
(i) da(w) > 2 if k= A;
(iii) |Ga| > maz{3,A — 6(G) + 2}.

Lemma 2.3 [12]. Let G be a class 2 graph. Then G contains a k-critical
subgraph for each k satisfying 2 < k < A(G).

Lemma 2.4 [8]. There are no regular A-critical graphs for any A > 3.

Lemma 2.5 [5]. Let e = vw be an edge of a graph G. Suppose da(w) = 1.
Then A(G — w) = A(G) implies that X'(G — w) = X'(G).

Lemma 2.6 [5]. Let G be a connected graph of order n with A = A(G) >
3. Suppose |Ga| = 3. Then G is of class 2 if and only if G = (n—2)""3(n—
1)3 (and thus n is odd).

Lemma 2.7 [4]. There does not ezist any A-critical graph of even order
with four major vertices.
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Lemma 2.8 [4]. Let G be a A-critical graph of order 2n+1 with |Ga| =
Then either
(i) G = (2n — 2)2*=3(2n — 1)* or (i) G = (2n — 2)(2n — 1)>*~4(2n)*.
In particular, ¢(G) = nA + 1.
Lemma 2.9 [7]. If G is a graph of order n > 3 and 6(G) > 3, then G
has a Hamilton cycle.
Let J, be a graph of order s and Gy = Js + O,42, and let Gj be a
spanning subgraph of Gy such that each vertex of O, is joined to at least

s —1 vertices of J, and at least one vertex of O,y is joined to exactly s —1
vertices of J;.

Lemma 2.10 [15]. A graph G of order 2n has a I-factor if

(i) 6(G) > n — 1 except when G = Go.

(ii) 8(G) = n — 2 except when G = G or G =3K3 + K;.
Lemma 2.11 [10]. Let G be a graph of order 2n. If 3(G) >n+|Gal -
then G is of class 1.

We observe that by following the proof of Lemma 2.11 given in [10]
and choosing two nonadjacent major vertices z; and z; of G, we obtain the
following result.

Lemma 2.12. Suppose G is a graph of order 2n and Ga has a mazimal
matching M = {z12r, 222r—1,**, 2k 2r+1-k}, Where T = |Gal, k > 2, and
2122 ¢ E(G). If 5(G) > n+|Ga| — 3, then G is of class 1.

Lemma 2.13. Suppose G is a A-critical graph of order 2n +1 > 11 with
|Ga| =5 and §(G) < A—2. Let z € V(G) be such that d(z) = 6(G). Then
G — = contains a I-factor.

Proof. Let § = 6(G), and let A be the set of major vertices of G. By
VAL, 5=|Ga| > A-6+2,and so A -3 < < A—2. By VAL again, for
any v € N(z), da(v) > A — § + 1. Hence by counting the number of edges
incident with A in two different ways, we have

(A-6+1)0+2((2n+1) —6) <BA. (1)

Furthermore, if there is a vertex u € N(z) such that d(u) = 4, then for any
v € N[z), da(v) > A — § + 1, and we have the following better inequality:

(A=6+1)(0+1)+2((2n+1) — (6+1)) < 5A. 2)

We next show that 6(G —z) >n — 2.

Suppose § = A — 3. Then (1) implies th

at Hence, if
d(v) > A — 2 for any v € N(z), then §(G - z)

A>n+l
> A- 2 —2. On
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the other hand, if d(v) = & for some v € N(z), then we need only to
consider the case A = n + 1. However, when A = n + 1, (2) implies
that n < 5 and thus A = n+ 1 < 6, which contradicts the fact that
A-3=0=d(z)>da(z) > A-0+1=4.

Suppose § = A — 2. Then (1) implies that A > n. Hence, if d(v) >
A — 1 for any v € N(z), then (G —z) > A —2 > n ~ 2. On the other
hand, if d(v) = § for some v € N(z), then by (2), A > n + 1, and again
(G-z)>A-3>n-2.

From the above discussion, we have the following observation:
A >nand A =n only if § = A — 2 and the equality in (1) holds.

By Lemma 2.10, G-z has a 1-factor except when G-z € {Go, G}, 3K3+
K;}. However, since A(G —z)-6(G—-2) < A-(6-1)<4<6=
A(3K3+K;1)-6(3K3+K,), we have G-z # 3K3+ K. Suppose G—z = Gy
or G —z = Gy. Then s =n — 1. We next show that A C V(J,).

Suppose otherwise. Let a € ANV (O;42). Sincedg(a) = A > n =s5+1,
we have az € E(G) and a is adjacent to every vertex v € V(J;). Now
A - 1=dg_;(a) < s, together with the inequality A > n = s + 1, implies
that A = n = s+ 1. Thus from the above observation, it follows that
0 = A — 2 and the equality in (1) holds. Since az € E(G) and the equality
in (1) holds, we have |[ANV(J,)| = da(e) = A—-§+1 =3 and G has
exactly d = A —2 = n — 2 vertices v with da(v) = A-d+1 = 3.
Moreover, these n — 2 vertices are all in N(z) and G has no vertex v with
da(v) > 4. Let B = V(Os42)\N(z). Since |[N(z)| =A—-2=n-2, we
have |B| > (s +2) — (n —2) = 3. If v € B is adjacent to every vertex of
Js in G, then da(v) = [ANV (Js)| = 3, which contradicts the fact that all
the vertices v € V(G) with da(v) = 3 are in N(z). On the other hand, if
v € B is adjacent to s — 1 vertices of J,; in G, then dg(v) =s—-1=A-2.
However, since ¢ € N(z) and a ¢ N(v), we have N(z) # N(v), and thus
there exists w € N(v)\N(z) such that da(w) > A — (A -2)+1 =3, again
contradicting the fact that all the vertices v € V(G) with da(v) = 3 are
all in N(z) and G has no vertex v with da(v) > 4. Hence A C V(J,) as
required.

Finally, let Y = G — V(Os42). Since A C V(J,;), we have A C V(Y).
As for any u € N(z) N A, dy(u) > da(u) > 3, we have A(Y) > 3. This,
together with the fact that dy(v) > da(v) > 2 for any v € V(Y'), implies
that e(Y) > s +2. Thus (s +2)d < e(V(0s42), V(Y)) = ¥ v (v) da(v) —
2e(Y) < 5A+(s—5)(A—1)+5—-2(s+2) = sA—-3s+0+1 < s(6+3)—3s+6+1,
and it follows that § < 1, which is false. Hence G — z # G, Gy, and thus
G — z has a 1-factor. -
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3. Proof of Theorem 1.2

Proof. Let A = {w;,w,, w3, ws,ws} be the set of major vertices of G, let
B =V(G)\A, and let § = §(G). As G is A-critical, we have

e(G) <nA +1. (3)

Since each v € V(G) is adjacent to at least two major vertices of G, we
have 2(2n + 1) < 5A. Hence

A24n;-2. @)

The results of Beineke and Fiorini [1] as well as Chetwynd and Yap [6] on
A-critical graphs of order 7 and order 9 confirm that this theorem is true
for n = 3,4. Hence, from now on, we assume that

n > 5. (5)

We shall now prove this theorem by induction on A. For A < 4, by
(4), we have n < 4, and so this theorem is true. Hence, from now on, we
assume that A > 5. By VAL, 5 = |4| > A — § + 2, and it follows that

§>A-3. (6)

By Lemma 2.4, § # A. Hence, from (6), we have two cases to consider.
Case 1. <A -2.

Let z € V(G) be of degree §. By Lemma 2.13, G — = has a 1-factor F.
Clearly, G* = G — F is of class 2, A(G*) = A — 1 and Ng-(4) = V(G").
By Lemma 2.3, G* contains a (A — 1)-critical subgraph H with at most
five major vertices.

Suppose H has five major vertices. Then Ng-(A) = V(G*) implies
that V(H) = V(G*). Thus by the induction hypothesis on A, e(H) =
n(A —1) + 1, and so e(G) > e(H) +n = nA + 1. This, together with (3),
yields e(G) = nA + 1.

Suppose H has four major vertices, say wa,ws,ws,ws. Since for any
v € V(G), da(v) > 2, we have z € V(H) and w, € V(H). We claim that
V(H) = V(G*). Suppose otherwise. By Lemma 2.7 and Lemma 2.8, |G*|—
|H| > 2 and §(H) > A(H) —2 = A — 3. Since for any v € V(G*)\V(H),
da(v) > 2, we have vw; € E(G*). As dg(w,) > 8(H) > A -3, it follows
that 2 < |V(G*)\V(H)| < dg-(w1) — du(w1) < (A-1)-(A-3) =2
Thus, |V(G*)\V(H)| = 2 and dy(w1) = A — 3. By Lemma 2.8 again,
A=AH) +1=|H =@2n+1)-2=2n-1>9 (by (5)). Now let
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y € V(G*)\V(H). Then da(y) = 2 (otherwise H has at most three major
vertices) and thus dg(y) > § > A — 3 > 6. This, however, implies that H
contains another vertex v’ # w such that dgy(v’') < A—3 = A(H) -2, which
contradicts Lemma 2.8. Hence V(H) = V(G*) as claimed. By Lemma 2.8,
e(H) = n(A —1) +1, and s0 e(G) > e(H) + n > nA + 1. This, together
with (3), yields e(G) = nA + 1.

Suppose H has three major vertices, say w;, ws and ws. By Lemma
2.6, 6(H) = A(H) -1, |H| is odd, and |H| = A(H) +1 = A < |G|. Let
U =V(G*)\V(H). Then |U| (> 2) is even. Since w; (i = 1,2, 3) is adjacent
to every other vertex of H in G*, we have {w;u;, wous, wauz} C F, where
u1 ,ug, and u3 are distinct vertices in U. Hence |U| > 4. As each minor
vertex v(# «,ws, ws) of H is of degree A — 1 in G, we have

egs ({w1, w2, w3}, U) =0 and eg-(V(H),U)<2. (N

Suppose A C V(H). Then the fact that da(u) > 2 for any u € U implies
that eg- (U, A) > 4, contradicting (7). Hence ANU # ¢. Let ws € ANU.
Then da(ws) = 2 (otherwise H cannot have exactly three major vertices),
ws € {u1,uz,u3}, and wswy € E(G*). Since da(ws) = 2 and d(z) = 6 <
A -2, by VAL, wsz ¢ E(G). Thus {wy,ws, w3} N N(z) # ¢, which in
turn implies that z € V(H) (otherwise eg- ({w1, w2, ws},U) # 0, which
contradicts (7)). Hence, by VAL, da(w;) > A —d(zx) + 1 > 3, from which
(by (7)) it follows that wy € V(H).

Finally, by (7), we have |U| 2 6. Hence |U| = 4and A = |H| =
(2n+1) - |U| = 2n -3 > 7 (by (5)). However, as ws € U, |U| = 4 and
eg-(V(H),U) < 2, we have A = dg(ws) < 5, a contradiction.

Case 2. 6=A~1.

Suppose e(G) < nA. Then ((2n+1) —5)(A —1) +5A = 2¢(G) < 2nA,
and it follows that

A isevenand A <2n-4, (8)
Since A > 5, by (8),
A>6. 9)

We shall use the following claims to settle Case 2.
Claim 1. Suppose min{da(v) : v € B} > 3. Then G = K.

Proof. We prove this claim by contradiction. Suppose §(Ga) < 3. Then,
by VAL, 2 < 6(Ga) < 3.
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Suppose §(Ga) = 2. Let w; be such that da(wy) = 2 and let wyws,
wiws € E(G), where da(ws) > da(ws). By (8), G has a minor vertex, say
u, such that wyu ¢ E(G). We next show that G' = G — {w;, w2, u} has a
1-factor F.

Since for any v € B, da(v) > 3, by VAL, 3((2n +1) — 5) < 5(A - 2).
This, together with (5), implies that

A>n+l. (10)

Hence 6(G") > (A-1)-3 > (n—1)—2. By Lemma 2.10, G’ has a 1-factor
F except when G' € {Go, Gp,3K3 + K1}. However, since A(G') —6(G") <
4 < 6=ABK;+K,)-03K; + K,), we have G' # 3K3 + K;. Suppose
G =GoorG'=Gj. Then2s+2=(2n+1)-3and A-4<G') < s,
and it follows that s = n—2 and A < s+4. Let Y = G — V(Os42).
Then |Y| = s+ 3 and w;,we € V(Y). Since wyws, wyws ¢ E(G), we have
do(w;) 2 A—22>3s+1,i=4,5 Thus ws,ws € V(J,) C V(Y). If
w3 € V(Os42), then A — 3 < dor(ws) < s =n—2< A-3 (by (10),
which implies that ws is adjacent to all the vertices of V(Y) in G. Hence
da(ws) > da(ws) = 4. By VAL, 3((2n + 1) — 5) < 3(A —2) +2(A —4).
This, together with (5), implies that A > n + 2, a contradiction. Hence
w3 € V(Y). We now have A C V(Y) and |V(Y)\A| = s — 2. Since for
any v € V(Y)\4, da(v) > 3, and by VAL, e(Ga) > 5, we have e(Y) >
3IV(Y)\A| +e(Ga) > 3(s—2) + 5 = 3s — 1. Now by counting the number
of edges joining V(O,42) and V(YY) in two different ways, we have

(s +2)(A -1) = ec(V(0s42), V(Y)) < 54 + (s - 2)(A — 1) — 2¢(Y).

It follows that A > 2e(Y) — 4 > 2(3s — 1) — 4 = 6s — 6, which, together
with the fact that A < s + 4, yields 6s < 10, contradicting the fact that
s=n—2> 3. Hence G' has a 1-factor F.

Clearly, G* = G — (F U {wyw.}) is of class 2, A(G*) = A — 1, and
AU {u} is the set of major vertices of G*. Since w; is adjacent to only
one major vertex wsz in G*, and A(G* — w;) = A(G*), by Lemma 2.5,
G* — w, is of class 2. By Lemma 2.3, G* — w; contains a (A — 1)-critical
subgraph H, which has at most four major vertices u,w;,ws,ws. By (8),
A is even, and so by Lemma 2.6 and Lemma 2.7, |[H| = A(H)+2=A+1
and §(H) = A(H) — 1. Since for any v € N(w1)\A4, dg+—w,(v) = A -3 =
A(H) - 2, we have v ¢ V(H). Thus (N(w,)\A) N V(H) = ¢. Hence
A+1=|H| <|G* —w| - [N(w)\A| = 2n — (A — 2), and it follows that
A < n, which contradicts (10).

Next suppose 6(Ga) = 3. Then Ga = 3243 or Ga = 3%4!. In either
case we can rename the major vertices, if necessary, so that wywe ¢ E(G)
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(and wwg ¢ E(G) if Ga = 34!). By (8), there exist two minor vertices,
say z and y, of G such that zw,,yw, ¢ E(G). Since da(y) > 3, by symme-
try of ws and w,, we may assume that yw, € E(G). Clearly, e(Ga) > 8.
Now by VAL, 3(2n — 4) < 5A — 2¢(Ga), and it follows that

A>n+2. (11)

Furthermore, if wswy € E(G), then e(Ga) = 9. By VAL again, we have
the following better inequality:

A>n+3. (12)
Now by (8) and (11), we have n > 6, and thus
A>n+2>8. (13)

We next show that G — z has a 1-factor F; containing w; w4 and wzws, and
G — F} — y has a 1-factor F> containing w;ws.

Let G' = G — {z,w,w3,wq, ws}. By (11), 6(G') > (A-1) -5 >
(n —2) — 2. Thus by Lemma 2.10, G' has a 1-factor F' except when
G' € {Go,Gy,3K3 + K1}. However, since A(G') — §(G') < 3, we have
G' #3K3+ K. Suppose G' = Gpor G' =G). Thens =n—-3 and A—6 <
0(G’) < s. This, together with (11), implies that s + 5 < A < s + 6. Let
Y = G-V(Os42). Then |Y| = s+5 and {z,w,,ws,ws, ws} C V(Y). Since
wiwe ¢ E(G), we have dg/(w2) > A —4 > s+ 1. Hence wy € V(Y). Thus
AcCV(Y)and [V(Y)\A|=(s+5) —5=3. Ase(Ga) > 8 and da(v) > 3
for any v € V(Y')\A, we have e(Y) > 3|V (Y)\A| + e(Ga) > 3s + 8. Thus

(s +2)(A - 1) = eg(V(0s42), V(Y)) = 54 + s(A — 1) — 2¢(Y),

and it follows that 6s + 14 < 3A, which, together with the inequality
A < 5+ 6, implies that 3s < 4, contradicting the fact that s =n — 3 > 2.
Hence G’ # Gy, Gjp, and G' has a 1-factor F'. Let Fi = F' U {wwy, waws}
and let z € B (z could be y) be such that zw, € F;.

We now show that G — F} — y has a 1-factor F> containing w,ws. Let
G" =G-F, —{y, w1, ws}. By (11),8(G") > A—=5> (n—1)—2. Thus by
Lemma 2.10, G" has a 1-factor F"' except when G” € {Go,G},3K3 + K1 }.
Since A(G") — 6(G") < (A —1)— (A —5) =4, G" # 3K3 + K;. Suppose
G"=GoporG'" =Gy. Thens=n-2and A -5 < §(G") < s. This,
together with (11), implies that s+4 < A <s+5. Let Y = G — V(Os42).
Then [Y| = s + 3 and wy, w3 € V(Y). Since zw;,w w2, wyw,, wzws ¢
E(G - F), dgr(v) > A-3 > s+1 for any v € {z,ws, ws,ws}. Hence
T, w2, wg,ws € V(J;) C V(Y). We now have (AU {z}) C V(YY) and
[VIY)\A| = (s+3)—5=35—-2. As eg_F,(A,A) > 6, and for any v €
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V(Y)\A, ec-r,(v,A) > 2, we have e(Y) > lV(Y)\A| + ec-r (4, 4) >
2(s—2)+6=2s+2. Thus

(s+2)(A-2) = eg_F, (V(Os12), V(Y)) = 6(A—1) +(s - 3)(A ~2) - 2€(Y),

and it follows that A > 2e(Y')—4 > 2(2s+2) —4 = 4s, which, together with
the inequality A < s + 5, implies that 3s < 5, contradicting the fact that
s =n—2 2> 3. Hence G' # Gy, G, and G" has a 1-factor F”. Clearly ,
F; = F"U{w,ws} is a 1-factor of G— F; —y. Let 2',w,w’ € V(G") (each of
2',w,w’' could be any vertex in V(G")) be such that z'w,, ww,,w'ws € F;.

Let G* = G — F; — F,. Then G* is of class 2, and AU {z,y} is the set
of major vertices of G*. Since w, is adjacent to only one major vertex ws
in G* and A(G* — w;) = A(G*), by Lemma 2.5, G* — w; is of class 2. By
Lemma 2.3, G* — w; has a (A — 2)-critical subgraph H with at most five
major vertices ws, ws, wy, T, and y.

Suppose H has five major vertices. Since eg.(ws, {wa, wq}) > 1, we
have ws € V(H). From the choice of F} and F3, it follows that, for any
v € B\{z,2',w,w'}, eg-(v,4) > 3. Thus (B\{z,2',w,w'}) C V(H), and
2n = |G* —wy| > |H| > |G* - {w1,2,2',w,w'}| > 2n — 4. By Theorem 1.1,
|H| is odd, and so either |[H| = 2n — 1 or |H| = 2n — 3. By the induction
hypothesis on A, we have e(H) = (A - 2)&&_—l +2. Suppose |H| = 2n - 1.
Then e(H) = (A - 2)(n—1)+1 and so e(G) > e(H) + |Fi| + | F2| + 2(A —
3) >nA+A-32>nA+5 (by (13)), contradicting the assumption that
e(G) < nA. Next suppose |H| =2n —3. Thene(H)=(A-2)(n—-2) +1
and so e(G) 2 e(H) + |Fi| + |F2] +4(A-3) -6 >nA—-2A-13>nA +3
(by (13)), again contradicting the assumption that e(G) < nA. Hence H
has at most four major vertices.

Suppose H has four major vertices. By (8), A iseven, and so by Lemma
2.7 and Lemma 2.8, |H| = A(H) +1 = A — 1. Since wows,ywy € E(G*),
we have wq, w3, wy € V(H) (otherwise H would have at most three major
vertices), and at least one of w3 and w,, say ws, is a major vertex in H. As
|H| = A(H) + 1, it follows that w3 is adjacent to all the other vertices in
H. In particular, ws is adjacent to w4 in H. Thus wsw, € E(G), and so by
(12), A > n+3. However, since for any v € N(w)\A, dg-—w, (v) = A—4 =
A(H) — 2, by Lemma 2.8, H contains at most one vertex v € N(w;)\A.
Thus A —1=|H| < |G* —wy| — (|N(w1)\A| — 1) =2n — (A —4), and it
follows that A < n + 2, which is a contradiction.

Suppose H has three major vertices. Then by Lemma 2.6, |H| =
A(H)+1 = A-1and §(H) = A(H) -1 = |H| - 2. Since for any
v € N(w)\A4, dg+—w,(v) = A —4 = A(H) — 2, we have v ¢ V(H). Thus
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(Nwi)\A)NV(H) = ¢ and so A — 1 = |H| < |G* — wy| — [N(wy)\A| =
2n — (A — 4). This, together with (11), implies that A = n + 2 and
|H| = |G* —w1|—|N(wy)\A|. Hence wa, w3, ws,ws € V(H). As waws € Fi,
waws ¢ E(H). Since §(H) = A(H) — 1 = |H| — 2, w; is adjacent to any
other vertex of H except ws. In particular, wz is adjacent to w4 in H.
Thus wsws € E(G). By (12), A > n + 3, which contradicts the fact that
A=n+2. =

Claim 2. If 6 < A < n and G[B] has a mazimum matching M with
|M| > n -3, then A(Ga) > 3. In particular, e(Ga) > 6.

Proof. Suppose otherwise that A(Ga) = 2. Then by VAL, A(Ga) =
0(Ga) =2, and so Ga = Cs. Assume that Ga & (w1, w2, w3, wq, ws). We
first show that G[B] has a matching M’ of size n — 3 such that one of the

two M'-unsaturated vertices is adjacent to at most four major vertices in
G.

Since |[M| > n - 3, if |[M| = n — 2, then by (8), there exists z €
B such that zw, ¢ E(G). Let zy € M. Then M' = M - {zy} is a
required matching because da(z) < 4. On the other hand, if [M|=n -3,
let v and v be the two M-unsaturated vertices. Then wv ¢ E(G). If
min{da(u),da(v)} < 4, then M’ = M is a required matching of G[B].
Hence we assume that da(u) = da(v) = 5. Let z12},---,z,z; € M and
Y1Y1,°*»YsYs € M be such that uz;,uz},uy; € E(G) and uy; ¢ E(G),
where 2t + s = [Ng(u)\4| = (A -1)-5=A-6,i=1,2,---,t, j =
1,2,.--,s. Let C = {z1,2}, -, ¢, T}, Y1, - -, Yo }- Since M is a maximum
matching of G[B], v is not adjacent to any vertex of C. Suppose da(w) =5
for any w € C. Then by VAL, 2((2n —4) - |C U {u,v}|) + 5|C U {u,v}| <
5(A — 2), which implies that A > 2n — 5, contradicting the fact that
6 < A < n. Hence there exists w € C such that da(w) < 4. Let ww' € M.
Then uw' € E(G). Now M’ = (M — {ww'})U{uw'} is a required matching
of G[B].

The above shows that in either case, G[B] has a matching M’ of size
n — 3 such that one of the M'-unsaturated vertices is adjacent to at most
four major vertices in G. Let z,y € B be the two M'-unsaturated vertices
and let da(z) < 4. As Ga = Cs, assume that zw; ¢ E(G). We next show
that G — z has a 1-factor.

Since da(y) > 2 and G = Cs, we may choose wi(# w;) € A such that
ywi € E(G) and dg(w,, wx) = mim{de(w,,w;) : j = 2,3,4,5}. Clearly,
Ga —wy has a 1-factor {w,w;,e}, where j € {2,5}, and e € E(G4a). By the
symmetry of we and ws, assume that j = 2. Now F' = M'U {w,ws, e, ywi}
is a 1-factor of G — z.
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Finally, let G* = G — F. Then G* is of class 2 and AU {z} is the set
of major vertices. As da(w;) = 2, wywz € F, and zw; ¢ E(G), it follows
that w, is adjacent to only one major vertex, namely ws, in G*. Since
A(G*—w,) = A(G*), by Lemma 2.5, G* —w is of class 2, and so by Lemma
2.3, G* —w, contains a (A —1)-critical subgraph H with at most four major
vertices y, wo, w3, ws. By (8), A is even, and so by Lemma 2.6, Lemma 2.7,
and Lemma 2.8, |H| # A(H) +1= (A -1)+ 1= A. Thus by Lemma 2.6
and Lemma 2.8, |H| = A(H) +2 = A+ 1 and H has exactly four major
vertices y, wa, w3, ws. Note that wowy ¢ E(H). Thus yw, € E(H) (because
dy(we) = A(H) = |H|—2). By the assumption of wg, it follows that wy =
ws. Now yws € F. This, together with the fact that w, is a major vertex in
H, implies that wswy € E(H). Thus ws € V(H) (otherwise H would have
at most three major vertices). Hence {ws,ws, ws,ws} C V(H). As ws is
a major vertex in H and wyw; € F, it follows that (Ng(w2)\A) C V(H).
Hence |H| > |Ng(w2)\A| + [{w2, w3, ws,ws }| = (A —2)+4 = A+2, which
contradicts the fact that |H| = A + 1. =

In what follows, we use m; (i = 2, 3,4, 5) to denote the number of minor
vertices of G each of which is adjacent to exactly 7 major vertices in G. We
are now in a position to prove Case 2.

Subcase 2.1. min{da(v) :v € B} =4.

By Claim 1, Gao & K;. By VAL and (8), 4m4 + 5ms = eg(B, A4) =
5(A — 4) < 5((2n — 4) — 4). This, together with m4 + ms = |B| = 2n - 4,
implies that m4 > 20. Now from 2n — 4 = |B| = m4 + ms, it follows that
n > ims +12 > 12. By VAL again, 4(2n - 4) < eg(B, 4) = 5(A - 4).
This, together with the inequality n > 12, yields

A>n+8. (14)

By (8), there exists z; € B (i = 1,2,3) satisfying wyz; ¢ E(G). By (14)
and Dirac’s theorem (see Lemma 2.9), G — {z1, w1, w2, w3, ws} has a 1-
factor Fj. Let F; = F{ U {w w;,wsws}. By (14) and Dirac’s theorem,
G — Fy — {z2, w1, w3} has a 1-factor Fj. Let F; = F; U {wyws}. Then by
(14) and Dirac’s theorem again, G — Fy — F» — {3, w1, w4} has a 1-factor
F}. Let F3 = F{U{w,w,}. Clearly, G* =G —F; — F; — F; is of class 2 and
AU {z1,22,z3} is the set of major vertices of G*. Since w; is adjacent to
only one major vertex ws in G* and A(G* — w,) = A(G*), by Lemma 2.5,
X' (G* —w;) = X' (G*), and so G* — w; is of class 2 with six major vertices
wa, W3, Wy, T1, T2, T3. However, from the choice of Fy ,F3 and F3, it follows
that wswy ¢ E(G* — w;) and wszs, wszs; € E(G* — wy). Therefore the
core of G* — w; has a maximal matching containing wsz3, wszas. Since
G* — w; has six major vertices and by (14), 6(G* —w;) 2 §(G*) —1 =
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(0(G)-3)-1=A-5>n+6-3. Thus by Lemma 2.12, G* — w, is of
class 1, which is a contradiction.

Subcase 2.2. min{da(v):v € B} =3.

By Claim 1, G = Ks. By VAL, 3((2n+1)—5) < eg(B, A) = 5(A—4).
This, together with (5), implies that

A>n+3. (15)
By (8) and (15), we have
n>"7 (16)

Let z € B satisfying da(z) = 3. Suppose there exists a vertex y € B\N|[z]
such that da(y) = 3. Since Ga = K5, we may assume that zw; € E(G)
(i = 1,2,3) and ywy,yw;,ywi € E(G), where w;,wy € A and w; # w,.
By (8), there exists another vertex z(# y) € B such that zz ¢ E(G). We
next show that G — 2 has a 1-factor F containing zw,,yw;, G— F; —y has
a 1-factor F containing zws, and G — F; — F; — {z,y, 2} has a 1-factor Fj.

Let G1 = G—{z,y, z, w2, w;}. By (15), §(G1) > (A-1)-5 > (n—2)—1.
By Lemma 2.10, G; has a 1-factor F] except when G; = Go. Suppose
G1 =Go. Thens=n-3and A -6 < 6(G;) <s. Thus A < s+6.
This, together with (15), implies that A = s+ 6 and 6(G;) = A —6 = s.
As da(wz) = 4 and zw, € E(G), it follows that w, is adjacent to at
most A — 5 = s + 1 vertices of B\{z,y,2} in G;. Thus G; has at most
s + 1 vertices of degree §(G) = A — 6 = s, which contradicts the fact that
G1 = Gy has s + 2 vertices of degree s. Hence G; # Gy and thus G, has a
1-factor Fj. Clearly, F} = F| U {zws,yw;} is a 1-factor of G — 2.

Let G2 = G—F; —{z,y,ws3}. By (15), 6(G2) > (A-2)-3 > (n—1)-1.
By Lemma 2.10 again, G has a 1-factor F; except when G2 = Gy. Suppose
G2 = Go. Then s =n—2and A-5 < §(G2) = §(Gg) = s. Thus A < s+5.
This, together with (15), implies that A = s+ 5 and §(G3) = A -5 =s.
As zw; € E(G2) and eg, (w3, {w1, w2, ws,ws}) < 4, it follows that ws is
adjacent to at most A — 5 = s vertices of B\{z,y, 2} in G3. Thus G, has
at most s vertices of degree §(G2) = A — 5 = 5, which contradicts the fact
that G2 = Go has s + 2 vertices of degree s. Hence G3 # Gy and thus G,
has a 1-factor F; and F; = F; U {zw3} is a 1-factor of G — y.

Let G3 = G—F, — F, and G4 = G3 — {z,y,2}. By (15), §(G4) >
(A=3)-32> (n-1)-2. By (16) and Lemma 2.10, G4 has a 1-factor
F3 except when Gy € {Go,Gp}. Suppose G4 € {Go,Gj}. Then s =
n—2and A-6 < 6(Gs) <s Thus A < s+ 6. By (15), we have
8+5 < A < s+6. Since zv ¢ E(G3) for any v € {wq, w3, wq, ws}, we have
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dg,(v) > A—4 > s+1, and so wa, w3, wy, ws € V(J;). Suppose w; € V(J,).
Then A C V(J;). Observe that for any v € V(Os42), dg,(u) > A —6 >
(s+5)—6 = s—1. This, together with A C V(J,), implies that each vertex
of O, is adjacent to at least four vertices of A in G4. Hence da(u) > 4
for any u € V(Os42). As min{da(v) : v € B} = 3, by VAL, it follows
that 3|B\V(Os42)| + 4|0s42| < eg(B,A) = 5(A —4). But then A > s+ 7
(because s = n — 2 > 5 (by (16))), contradicting the fact that A < s+ 6.
Suppose w; € V(O,42). Then A -5 < dg,(w1) <s=n-2<A-5
(by (15)), which implies that s = A — 5 and w; is adjacent to all the
vertices of J;. Thus there exists u € V(Os42) such that wyu € Fy. Since
dg,(u) > 6(Gs) > A -6 =3-1, |Js| = s, and wy, w3, wy, ws € V(J,), it
follows that u is adjacent to at least three vertices of wo, w3, ws,ws in G.
This, together with the fact that uw, € E(G), implies that da (u) > 4. As
da(v) > 3 for any v € B, by VAL, 3(2n—4—1)+4 < eg(B, A) = 5(A —4),
which, by (16), implies that A > n +4 = s + 6 (because s = n — 2),
contradicting the fact that s = A —5. Hence G4 ¢ {Go,Gy}. Consequently,
G4 has a 1-factor Fj.

Finally, let G* = G3 ifyz ¢ E(G) or G* = G3—(F3U{yz}) ifyz € E(G).
Then G* is of class 2. As z is adjacent to only one major vertex w; in G*
and A(G* —z) = A(G*), by Lemma 2.5, G* — z is of class 2 with six major
vertices y, z, ws, w3, Wy, ws. From the choice of Fy, F, and F3, it follows
that y is adjacent to only one major vertex wy in G* — z. Observe that
A(G* ~ {z,y}) = A(G* — z). By Lemma 2.5, G* — {z,y} is of class 2
with four major vertices. By Lemma 2.3, G* — {z,y} contains a A'-critical
subgraph H with at most four major vertices, where A' = A-2if G* = G3,
and A’ = A -3 if G* = G3 — (F U {yz}). Note that, if A’ = A — 2, then
|H| > AH)+1=(A-2)+1=A-1. fA'=A -3, by (8), A is even,
and so by Lemma 2.6 and Lemma 2.8, |H| = AH)+2=(A-3)+2 =
A — 1. Hence in both cases, we have |H| > A — 1. Observe that for any
v € Ng. _{z,y}(x)\A, d(;-_{z'y}(’v) < A'-2=A(H)-2. By Lemma 2.6
and Lemma 2.8 again, H contains at most one vertex v € N(z)\A. Thus
A-1< |H| < |G*~{z,y}|~(Ng- - (2.5} @)\A|-1) < (20—1)~(A—5), and
it follows that A < n + 2, contradicting (15). Hence for any v € B\N|z],
da(v) > 4 and G[C] is a complete subgraph of order m3 in G, where
C ={ve B:da(v)=3}.

As da(v) > 4 for any v € B\N|[z], we have mg < [N[z]Nn B| = A - 3.
By VAL,

3(A —3) +4(2n — A — 1) < eg(B, A) = 5(A — 4). (17)

This, together with (16), implies that A > n + 4. Suppose A = n + 4.
Then (8) and (17) imply that n = 8 and A = n+ 4 = 12. Since m3 =
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(2n — 4) — (my4 + ms) and by VAL, 3m3 + 4my + 5ms = 5(A — 4) = 5n,
we have my +2ms; = 4. Asmg < A -3 =9, it follows that mz = 9,
my4 =2, and ms = 1 or mg = 8, my = 4, and ms = 0. In both cases, as
G[C] = Ko, by counting the number of edges joining C with B\C in two
different ways, we have 14 = 2(11-4-2)+(11-5-2) < eg(B\C,C) < 8,
which is a contradiction. Hence

A>n+5. (18)

Since zw; € E(G) (i = 1,2,3), we have zws ¢ E(G). By (8), there exist
another two vertices y,z € B such that yws, zws ¢ E(G). As da(y),
da(z) > 3, we may assume that yws,zw, € E(G). We next show that
G — z has a l-factor F; containing wswy, G — Fy — y has a 1-factor F5
containing wsws, and G — F; — F3 — z has a 1-factor containing wsw,.

Let Gy = G—{ws,ws,2,y, 2} if zy € E(G) (or Gy = G—{ws, w2, w3, wy,
z}ifzy ¢ E(G)). By (18), 6(G1) > (A-1)-5 > n—1. By Dirac’s Theorem,
G1 has a 1-factor F]. Let Fy = F{U{wsws,zy} (or F; = F{U{wsw,, w3w,})
and let G2 = G - F) — {ws,w3,z,y,2} if zz € E(G) (or G2 = G — F; —
{ws, w3, wa,ws,y} if zz ¢ E(G)). By (18),6(G2) > (A-2)-5>n—-2.
By Dirac’s Theorem again, G2 has a 1-factor Fj. Let F; = FjU {wsws, 2z}
(or F; = F3 U {wswg, wow,}) and let G3 =G — F} — F> — {ws, wq,7}. By
(18), 6(Gs) > (A —3) — 3 > n — 1. Thus by Dirac’s Theorem, G3 has a
1-factor F3. Let F3 = Fj U {wsw4}.

Next, let G* = G—F, —F>—F3. Then G* is of class 2, and AU{z, y, z} is
the set of major vertices of G*. As ws is adjacent to only one major vertex
wy in G* and A(G* — ws) = A(G*), by Lemma 2.5, G* — ws is of class 2,
and z is adjacent to only two major vertices wo and w; in G* ~ ws. We
now show that G* — ws has a 1-factor Fy containing zw,.

Let G4 = G* — {ws, w2, z}. By (18), 0(Gy) >2(A~-4)-3>(n- 1)-1.
By Lemma 2.10, G4 has a 1-factor F} except when G4 = Gy. Suppose
G4 =Gp. Thens=n-2and A-7 < §(G4) =8(Gy) < 8. Thus A < s+7.
This, together with (18), implies that A = s+ 7 and §(G4) = A -7 = s.
As w, is adjacent to at most A —7 = s vertices of B\{z,y, z} in G* —ws, it
follows that G4 has at most s vertices of degree §(G4) = A — 7 = s, which
contradicts the fact that G4 = Go has s + 2 vertices of degree s. Hence
G4 # Gy and thus G4 has a 1-factor F}.

Let Fy = FjU{zw.} and let G** = G* —ws — F;. Then G** is of class 2
and z is adjacent to only one major vertex ws in G**. Since A(G** —z) =
A(G**) = A — 4, by Lemma 2.5, G** — z is of class 2, and y, z, ws, w4 are
the four major vertices of G** —z. By Lemma 3, G** —z contains a (A —4)-
critical subgraph H with at most four major vertices y, z, ws, ws. Observe
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that for any v € Ng-.(z)\4, dg--—z(v) = (A -5) -1 = A(H) - 2. By
Lemma 2.6 and Lemma 2.8, Ng(z)\ A and V (H) have at most one vertex in
common. Thus A—3 = A(H)+1 < |H| < |G** —z|—(|(Ng-+(z)\4)|-1) <
(2n - 1) — ((A —4) — 1), and so A < n+ 3, which contradicts (18).

Subcase 2.3. min{da(v) :v € B} = 2.

In this case, we first show that there exist z € B and y € B\N|[z] such
that da(x) = 2 and G — y has a 1-factor F containing zw, where w € A.
We consider the following three cases.

Casei: A>n+1

Since min{da(v) : v € B} = 2, let z € B be such that da(z) = 2. By
(8), there exists y € B such that zy ¢ E(G). Assume that zw; € E(G),
where ¢ = 1,2. By symmetry of w; and ws, assume that da (w;) > da (wz).
Let G' = G — {z,y,w1}. As A > n+ 1, it follows that §(G') > A —
4 > (n—1)— 2. By Lemma 2.10, G' has a 1-factor F’ except when
G' € {Go,G},3K3 + K, }. However, as A(G') — §(G') < A — (A —4) = 4,
G' # 3K3 + K;. Suppose G' = G or G' = G). Then s = n — 2 and
A-4<6(G"')<s Thuss+3=n+1<A<s+4. LetY = G-V (0;42).
Then |Y| = s+ 3, w; € V(Y) and V(J,) C V(Y). Since zw; ¢ E(G),
i = 3,4,5, we have dg'(w;) > A —2 > s+ 1. Thus w; € V(J,)(C V(Y)).
Suppose wy € V(J;). Then A C V(Y). This, together with the fact
that da(v) > 2 for any v € V(Y), yields that e(Y) > e(Ga) + 2|IY\4| =
5+2((s+3)~5)=2s+1. Now (s +2)(A - 1) = eg(V(Os42), V(Y)) =
5A + (s — 2)(A — 1) — 2¢(Y’) implies that A > 45 — 2 > s + 7 because
s = n -2 > 3, contradicting the fact that A < s + 4. Next, suppose
w2 € V(O442). As dg(wz) = A > s+ 3 and |Y| = s+ 3, it follows that wy
is adjacent to all the vertices of Y in G and thus A = s + 3. In particular,
wy is adjacent to w;, w3, wy, and ws in G. Thus da(w;) = 4. Since
da(wy) > da(ws), we have da (wy) = da(wz) = 4 and so e(G[4 - w,]) > 3.
This, together with the fact that da(v) > 2 for any v € V(Y), implies
that e(Y) > e(G[A — wy]) + [Y\A] > 3+ ((s+3)—4) = s+ 2. Now
(s+1)(A—-1)+ A = ea(V(0s42), V(Y)) = 4A + (s — 1)(A — 1) — 2¢(Y)
yields that A >2s+2 > s+ 5 (because s = n — 2 > 3), which contradicts
the fact that A = s + 3. Hence G’ ¢ {Go, Gy} as desired and G’ has a
1-factor F'. Clearly, F = F' U {zw, } is a 1-factor of G — y.

Case ii: A =n and G[B] & J,—2U J,_,, where mz > n, and J,_3
and J;,_, are graphs of order n — 2 with A(J,—2) = A(J},_3) =n -3.

In this case, n = A > 6 (by (9)). Let z € V(Jp—2) and y € V(J!_,)
be such that da(z) = da(y) = 2. Cleatly, 2y ¢ E(G). Assume that
zw,, 2w, € E(G), and ywy,yw; € E(G), where wg,w; € A. By symmetry
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of wy and w; and symmetry of z and y, assume that da(w;) > da(ws),
and da (w1) < maz{da(wi),da(w;)}. Let G' =G - {z,y,w1}. AsA=n
and (Ng(z) N Ng(y)) N B = ¢, it follows that §(G') = A—-3=(n—1) - 2.
By Lemma 2.10, G’ has a 1-factor F' except when G' € {G},3K3 + K}
However, as A(G') - 4(G') < A - (A -3) =3, G' # 3K; + K,. Suppose
G'=Gj. Then2s+2=2n—-2. Thuss=n—-2and A =n =5 +2. Let
Y = G - V(Os42). Then |Y| = s+ 3 and w; € V(Y). Observe that for
any v € V(O,42) — A, dg(v) = A —1=35+1 and v is adjacent to at most
oneof z and y. If [ANV(Y)| > 4, then |ANV(O,42)| < 1 and each vertex
v € V(Og42) — A is adjacent to at least three vertices of A in G. Thus
m3+my+ms > |V(Oy12)— Al = |Os42|~|ANV (O442)| > (s+2)-1=n-1,
and so mp < |B| — (m3 + m4 +ms) < (2n —4) — (n — 1) = n — 3, which
contradicts the fact that my; > n. Hence [ANV(Y)| < 3. On the other
hand, by VAL, da(v) > 2 for any v € V(O,42)— A, we have |ANV(Y)| > 2.
Thus 2< [ANV(Y)| < 3.

Suppose |[ANV(Y)| = 2. By VAL, for any w € ANV (O,y2), da(w) = 2
and ww, € E(G). Thus da(w1) = 3. As zw; ¢ E(G) (i = 3,4,5),
it follows that for any w € {ws,ws, w5} N V(Os42), Tw ¢ E(G). Now
deg(w) = A =s+2and |Y — z| = s + 2 imply that yw € E(G). Thus
wk, wj € V(O,42) and maz{da(wk),da(w;)} = 2, which contradicts the
assumption that 3 = da (w;) < maz{da(ws),da(w;)}.

Suppose [ANV(Y)| = 3. We claim that e(Y) > s. Since Ng(z)\A4 and
Ng(y)\A have no vertices in common, if w ¢ V(O,.2), then eg({z,y},
V(Os+2)) < 5+ 2 and s0 e(Y) > dg(z) + da(y) - ea({z,y}, V(Oss2)) >
2(s+1) — (s +2) = s. On the other hand, if ws € V(O,42), then
ec({z,y}, V(Os42)) < 5+3. Let {w, w2} = ANV (O,42). Then zw ¢ E(G).
Now dg(w) = A = s+2 and |Y —z| = s+2 imply that yw € E(G) and w is
adjacent to the other three vertices of ANV (Y)). Thus da(w) = 3. Observe
that da(w,) > da(w;). This, together with the fact that the number of
vertices of odd degrees in G is even, implies that e(G[A N V(Y)]) > 1.
Hence e(Y) > (do(z) + do(y) — ec({z, 3}, V(0s+2))) + e(GIANV(Y))]) >
2(s+1)—(s+3)+1 = s. Thus, in both cases, we have e(Y') > s as claimed.
Now by counting the number of edges joining V(Y) and V(O,42) in two
different ways, we have 2A + 3(A - 1) = eg(V(Os42), V(Y)) = 3A +3(A -
1)—2e(Y) < 3A-3(A—1)—2s, and it follows that A > 2s > s+4 (because
8 =n—2 > 6— 2 = 4), which contradicts the fact that A = n = s + 2.
Hence G’ # G} and G' has a 1-factor F' and F = F' U {zw, } is a 1-factor
of G—y.

Case iii: A <n-1or A =nand G(B] # J,_,UJ!_,, where my > n, and
Jn—2 and J;,_, are graphs of order n — 2 with A(J,—2) = A(J.,_,) =n—3.

In this case, n > A > 6 (by (9)). We first show that G[B] has a
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maximal matching M of size n — 3 and one of the two M-unsaturated
vertices is adjacent to exactly two major vertices in G.

Since min{da(v) : v € B} = 2, A(G[B]) = A - 3. By Lemma
2.1, X'(G[B]) < A —2. Let  be a (A — 2)-colouring of G[B] and let
E\,E,,---,Ea_s be the colour classes, where |Ey| > |E2| > -+ > |Ea—2|-
Suppose |E;| < n—4. By VAL, e(Ga) > 5 and eg(4, B) = 5A -2¢(Ga) <
5A—10. Now (2n—4)(A-1)—eg(A, B) = 2¢(G[B]) = 22?;12 |Ei] < 2(A-
2)(n — 4) implies that A > 2n — 2, contradicting (8). Hence |E;| > n — 3.
Let M' be a maximum matching of G[B]. Then |M'| > |E;| > n—3. Since
|B| =2n — 4, we haven -3 < |[M'| <n -2

Suppose |[M| = n — 3. Let u and v be the two M’-unsaturated
vertices. Then uv ¢ E(G). Clearly, if da(u) = 2 or da(v) = 2, then
M = M’ is a maximal matching of G[B] as required. Hence we assume
that da(u),da(v) > 3. Let 22}, -, 2z, € M' and n1y},---,ysy; € M’
be such that uz;,uz},uy; € E(G) and uy; ¢ E(G), where 2t + s =
INg(u\4] = (A —1) —da(u), i = 1,---,¢, j = 1,---,8. Let C =
{z1, 2}, -, 2,24, 9%, -+, 4} Since M’ is a maximum matching of G[B], v
is not adjacent to any vertex of C in G. Suppose da(w) > 3 for any w € C.
Then by VAL and Claim 2, 2((2n —4) —|CU{u,v}|) +3|CU{v}|+da(u) <
ec(B,A) = 5A — 2e(Ga) < 5A — 12, and it follows that A > n+1,
which contradicts the fact that A < n. Hence there exists w € C such
that da(w) = 2. Let ww' € M'. Then vw' € E(G) and vw ¢ E(G). Now
M = (M' — {ww'}) U {uw'} is a maximal matching of G[B] as required.

Next suppose |M’| = n — 2. By Claim 2, e(Ga) > 6. Thus by VAL,
2(2n—4) < eg(B, A) = 5A—2¢(Ga) < 5A-12 and 2m2+3(2n—4-m2) <
ec(B,A) = 5A — 2e(Ga) < 5n — 12. It follows that

in +4

A> and my >n>6. (19)

Since ms > n and |M’| = n — 2, there exists uv € M’ such that da(u) =
da(v) = 2. Let zyz},---,zex} € M’ and 1191,---,Ysys € M' be such
that uz;,uz},uy; € E(G) and uyj ¢ E(G), where 2t + s = |[Ng(u)\(AU
Whil=@-1)-2+1)=A-4,i=1,--,t,j=1,---,8 Let C =
{z1,2},**, T, 24, YL, -, ¥4} Suppose there exists w € C such that vw ¢
E(G). Let ww' € M'. Then uw' € E(G). Now (M' — {uv,ww'}) U {uw'}
is a maximal matching of G[B] as required. Hence we assume that v is
adjacent to all the vertices of C, and thus v is not adjacent to any vertex
of {y1,"-*,Ya—a—2t} in G. Let D = (N(u) U N(v)) N B. If there exist
y € B\D and z € D such that yz € E(G), let yy',22' € M'. Then
y'u,y'v ¢ E(G). By symmetry of u and v, we may assume that vz’ € E(G).
Now M = (M' — {uv,yy’,22'}) U {vz',yz} is a maximal matching of G[B]
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as required. Hence eq¢(B\D, D) = 0. Since 2t + s = A — 4, either s > 1 or
s=0.

Suppose s > 1. We claim that there exists y; € {y1,---,¥s} (or
¥; € {¥1,---,y,}) such that y; (or y') is adjacent to some vertex z €
{xlvm'la"'szhxésyla"':ya} (0!‘ z € xlvm,la""mt’xé,yi:"ﬁyé}) in G.
Suppose otherwise. Then (Ng(y;)\A4) C {u,1,%5,-* -, ¥4} and (Ne(y})\A)
C {v,41,92,"-~,¥s} , where 1 < j < 5. Let I = min{da(v) : v €
{y1, 91, ", ¥s, ¥4 }}. Without loss of generality, we assume that da () = I.
Then2 <l <5and [{y, -, 95} 2 |[Ne()\(AU{u})| = (A-1)-(I+1) =
A —1=2. Thus {y1, 47, .9 % H = 2l{y1, -, 0;}l 2 2(A -1-2) =
2A — 21 — 4. We claim that | = 2.

Suppose 5 > 1 > 3. Then ¢t > 1 (otherwise if t = 0, then s = A — 4
and m3 +ma + ms > [{y1,41, ", ¥s, ¥s}| = 28 = 2(A - 4). By (19),
n < mg = |B| — (mg + mg + ms) < (2n —4) — (2A - 8), and it follows
that A < 244, which contradicts (19)). Thus uz;,uz; € E(G) and so
A -1 =dg(u) > da(u) + |{v,z1,2},11}| = 6. This, together with (8),
implies that

n>A>8. (20)

On the other hand, by VAL and Claim 2, {(2A — 4 — 2l) + 2((2n — 4) —
(2A —4-21)) < eg(B,A) < 5A — 12, and it follows that

(I-2)(2A-4-2) +4n -8 < 5A —12. (21)

If I =5, then (21) implies that A + 4n < 38, which contradicts (20). If
I = 4, then (21) again implies that A > 4n — 20, which contradicts (20). If
= 3, then 2A-10=2A-4-2I < I{ylayif'”ysay;}l <mz+my+ms =
|B| —ma = (2n — 4) —n = n — 4, and it follows that A < 2$%. However,
by (21), A > n + 258, which contradicts (20).

Hence | = 2 as claimed and so s = A —4 and ¢t = 0. Thus |D| =
I{uavv yl1y;) i ’yA—4)y’A—4}I =2A-6and |B\D| = (271—4)—(2A—6) =
2n —2A + 2. Let w € B\D be such that da(w) = min{da(v) : v € B\D}.
Then 2n — 2A +2 = |B\D| 2 |N[w]| — da(w) = A — da(w), and it follows
that

2n+ 2 + da(w)

AL 3 (22)
By VAL and Claim 2, da (w)|B\D| + 2|D| < eg(B, A) < 5A — 12. Thus
da(w)(2n — 24 +2) + 2(2A — 6) < eg(B, A) < 5A — 12. (23)

If da (w) = 2, then by (22), A < 284, which contradicts (19). If da(w) =
3, by (22), A < 2285, However, by (23), A > %848 which contradicts
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(20). If da(w) = 4, by (23), A > 8248, However, by (22), A < 288,
which contradicts (20). If da(w) = 5, by (23), A > 102410, However, by
(22), A < 21, which, again, contradicts (20).

Hence by symmetry of u and v, we can claim from above that there ex-
ists y; € {y1,"--,¥s} such that y; is adjacent to some vertex z € {z1,2}," ",
Ty, Th, Y1, +,Ys} in G. Let 22’ € M'. Then vz’ € E(G). Now M =
(M’ — {uv,y;y},22'}) U {yj2,v2'} is a maximal matching of G[B] as re-
quired.

Suppose s = 0. Then t = 272 and |[D| = A-2<n-2. Asmz > n,
there exists w € B\D such that da(w) = 2. If A = n, then |[D| =n -2
and [B\D| = (2n — 4) — (n — 2) = n — 2. Since eg(D, B\D) = 0, we have
G = J,_2UJ!,_,, which contradicts our assumption. Hence A <n—1. By
VAL, 2m3 +3((2n —4) —m3y) < 5A—12 < 5(n — 1) —12, and it follows that
mg > n+5. Thus n+5 < mas < |B| =2n — 4, which implies that n > 9.
If there exists uw'v' € M' N E(G[B\D)) such that da(u') = da(v') = 2,
then as similar to the case that uv € M’ with da(u) = da(v) = 2 as
shown above, we have |D'| = A — 2 and eg(D’', B\(D' U D)) = 0, where
D' = (N(u') U N(v")) N B. We claim that D' = B\D. Suppose otherwise.
Since for any w € B\(D U D'), dg(w) = A — 1 and da(w) < 5, we have
(2n — 4) - 2(A - 2) = |B\(D U D")| > |Nglu]| - da(w) = A -5, and
it follows that A < 285 which contradicts (19) because n > 9. Hence
D' = B\D as claimed. Now (A —2)+ (A —2) = |D|+|D'| = |B| =
2n — 4 implies that A = n, which contradicts the fact that A < n — 1.
Hence for any u'v' € M' N E(G[B\D)), maz{da(u'),da(v')} > 3 and so
m3 +ms4 +ms > [M' N E(G[B\D))| = (n—2) - 252 Thusn+5 <
my = (2n—4) — (mz + mg +ms) < 2n —4) — ((n — 2) — 872, and it
follows that A > 16, and son > A +1 > 17. By VAL and Claim 2,
2((2n — 4) — (m3 + my +ms)) + 3(ms + mg + ms) < eg(B, A) < 5A —12.
This, together with the inequality mg+mq+ms > n—2— #, implies that
A > 1046 Agm, > n+5and A <n -1, there exist w,w' € B\D such
that da(w) = 2 and ww' ¢ E(G). Observe that §(G[B\D] — {w,w'}) >
(A-1)-5-2=A—8> 22=0-1 (because A > 18 and n > 17).
By Dirac’s Theorem, G[B\D] — {w,w'} has a 1-factor F', and thus M =
(M' N E(G[D))) U F' is a maximal matching of G[B] as required.

We thus conclude that G[B] has a maximal matching M of size n — 3
and one of the two M-unsaturated vertices is adjacent to exactly two major
vertices in G. Let z,y € B be the two M-unsaturated vertices and let
da(z) = 2. Since M is maximal, zy ¢ E(G). Assume that zw; € E(G)
(¢ = 1,2). By symmetry of w; and w2, we may assume that da(w,) <
da(w2). We next show that Ga — w; has a perfect matching.

As da(w) > 2 for any w € A and da(w,) < da(wz), it follows that
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Ga — w; has a perfect matching {e;, ez} except when Ga = 2342 or Gp &
2332, and in both cases w; and ws are the two major vertices in Ga.
Suppose Ga = 2342 or Ga = 2332. We first show that G — z has a 1-
factor Fy. If y is adjacent to one vertex of ws, wy, ws, say ws, in G,
then Fy = M U {wywy, yws,wews} is a 1-factor of G — z. On the other
hand, if y is adjacent to only two major vertices w; and w, in G, let
wlw'lv T )xtxia ylyia e sysy; € M be such that yzi, yw;, YY; € E(G) and
yy; € E(G), where 2t+s = |[Ng(Y\A| = (A-1)-2=A-3,i=1,---,¢,
j=1,---,8. Let C = {m1, 2}, -+, Zs, 2}, 91, -, ¥ }. Clearly, |C| = 2t+s=
A — 3. Since da(w;) > 3 and zw;,yw; € E(G), there must exist a vertex
z € C such that 2w, ¢ E(G) (otherwise dg(wy) > da(w;) +|C U {z,y}| >
3+ (A—-3)+2= A +2, which is false). As da(z) > 2, z is adjacent to
one of w3, wy, ws, say ws, in G. Let zz' € M. Then yz' € E(G). Now
Fo = (M — {z2'}) U{y2', zw3, w wg, wows } is a 1-factor of G — z. In either
case, let G* = G— Fp. Then G* is of class 2. Observe that w, is adjacent to
only one major vertex ws in G* and wjs is adjacent to only one major vertex
w; in G*. Since A(G* —w4) = A(G*) and A(G* — {w4,ws}) = A(G* —wy),
by Lemma 2.5, it follows that G* — {w4,ws} is of class 2 with only two
major vertices ws and z, which, by VAL, is false. Hence Ga % 2%4? and
Ga % 233%, and so Ga — w; has a perfect matching {e;, e;} as desired.

Let F = M U {zw;,e;,e:} and let G* = G — F. Then F is a perfect
matching of G — y containing zw;, and G* is of class 2. Since z is adjacent
to only one major vertex we in G* and A(G* — z) = A(G*), by Lemma
2.5, G* —z is of class 2. Observe that {w,,ws, ws, ws,y} is the set of major
vertices of G*. By Lemma 2.3, G* has a (A — 1)-critical subgraph H which
has at most five major vertices.

Suppose H has five major vertices. By VAL, 5 > A(H) — 6(H) + 2,
and so §(H) > A(H)-3=A—4. As eg-(wz, A) > 1, we have w, € V(H)
(otherwise H has at most four major vertices) and so A C V(H). This,
together with the fact that da(v) > 2 for any v € V(G*)\V(H), implies
that vwy € E(G*) (otherwise H would have at most four major vertices).
Thus |V(G*)\V(H)| < dg+(we) —dp(w2) < (A—1)— (A —-4)=3,and it
follows that 2n > |G* —z| > |H| 2 |G*| = |[V(G*)\V(H)| > (2n+1) -3 =
2n — 2. By Theorem 1.1, |H| = 2n — 1. By the induction hypothesis
on A, e(H) = (n—1)(A—-1)+1. Let {z} = V(G* — 2)\V(H). Then
e(G) 2 e(H) + |F| + dg-(z) + dg-—2(2) 2 (n—1)(A-1)+ 1) +n+ (A -
2) + (A - 3) > nA + 1 (by (9)), which contradicts the assumption that
e(G) < nA.

Suppose H has at most four major vertices. By (8), A is even, and so by
Lemma 2.6, Lemma 2.7, and Lemma 2.8, |H| is odd and |H| # A(H)+1 =
A. By Lemma 2.6 and Lemma 2.8 again, |H| = AH) +2 = A +1,
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0(H) = A(H) -1 = A -2, and H has exactly four major vertices. Thus
3<|ANV(H)| <5.

Suppose |ANV(H)| = 5. Then A C V(H). As da(v) > 2 for any
v € Niz]\4, ec-(N[s\4,4) > IN[s]\4| = A —2 > 6 -2 = 4 (by (9))-
However, since §(H) = A(H) — 1 and H has exactly four major vertices,
we have eg. (A4, N(z)\A) < 2, which is a contradiction.

Suppose |[ANV(H)| = 4. As w, is a minor vertex in G* — z, §(H) =
A(H)-1, and H has exactly four major vertices, we have we ¢ V(H). Thus
da(wz) = 2 and there exists w; € A such that wow; € F (otherwise H
would have at most three major vertices). This, together with the fact that
zw;, € F and §(H) = A(H) — 1, implies that eg(ANV(H),N(z)\A4) < 2.
However, since da (v) > 2 for any v € N(x)\A, we have eg(N(z)\4,4AN
V(H)) > |N(z)\A| = A — 3 > 6 — 3 = 3, which is a contradiction.

Suppose |[A N V(H)| = 3. As H has exactly four major vertices, it
follows that y is a major vertex in H and eg-(V(G*)\V(H), ANV(H)) = 0.
Let {wg,w;} = A\V(H). Then by VAL, da(wy) = 2 = dA(w,-) and
wrw; € E(G). Since zw, € F, from the choice of F, there exist w},w} €
A - {wy,wg,w;} such that wrw, wjw; € F (otherwxse H would have at
most three major vertices), and thus ywg, yw; ¢ E(G). Clearly, zw}, zw; ¢
E(G). Since zw; € F, da(z) = 2, and eq-(V(G*)\V(H), ANV (H)) =
0, we may assume that zwy € E(G). Now zwl,wkw;c,ij; € F and
wl,wk,wJ are major vertices in H. Thus for any v € N[:r:], da(v) = 2.
If wiw; ¢ E(G), then wywi, wyw; € E(G) and thus Go = Cs. Since
6(H) = A(H) -1 and eg- (V(G‘)\V(H) ANV(H)) =0, by Lemma 2.10,
there exists exactly one vertex z € V(H)\A such that da(z) = 2 and
for any v € V(H)\(A U {z}), da(v) = 3. Thus, by VAL, 5A - 11 =
2((A - 2) +1) +3((A +1) = 4) = 2IN[z] U {z}| + 3([V(E)\(AU {2})| <
ec(B, A) = 5A — 2e(Ga) = 5A — 10, which is false. Hence wjw} € E(G).
Now replace F by F* = (F — {wkwk,w, wi}) U {wpwj, wiw;}. Then in
G** — z (where G** = G — F*), wy is adjacent to only one major vertex
w},, and wj is adjacent to only one major vertex w}. Observe that A(G™* —
{z,wr,w;}) = A(G** — z). By Lemma 2.5, G* - {z, wk,w,} is of class 2
with only two major vertices w; and y, which, by VAL, is false. The proof
of Theorem 1.2 is thus completed. -

Corollary 3.1. Let G be a graph of order 2n+1 > 7 with |Ga| = 5, where
A = A(G) > 3. Then G is A-critical if and only if

(i) G = (2n — 3)>»4(2n - 2)°;
(i) G = (2n - 3)(2n — 2)®"~5(2n - 1);
(i) G = (2n — 2)%(2n — 1)2"~%(2n)%; or
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(iv) G = (2n — 3)(2n — 1)2*~5(2n)5.

Proof. Necessity. Let § = §(G). Then by Lemma 2.4, < A —1. As G is
A-critical, by VAL, 5 = |Ga| > A—¢é+2. It follows that A—1 > § > A—3.

Suppose § = A — 1. Then G = (A — 1)>*~4AS, By Theorem 1.2,
2(nA +1) = 2¢(G) = 2vevie) 96 (v) = (2n — 4)(A - 1) + 5A, which
implies that A = 2n — 2. Thus G = (2n — 3)2"~4(2n — 2)5.

Suppose § = A —2. Then G = (A —-2)%(A —1)2"~4~2 A5 where z > 1.
By Theorem 1.2, 2(nA +1) = 2¢(G) = Yveve) da(v) =z(A-2)+(2n -
4-z)(A-1)+5A, and it follows that A = 2n—2+z. As A < |G|-1=2n
and z > 1, we have 1 < z < 2. Hence G  (2n — 3)(2n — 2)2"~5(2n — 1)®
or G & (2n — 2)?(2n - 1)27~%(2n)5.

Suppose § = A — 3. Then G = (A — 3)%(A - 2)¥(A — 1)2n—4-2-VAS5,
where z > 1 and y > 0. By Theorem 1.2 again, 2(nA + 1) = 2¢(G) =
ZveV(G) dg(v) = 2(A-3)+y(A-2)+ (2n—4—z—y)(A —1)+5A, which
implies that A = 2n—-24+2z+y. AsA < |G|—1=2nand z > 1, we have
z=1and y =0. Thus A = 2n and G = (2n - 3)(2n — 1)27~5(2n)5.

Sufficiency. Suppose G satisfies one of (i), (i), (iii) and (iv). Then
A >2n—2 and e(G) = nA + 1. Thus G is of class 2. We next show that
G is A-critical.

Suppose otherwise. Then by Lemma. 2.3, G contains a A-critical sub-
graph H with at most five major vertices. Since G is of class 2 and G is not
A-critical, we have e(H) < e(G). By Theorem 1.1, Lemma 2.6 and Lemma
2.7, |H| is odd. Observe that |[H| > A(H)+1> (2n-2)+1> 2n — 1.
Thus either |H| = 2n + 1 or |H| = 2n — 1 (in this case, A = 2n — 2).

Suppose |H| = 2n+ 1. Then by Lemma 2.6 , Lemma 2.8, and Theorem
1.2, e(H) = nA + 1. But then e(G) > e(H) = nA + 1, contradicting the
fact that e(G) = nA + 1.

Suppose |H| = 2n—1. Then A = 2n— 2. Thus G = (2n - 3)2"~4(2n —
2)°. Let {z,y} = V(G)\V(H). Then dg(z),dg(y) >2n-3=A—-1. By
Lemma 2.6, Lemma 2.8, and Theorem 1.2 again, e(H) = (n — 1)A + 1.
Therefore e(G) > e(H) + dg(z) + do—z(y) > (n-1)A+1) + (A -1) +
(A-2)=nA+1+(A-3)>nA+1 (because A = 2n — 2 > 5), which
again contradicts the fact that e(G) = nA + 1. a

Theorem 3.2. Let G be a connected graph of order 2n + 1 > 7 with
|Ga| =5, where A = A(G) > 3. Then G is of class 2 if and only if

(t) G= (2n - 3)2n-—4(2n _ 2)5;
(ﬂ) G (2n — 3)(2n _ 2)2n-5(2n _ 1)5;
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(iii) G = (2n — 2)2(2n — 1)>»~¢(2n)3;
(iv) G = (2n — 3)(2n — 1)2*75(2n)%;
(v) G = (2n — 1)2"~4(2n)3;

(vi) for some m < n, G contains a cut-edge e such that G — e is the
union of two disjoint graphs G1 and G2, where A(G;) < A and, in G,
e is incident with a vertez of degree in Go at most A — 1; and G2 is A-
critical and isomorphic to one of the following: (2m —1)2™~%(2m)3, (2m—
2)2m-3(2m —1)4, 2m—2)(2m—1)>""4(2m)*, (2m-3)(2m—2)>""5(2m—
1)5, (2m — 2)%(2m — 1)2™~%(2m)%, and (2m — 3)(2m — 1)>™~5(2m)5;

(vii) for some m < n, G contains a cut set of two edges e; and eg
such that G — {e1,e3} is the union of two disjoint graphs G and G,
where A(G1) < A -1 and, in G, e; (i = 1,2) is incident with a vertez
of degree at most A — 1 in Gg; and Ga is A-critical and isomorphic to
one of the following: (2m — 1)2™2(2m)3, (2m — 2)(2m — 1)>™~4(2m)4,
(2m - 2)2(2m — 1)*™-6(2m)3, and (2m — 3)(2m — 1)>™~5(2m)®.

Proof. Sufficiency. Suppose G satisfies one of (i), (ii), (iii), (iv), (v), (vi),
and (vii). Then either G is overfull or G contains an overfull subgraph with
the same maximum degree. Thus G is of class 2.

Necessity. Suppose G is of class 2. If G is A-critical, then by Corallory
3.1, G satisfies one of (i), (ii), (iii), and (iv). On the other hand, if G is not
A-critical, then by Lemma 2.3, G contains a A-critical subgraph G, with
at most five major vertices and e(G2) < e(G). Observe that |Gz| < |G|.
If |G2| = |G|, as G has exactly five major vertices and e(G) > e(G2),
by Lemma 2.6, Lemma 2.8, and Corollary 3.1, G & (2n — 1)27~%(2n)3,
Gz = (2n — 2)(2n — 1)2*~4(2n)* or G2 = (2n — 2)%(2n — 1)2*~%(2n)°. In
either case, G = (2n—1)2""%(2n)5. If |G2| < |G|, let G, = G-V (G3). Since
G is connected, we have eg(V(G1),V(G2)) > 1. On the other hand, as G»
has at most five major vertices and G has exactly five major vertices, by
Lemma, 2.6, Lemma, 2.8 and Corollary 3.1, we have eg(V(G1),V(G2)) < 2.
Thus 1 < eg(V(G1),V(G2)) < 2.

Suppose eg(V(G1),V(G2)) = 1. Then G has a cut-edge e connecting
G: and G, in G. If G has three major vertices, then A(G;) < A, and by
Lemma 2.6, G2 = (2m — 1)>™~2(2m)? for some m < n. Thus either G; has
exactly one vertex of degree A and e is incident with a vertex of degree at
most A —2in G; and a vertex of degree (2m —1) in G2, or A(G,) £ A-1
and e is incident with a vertex of degree A —1in G, and a vertex of degree
(2m — 1) in G,. If G2 has exactly four major vertices, by Lemma 2.8, for
some m < n, Gz = (2m—2)*"~3(2m—1)* (in this case A(G1) < A—1and
e is incident with a vertex of degree at most A — 2 in G, and a vertex of
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degree (2m — 2) in G2) or G = (2m — 2)(2m — 1)2™~4(2m)* (in this case,
A(G1) < A, and if A(G)) = A, then G has exactly one major vertex and e
is incident with a vertex of degree at most A~2 in G, and a vertex of degree
(2m —1) in G;. If A(G2) < A —1, then either e is incident with a vertex of
degree A — 1 in G; and a vertex of degree (2m — 2) in G, or e is incident
with a vertex of degree at most A — 2 in G; and a vertex of degree 2m — 1
in Gs). If G has five major vertices, by Corollary 3.1, for some m < n,
G; = (2m - 3)(2m - 2)>"5(2m — 1)5, G2 = (2m — 2)%(2m — 1)?>™~8(2m)®
or G & (2m — 3)(2m — 1)>™—5(2m)5. In either case, since G has exactly
five major vertices, it follows that A(G;) < A — 2 and e is incident with a
vertex of degree at most (2m — 2) in Gj.

Suppose eg(V(G1), V(G2)) = 2. Then G has two cut-edges e; and e,
connecting G; and G in G. If G2 has three major vertices, by Lemma
2.6, G5 = (2m — 1)?™~2(2m)? for some m < n. Thus A(G;) < A -1 and
in G, e; and ey are incident with different vertices of degree (2m — 1) in
G;. If G2 has exactly four major vertices, by Lemma 2.8, for some m < n,
G2 = (2m - 2)(2m — 1)>™~%(2m)*. Thus A(G;) < A — 1 and either ¢;
and e are both incident with the vertex of degree (2m — 2) in G or e;
and e are incident with two vertices of degree (2m — 2) and (2m — 1)
respectively in Gs. If G, has five major vertices, by Corollary 3.1, for some
m < n, Gz = (2m — 2)%(2m — 1)>™~%(2m)® (in this case e; and e; in G
are incident with two vertices of degree (2m — 2) respectively in G3) or
Gz = (2m — 3)(2m — 1)>™~3(2m)> (in this case both e; and e, in G are
incident with the vertex of degree (2m — 3) in G3). In either case, since G
has exactly five major vertices, A(G1) < A -1. =

Acknowledgment The author would like to express her sincere thanks to
Prof. K. M. Koh and Prof. H. P. Yap for their valuable comments.

References

[1] L. W. Beineke and S. Fiorini, On small graphs critical with respect to
edge-colourings, Discrete Math. 16 (1976), 109-121.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
MacMillan Press, London, 1976.

[3] G.Brinkmann and E. Steffen, Chromatic indez critical graphs of orders
11 and 12, European J. Combin. 19 (1998), 889-900. .

[4] A. G. Chetwynd and A. J. W. Hilton, The chromatic indez of graphs
with at most four vertices of mazimum degree, Congr. Numer. 43
&1984), 921-248.

[5] A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree
are 1-factorizable, Proc. London Math. Soc. (3) 50 (1985), 193-206.

[6] A. G. Chetwynd and H. P. Yap, Chromatic indezx critical graphs of
order 9, Discrete Math. 47 (1983), 23-33.

185



[7] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math.
Soc. 2(1952), 69-81.

[8] S. Fiorini and R. J. Wilson, Edge-colouring of Graphs, Research notes
in Mathematics, Vol. 16, Pitman, (1977).

[9] K. M. Koh and Z. X. Song, On the size of graphs of class 2 whose core
has mazimum degree two, submitted.

[10] T. Niessen and f, Volkmann, Class 1 conditions depending on the
minimum degree and the number of vertices of mazimum degree, J.
Graph Theory 14 (1990), 225-246.

[11] Z. X. Song and H. P. Yap, The chromatic index critical graphs of even
order with five major vertices, submitted.

[12] V. G. Vizing, On an estimate of the chromatic class of a p-graph
(Russian), Disket. Analiz 3 (1964) 25-30.

[18] V. G. Vizing, Critical graphs with a given chromatic class, Disket.
Analiz 5 (1965), 9-17.

[14] H. P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture
Notes Vol. 108 (Cambridge Univ. Press, 1986).

(15] H. P. Yap and Z. X. Song, ‘Alternative proofs of three theorems of
Chetwynd and Hilton’, JCMCC, accepted.

186



