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We use here undirected graphs without loops and multiple edges. For
undefined terms see [5].

We shall call a tree r-packing in a graph K,, the collection P of » mutu-
ally edge disjoint trees of the graph. Then the mentioned trees are called
components of the tree r-packings. A tree r-packing P is called a iree
decomposition of K, if every edge of K, belongs to some component.

The problem is considered how to select the set T, of all trees of order n
such that for every T € T, there exists a tree decomposition R = R(T') of
the graph K, into the components isomorphic to T. Such decompositions
we call T-factorizations.

We must point out the well-known fact that P, € T,, where P, denotes
n-vertex path with n even.

It is known [1] that T € T, = (a) n is even and (b) A(T) < n/2 where
A(T) is the greatest vertex degree in the tree T'. The trees satisfying the
conditions (a), (b) are called admissible.

For n < 8 the problem is completely solved in [2, 3], and in [3, 4, 6] all
nonisomorphic tree factorizations for these orders are enumerated. In this
paper we give the complete solution in the case n = 10.

The necessary conditions of factorizability

For n = 2k every admissible tree T' defines the vector d(T') = (d;, d, .. ., dx)
where d; is the quantity of vertices of degree i in the tree T'. Let us define
the type of a vertex z in the factorization R as the vector (s, s2,...,sk)
where s; is the quantity of components in R having the degree j in .

The possible types of vertices can be determined from the following cor-
relations.

31+32+""+3k=ks (1)

s1+2s2+ -+ ksg=n—-1, 2)
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s; is integer, 3; 20 (j =1,...,k). 3)

We denote by w(n) the number of solutions of the system (1) - (3), i.e.
the number of possible types of vertices for order n.

Thus for n = 10 there are just 5 possible types of vertices (writing the
types we omit commas and brackets), namely ¢; = 14000, ¢, = 22100,
ts = 30200, t4 = 31010, t5 = 40001.

For n = 12 we have w(12) = 7 and t; = 150000, ¢ = 231000, {3 =
312000, t4 = 320100, t5 = 401100, tg = 410010, t; = 500001.

For n = 14 we have w(14) = 11 possible types, namely ¢; = 1600000,
to = 2410000, t3 = 3220000, t4 = 3301000, ¢5 = 4030000, ts = 4111000,
ty = 4200100, tg = 5002000, ty = 5010100, ¢;5 = 5100010, ¢,, = 6000001.

We also present the full list of 15 possible types for n = 16: {; =
17000000, ¢, = 25100000, t3 = 33200000, t; = 34010000, t5 = 41300000,
te = 42110000, t; = 43001000, ts = 50210000, tg = 51020000, {19 =
61101000, £1; = 52000100, ¢,2 = 60011000, £;3 = 60100100, £;4 = 61000010,
t15 = 70000001.

Let us denote a; the number of vertices of type ¢; in the factorization R.
Let a = a(R) = (a1,a2,@3,...,8u(n)), and let S8 = (s;;) be a matrix with
w(n) rows and k columns in which i-th row is i-th possible vertex type for
order n.

Counting in two different ways the total number of the vertices of degree
i in R, for every 1, leads us to the matrix equality

aS = d(T). (4)

From the above it follows

Theorem 1. For the existence of a tree factorization of the graph Ko
into tree factors isomorphic to T it is necessary that the matrix equation
(4) has a solution with nonnegative integer components.

Remark that the notion of vertex types, for the case n = 8, was intro-
duced by C. Huang and A. Rosa [2]. Just in their paper the system of
scalar equations was used equivalent to (4).

Below we demonstrate that Theorem 1 makes it possible to affirm the
nonexistence of the T-factorizations for some admissible 7T'.
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The necessary condition for the case n =10

Consider the partial case n = 10. In this case the relation (4) can be written
in the scalar form

a1 + 2as + 3a3 + 3a4 + das = 5d;; (5)
4a; + 2a3 + a4 = 5da; (6)

as + 2a3 = 5d3; )

aq = 5dy; (8)

ag = 5d5. (9)

Subtracting (8) from (6), we obtain 4az+2a; = 5(dz—dy), hence dz > ds.
So we prove the following

Theorem 2. If T € Ty then dy > dy.

For example, every tree T with d(T") = 70120 does not belong to To
because the necessary condition ds > dy is not fulfilled.

In F. Harary’s monograph [5] the diagrams of all nonisomorphic trees of
order 10 are presented. There are exactly 106 such trees. We will denote
Ty the tree drawn in m-th diagram in the list.

The examination of the list shows that the trees Thg - Tag, T69 - T72 and
Ts; are not admissible (A > 5), and so do not belong to Ty9. The trees
T102, T103 have d(T) = 70120, and due to Theorem 2 do not belong to Tg.
The remaining trees are investigated in the following sections.

The sufficient conditions in the case » = 10 and constructions

As we may see from the following theorem the predominate number of
admissible 10-vertex trees belongs to T1o.

Theorem 3. If for 10-vertex tree T the conditions A(T) < 4 and d(T') #
70120 take place then T € T1o.

Proof: We have constructed the corresponding factorizations of K¢ for
every such tree. In Table 1 the column ‘Num’ contains the number m of
the tree T}, and the column ‘Base component’ presents the edge list of the
component from which the T,,-factorization develops under the action of
the permutations af (s =0, 1,2, 3,4) where a = (12345)(6789A).

The factorizations having the automorphism «, and isomorphic to them,
are called bicyclic.
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Table 1

Num Base component Num Base component

1. 1224 353946595478 7A 2. 1723253646485A 7879
3. 151925273A484A696A 4. 18192627343556 78 TA
5. 13192729454A 5968 6A 6. 12173538464759696A
7. 13152646474A5A 7989 8. 1213162A374A 576889
9. 121316 194A 575978 8A 10. 121316174658597A9A
11. 1226 3539464958 799A 12. 1214171926 385768 9A
13. 1214161729 365978 8A 14. 1315244656 595A 78 79
27. 121316474856 578984 28, 12131628464759799A
29. 12131647485657799A 30. 12242A3739465A 6989
31. 12131836484956799A 32, 12131646474A59898A
33. 12131646484A58 7994 3. 1224383946475978 84
35. 1225373A4956 58 78 79 36. 121316464A5859678A
37. 12242636385657799A 38. 122439464778 7A595A
39. 131618263447568A9A 40. 1224364656595A787A
41. 1224 373946475A 7884 42, 122436464A595A7A89
43. 122436464A595A7T87A 44, 122526383A4A587A9A
45, 1225262936 384A 78 8A 46. 122426384 A5758 89 8A
47. 12263538393A476779 48. 121316 3A4A58597A9A
49. 12263538393A476768 50. 1224394647595A 7989
51. 1216181A4243656 799A 52, 122436 383946597994
53. 122537383A47566779 54, 12263546474A5A8A9A
55, 12263546474A5A8A9A 56. 122436373846 56 699A
57. 1224 3839464858 678A 58. 1224364656 5954 678A
59. 1224373946475A787A 60. 1216171A2436578A9A
73. 12131617485758898A 74. 16232528293747677TA
75. 1216171424 36577879 76. 12243946474959898A
77. 12263536383A4ATA9A 83. 122436373946 5A6A8A
84. 12243637464A5A689A 85. 1224263656 575A 8984
86. 12242636383A567A89 87. 1224394647595A 7879
88. 1226333638464ATA9A 89. 122426383934 586769
90. 122426 363839577994 91. 122526 3949575884 9A
92. 122426 3638395778 7A 93. 122426365657 5A 6889
94. 1224263656 575A689A 95. 122426 38393A 586878
96. 122426 394749577874 97. 122537495657 58 799A
98. 1224262939585A7TA9A 99. 122426273A4A 588984
100. 12131648565758898A 101. 12131646474856696A
104. 12161725293747686A 105. 1224263656575A8A9A

So the problem under consideration is solved for the trees T of order
10 with A(T') < 5. For 11 from the remaining 18 admissible trees with
A(T) = 5 the corresponding bicyclic factorizations are cited in the Table 2.
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Table 2

Num Base component Num Base component

16. 12131618194A59677A 18. 1213161719465978 8A
63. 122426 3A4A585A7A9A 64. 16232428292A596779
65. 12243646 56 59 5A 6768 67. 12243839464858 78 8A
68. 121316464756 5968 6A 79. 1225384856 57 58 89 8A
80. 122426 283857588984 82. 121319141646 56 67 68

106. 1224263A474A5A8A9A

For trees Tis, Ty7, To, Te1, Te2, Tee, Trs the question, do they belong to
T or not, will be answered in the next section.

The nonexistence theorems

It is easy to establish that the system (5) - (9) has a solution in real numbers
under the condition

4d; = dy + 6ds + 11d4 + 16ds, (10)
and in this case its general solution looks like

a; = 5d; — l0dg — 15d4 — 20d5 + h,

as = 5d3 — 2h,

ag = h, (11)
ay = 5dy,

as = 5d5.

Also, it is easy to check that the condition (10) fulfils for all admissible
trees of order 10.

Of course we are interested in the solutions with nonnegative integer a;’s.

Remark 1: In particular, for T € {Tis,T17,Ti9} we have d(T') = 54001,
and the system (5) - (9) have the unique solution

ay=a5=2>5, ag=as=aq =0.

Theorem 4. None of the trees Tis, Tig belongs to Tg.

Proof: Suppose that there exist the decomposition R of Ko into trees
isomorphic to T', T € {T15,T19}. Due to Remark 1,there are 5 vertex of
type £; and 5 vertex of type ¢5 in R.

Let A be the set of the vertices of type t5, and B be the set of other
vertices. Let X (A, B) be the complete bipartite graph with parts A, B.
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Consider the case
T=T5:12131415166778899A.

On one hand, the vertex of degree 2 in every component of R must lie in
the set B. But, on the other hand, then the 5 vertices in B will be joined
by 15 edges (3 edges from every component). But it is impossible because
there are only ten such edges. The contradiction proves our theorem in the
case T =Tis.

Now, let us consider the case

T =Tie: 121314151627 38495A.

As all the 2-vertices must lie in B, the edges of components joining the
centers with 2-vertices must lie in X (A, B). Those edges cover 20 edges of
X (A, B). Then at most 5 from the 20 edges incident with 2-vertices lie in
X (A, B). So at least 15 component endvertices must lie in B. But, on the
other hand, B contains only 5 such vertices, a contradiction.

The Theorem is proved.

By straight computer search we had obtained the following result.
Theorem 5. None of the trees Ty7, Ts1, Te2, Tes, Trs belongs to T1o.

It will be interesting to find a visual reason of the nonexistence of T-
factorizations in these 5 cases.

The above consideration covers all trees of order 10. Now we may unite
our results in

Theorem 6. From 106 trees of order 10 there are exactly 85 admitting
T-factorizations. Moreover, for every such tree there exists a bicyclic T-
factorization.

The more general problem

Let us formulate 2 more general problem and generalize Theorems 1 and 2.

Let T',T?,...,T* be a k-tuple of arbitrary trees of order n = 2k, not
necessary distinct. We say that we have a {T?,T?, ..., T*}-factorization
R if there are k edge-disjoint trees in K, such that i-th tree is isomorphic
to T¢ i = 1,2,...,k. (In fact, the order of trees in the k-tuple is not
substantial.)

As an examples we present the {T7, T17, T17, T17, Tis }-factorization

1223344556 6748494 A 13273547576869787A
1526293946 58798994 14161718192528363A
1A242A3738595A6A 84
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and the {T17,T17,T17,T17, Tlg}-factorization

1223344556 6748494 A 13272835475768797A
141617181A 253639 58 1924 2637385969899A
15292A3A465A6A788A

The problem is: for what k-tuples {T, T?, ..., T*} there exists a {T?, T?,
..., T*}-factorization? Let, further,

d(T) = (diy, diay .. -, dix), 1=1,2,...,k.
Moreover, let us introduce the quantities
Dj =dlj+d2j+"'+dkj (j=1:2)"°sk)

and the vector D = (Dy, D,, ..., Dy).

It is obvious that the notion of vertex types and vector a = a(R) can be
simply carried over the general case.

In this notation we can write the matrix equation
aS =D, (12)

which is the analog and generalization of (4), and formulate the theorem
absolutely analogous to Theorem 1. The corresponding analog of Theorem
2 can be formulated so.

Theorem 7. If there exists a {T!,T?,...,T5}-factorization then Dy > Dy.

It seems like the relations (4) and (12) are able to produce new necessary
conditions and give other important information about the tree factoriza-
tions.

Further nonexistences

Now we shall present an auxiliary nonexistence result. A tree r-packing
into K, is called completable if it can be embedded in any {T?,T?,...,T*}-
factorization, and completeless otherwise.

Let P be a tree r-packing in K,, consisting of trees T!,T2,...,T", and
let G(P)=T'UT?U...UTT. Then the following statement takes place.

Theorem 8. If P is completable then, for every vertex x of K,, the
inequality deg(z) < k+ r — 1 holds. If, for a packing P, there exists a
vertex z with deg(z) > k+r — 1 then P is completeless.

Proof: Let P be a completable r-packing, and R be a completion of P.
Let = be an arbitrary vertex of K,. Then every one of k — r components
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in R not belonging to P has in the vertex = degree > 1. So at least k — r
edges incident to = do not take part in P. This gives

deg(z) +k-r<2k—1, (13)

and hence deg(z) < k + r — 1, and the first assertion of the theorem is
proved. The second assertion directly follows from the first one, and so the
proof is over.

In the case r = 1 the completability condition (13) coincides with the
condition of admissibility of a tree. So the Theorem 8 is a generalization
of the condition discovered by Beineke [1]. Being applied to constructing
the tree factorizations ‘component by component’, the condition helps us
to avoid a heap of unperspective material to look through.

For the general problem Beineke’s result (1] is: only admissible trees can
be components of a {T?,T?,..., T*}-factorization. It is interesting to select
from the ordered quintuples {T?,7%2,...,T5} of admissible trees such ones

that do not satisfy the condition Dy > Ds, and so to obtain a nonexistence
result.

The superficial investigation in the case n = 12 gives us the following
necessary condition, similar to Theorem 2.

Theorem 9. T € Ty implies dy > ds.

It is easy to establish that for the case n = 8 we have d» > d3. By analogy,
the following generalization was conjectured and later on the simple graph
theoretical proof was found.

Theorem 10. The condition dy > di.; is necessary for T € Ta.

Proof: If di—; = 0 then the assertion is obvious. Let dx_; > 0, and let
there exists a T-factorization R. Let, further, z be an arbitrary vertex of
Kok, in which some component of R has degree k — 1. It is obvious that
for z such component is unique. Other k — 1 components must cover k
remaining edges incident to z, and every one of them must have in z a
degree > 1. This situation can be realized in the unique way, namely when
k — 2 components have the degree 1 in z and one component has degree 2.

So, every vertex with degree k — 1 in a component has the degree 2 in
some other component. As in R there are in total k - dx—; vertices having
component degrees k — 1, and k - dp vertices with component degree 2 then
we obtain k - dx—; < k- d2. Hence the theorem assertion follows.

A similar reflection leads us to the following

Theorem 11. For k > 6, the condition dy + 2d3 > 2dx—» is necessary for
T € To.

Corollary. If T € T2 then ds + 2d3 > 2d,.
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The problems and prospects

Now we shall list some open problems connected with the topic of this
paper.

To every T-factorization R there corresponds a vector a(R). We call the
vector the type of the factorization R. All possible nonnegative integer
solutions a of (4) are called possible types.

For example, the tree Ty has d = 62101, the system (5) - (9) has three
solutions and accordingly we have three possible types of Tge-factorizations.

a a2 a3 a4 as
Typel 0 5 0 O0 5
Type2 1 3 1 0 5
Typed 2 1 2 0 5

Problem 1. For every possible type a answer if there exists a T-factorization
of the type a.

Problem 2. For every T € T,, enumerate all T-factorizations, up to
isomorphism.

Remark that Problem 2 is completely solved in [3,4] for the cases n < 8.
Now the problem is open for n > 10.

We can formulate the following partial result in this area obtained with
a computer.

Theorem 12. The Tg4-factorization presented in Table 2 is unique, up to
isomorphism.

Problem 3. Enumerate, up to isomorphism, {T!,T?, ..., T*}-factorizations
for every k-tuple of admissible trees of order n.

For n = 6 the problem is solved in [3]. For n = 8 the problem is partialy
solved in [4).
Acknowledgement. The author thanks the anonymous referee for helpful
suggestions.
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Summary

We consider the problem of existence of T-factorizations, i.e. the de-
compositions of K, into mutually isomorphic spanning trees. It occurs
that from 106 nonisomorphic 10-vertex trees exactly 85 trees admit the T-
factorization. The necessary condition for the existence is produced, and a
generalization of the problem is proposed and considered.
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