Cordial Labelings Of Some Wheel Related Graphs

Mahesh Andar and Samina Boxwala
Department of Mathematics
N. Wadia College, Pune
smandar@vsnl.com, sammy_1011@yahoo.com
N. B. Limaye
Department of Mathematics
University of Mumbai
Vidyanagari, Mumbai 400098, India
limaye@math.mu.ac.in

Abstract

Let G be a graph with vertex set V and edge set E. A vertex labelling $f: V \longrightarrow \{0,1\}$ induces an edge labelling $\overline{f}: E \longrightarrow \{0,1\}$ defined by $\overline{f}(uv) = |f(u)-f(v)|$. Let $v_f(0), v_f(1)$ denote the number of vertices v with f(v) = 0 and f(v) = 1 respectively. Let $e_f(0), e_f(1)$ be similarly defined. A graph is said to be cordial if there are vertex labeling f such that $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$. In this paper, we show that for every positive integer t and t the following families are cordial: (1) Helms H_n . (2) Flower graphs FL_n . (3) Gear graphs G_n . (4) Sunflower graphs SFL_n . (4) Closed helms CH_n . (5) Generalised closed helms CH(t,n). (6) Generalised webs W(t,n).

Introduction

In this paper all graphs are finite, simple and undirected. Let G = G(V, E) be a graph with the vertex set V and the edge set E. A mapping $f: V \longrightarrow \{0,1\}$ is called a vertex labeling or a binary vertex labeling of the graph G. For each $v \in V$, f(v) is called the vertex-label of v. For an edge e = uv, the induced edge labeling $\overline{f}: E \longrightarrow \{0,1\}$ is given by $\overline{f}(e) = |f(u) - f(v)|$. Let $v_f(0), v_f(1)$ be the number of vertices of G having label zero and one respectively and let $e_f(0), e_f(1)$ be the number of edges having label zero and one respectively.

Definition: A binary vertex labeling of a graph G is called a **cordial** labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is called **cordial** if it admits a cordial labeling.

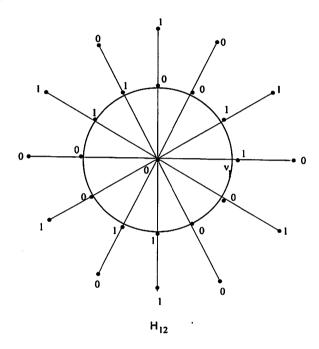
Cordial graphs were first introduced by Cahit, as a weaker version of both graceful and harmonious graphs [1]. In the same paper, Cahit proved that a wheel W_n is cordial iff $n \equiv 0, 1, 2 \mod 4$. In this paper, we show that following wheel related families are cordial: Helms, generalised helms, generalised webs, flower graphs, sunflower graphs and gear graphs.

Helms, gears and flower graphs

A wheel W_n , is the Cartesian product $K_1 \times C_n$. A helm H_n is obtained from the wheel by attaching a pendant vertex to each of the vertices on C_n in W_n . The helm H_n has 2n+1 vertices and 3n edges.

Theorem: The helm H_n is cordial for all $n \geq 3$.

Proof: Let the vertex set of H_n be $V = \{u, v_1, \dots, v_n, w_1, \dots, w_n\}$ and let the edge set of H_n be $E = \{uv_i, v_iw_i \mid 1 \le i \le n\} \bigcup \{v_nv_1, v_iv_{i+1} \mid 1 \le i \le n\}$ $i \leq n-1$. Here u is the central vertex. Let n=4q+r.



Define a binary labeling
$$f$$
 of H_n as follows:
$$f(u) = 0, \qquad f(v_i) = \left\{ \begin{array}{ll} 1, & i \equiv 1, 2 \bmod 4 \\ 0, & i \equiv 0, 3 \bmod 4 \end{array} \right.$$

$$f(w_i) = \left\{ \begin{array}{ll} 0, & i \equiv 1 \bmod 2 \\ 1, & i \equiv 0 \bmod 2 \end{array} \right.$$
 The following table shows that f is a small of f .

The following table shows that f is a cordial labeling.

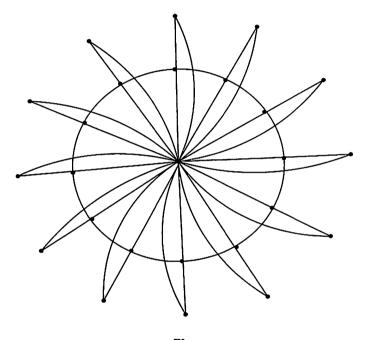
n	$v_f(0)$	$v_f(1)$	$e_f(0)$	$e_f(1)$
4q	4q + 1	4q	6q	6q
4q + 1	4q + 2	4q + 1	6q + 1	6q + 2
4q + 2	4q + 2	4q + 3	6q + 3	6q + 3
4q + 3	4q + 4	4q + 3	6q + 4	6q + 5

A closed helm CH_n is obtained by taking a helm H_n and by adding edges $\{w_i w_{i+1} \mid 1 \le i \le n\}$ to the edge set $E(H_n)$.

Theorem: All closed helms are cordial.

Proof: Define a binary labeling f of the closed helm CH_n as follows: f(u) = 0, $f(v_i) = 1$, $f(w_i) = 0$, $1 \le i \le n$. One can easily see that this is a cordial labeling.

A flower FL_n is a graph obtained from the helm H_n by attaching each of its pendant vertices to its central vertex by an edge. Thus $E(FL_n) = E(H_n) \bigcup \{uw_i \mid 1 \le i \le n\}$ and $V(FL_n) = V(H_n)$.



FL 12

Corollary: All flowers FL_n are cordial.

Proof: Consider the flower FL_n obtained from H_n . Let f be the binary labeling given before. We only have to check that $|e_f(0) - e_f(1)| \le 1$. One just notes that for FL_n with this labeling $e_f(0) = e_f(1) = 2n$.

A gear graph G_n is obtained from a wheel W_n by inserting a vertex on each of the cyclic edges of C_n in W_n . Consider the wheel W_n with u as the central vertex. Let $C_n = \{v_1, \dots, v_n, v_1\}$. For $1 \le i \le n$, let w_i be the additional vertex inserted on the edge $v_i v_{i+1}$. Here i+1 is taken modulo n. So the gear graph has 2n+1 vertices and 3n edges.

Theorem: All gears are cordial.

Proof: Let G_n be the gear graph given before. Define a binary labeling f

of G_n as follows:

$$f(u) = 0$$
, $f(v_i) = f(w_i) = 1$, $i \equiv 1 \mod 2$, $f(v_i) = f(w_i) = 0$, $i \equiv 0 \mod 2$.

It is easy to see that for odd values of n, $v_f(0) = n$, $v_f(1) = n + 1$, $e_f(0) = (3n+1)/2$ and $e_f(1) = (3n-1)/2$ and for even values of n,

 $v_f(0) = n + 1, v_f(1) = n, e_f(0) = e_f(1) = (3n)/2$. Hence G_n is cordial.

A sunflower graph SF_n has vertex set and edge set as follows:

$$V(SF_n) = \{u, v_i \mid 1 \le i \le n\} \bigcup \{w_i \mid 1 \le i \le n\},$$

$$E(SF_n) = \{uv_i, v_iv_{i+1}, w_iv_i, w_iv_{i+1} \mid 1 \le i \le n\}.$$

Here i+1 is taken modulo n. This means that, SF_n is obtained by replacing each cyclic edge of C_n in W_n by K_3 .

Theorem: All sunflowers are cordial.

Proof: Define a binary labeling f of SF_n as follows: f(u) = 0, $f(v_i) = 0$, $f(w_i) = 1, 1 \le i \le n$. One can see that $v_f(0) = n + 1, v_f(1) = n, e_f(0) = n$ $e_f(1) = 2n$. Hence SF_n is cordial.

Generalised closed helms and webs

A t-ply generalised helm CH(t, n) is obtained by taking t copies of C_n in a concentric manner. If the central vertex is u and the jth cycle is denoted by $C_{n,j}$ with vertices $x_{1,j}, \dots, x_{n,j}$ then

$$E(CH(t,n)) = \bigcup_{i=1}^{t} E(C_{n,i}) \bigcup_{r=1}^{n} \{ux_{r,1}, x_{r,1}x_{r,2}, \cdots, x_{r,t-1}x_{r,t}\}.$$

We show that CH(t, n) is cordial for all positive integers t, n.

Theorem: For all positive integers $t \geq 2$ and $n \geq 3$ the generalised closed helms CH(t,n) are cordial.

Proof: Case 1: Let t be even. Label the central vertex u by 0.

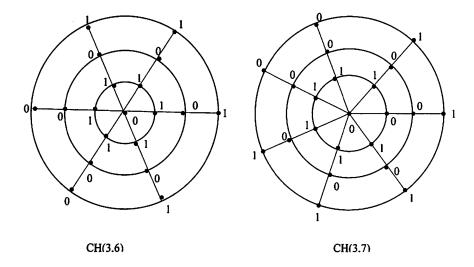
For $1 \le r \le n$, define $f(x_{r,j}) = 1$ if j is odd and $f(x_{r,j}) = 0$ if j is even. One can easily see that $v_f(0) = 1 + (nt)/2, v_f(1) = (nt)/2, e_f(0) = e_f(1) = nt$. Hence CH(t, n) is cordial in this case.

The labeling given here coincides with the labeling of the closed helm CH_n given earlier, if we take t=2.

<u>Case 2</u>: Let t be odd. Let $n \equiv s \mod 4$. First suppose $s \neq 3$. Label CH(t-1,n) as in Case 1. Let $f(x_{r,t})=1$ if $r\equiv 1,2 \mod 4$ and $f(x_{r,t})=0$ if $r \equiv 0, 3 \mod 4$. One can see that $e_f(0) = e_f(1) = nt$ for r = 0, 1, 2. On the other hand,

- (1) For s = 0, $v_f(0) = 1 + (nt)/2$, $v_f(1) = nt/2$,
- (2) For s = 1, $v_f(0) = (1 + nt)/2$, $v_f(1) = (1 + nt)/2$,
- (3) For s = 2, $v_f(0) = nt/2$, $v_f(1) = 1 + (nt)/2$.

Now suppose s=3. Let f(x) be same as before for all $x \neq x_{1,1}, x_{n,t}$.



Let $f(x_{1,1}) = 0$, $f(x_{n,t}) = 1$. One can see that $v_f(0) = v_f(1) = (1 + nt)/2$, $e_f(0) = e_f(1) = nt$. This shows that CH(t,n) is cordial in this case also. \Box A generalised web W(t,n) is the graph obtained from CH(t,n) by attaching a pendant vertex to each of the vertices of the outer cycle of CH(t,n).

Corollary: All generalised webs are cordial.

Proof: Take CH(t,n) with its cordial labeling defined before. Let the pendant vertex attached to $x_{r,t}$ be denoted by $x_{r,t+1}, 1 \le r \le n$. Let $f(x_{r,t+1}) = 1$ if r is odd and $f(x_{r,t+1}) = 0$ if r is even. Let $n \equiv s \mod 4$. The following table shows that W(t,n) is cordial for all $t \ge 2, n \ge 3$.

t	s	$v_f(0)$	$v_f(1)$	$e_f(0)$	$e_f(1)$
Even	0, 2	$\frac{2+n(t+1)}{2}$	$\frac{n(t+1)}{2}$	$\frac{n(2t+1)}{2}$	$rac{n(2t+1)}{2}$
	1,3	$\frac{1+n(t+1)}{2}$	$\frac{1+n(t+1)}{2}$	$\frac{n(2t+1)-1}{2}$	$\frac{n(2t+1)+1}{2}$
Odd	0	$\frac{2+n(t+1)}{2}$	$\frac{n(t+1)}{2}$	$\frac{n(2t+1)}{2}$	$\frac{n(2t+1)}{2}$
	1,3	$rac{n(t+1)}{2}$	$\frac{2+n(t+1)}{2}$	$\frac{n(2t+1)+1}{2}$	$\frac{n(2t+1)-1}{2}$
	2	$\frac{n(t+1)}{2}$	$\frac{2+n(t+1)}{2}$	$\frac{n(2t+1)}{2}$	$\frac{n(2t+1)}{2}$

References

- 1. I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23(1987) 201-207.
- 2. J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 5(1999).