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Abstract

In this paper we construct 2-factorizations of K, (n odd) con-
taining a specified number, k, of 6-cycles, for all integers k between
0 and the maximum possible expected number of 6-cycles in any
2-factorization, and for all odd n, with no exceptions.

1 Introduction and necessary conditions

We start with some definitions. A 2-factor in a graph is a spanning sub-
graph, regular of degree 2. If the graph is simple then necessarily any
2-factor consists of a collection of cycles which partition the vertex set. A
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2-factorization of a complete graph K, is a collection of edge-disjoint 2-
factors of K, whose union is K,. It is clear that the degree of K, must be
even for a 2-factorization to exist, and hence » must be odd. The number
of 2-factors in a 2-factorization of K, is (n — 1)/2, or half the degree.

In this paper we investigate the possible numbers of 6-cycles which a
2-factorization of K, may possess. First work in this area was on the
number of 3-cycles or triangles which a 2-factorization of K, may contain
([2])- This dealt with K, when n =1 or 3 (mod 6); the case n = 5 (mod 6)
remains open. Then the easier case of 4-cycles was dealt with, for odd order
complete graphs in [3] and for even order complete graphs minus a 1-factor
in [1). Further work in this area includes that on numbers of 8-cycles; see

[4].
We now introduce some notation. Let Q(n) denote the set of all non-
negative integers k such that there exists a 2-factorization of K, (n odd)

containing precisely k 6-cycles. Also, following notation in [3], we let FC(n)
be as follows (FC for forecast!):

Ordern  FC(n)

12k+1  {0,1,...,6k(2k—1)}
12k+3  {0,1,...,(6k + 1)2k}
12k+5  {0,1,...,(6k +2)2k}
12k+7  {0,1,...,(6k + 3)2k}
12k+9 {0,1,...,(6k+4)(2k+ 1)}
12+11  {0,1,...,(6k +5)(2k + 1)}

In other words, FC(n) is the forecast possible numbers of 6-cycles in a 2-
factorization of K,. We also adapt this notation in an obvious way: FC(G)
will denote the forecast numbers of 6-cycles possible in a 2-factorization of
the simple graph G, and Q(G) will denote the actual number of 6-cycles
which can be obtained in a 2-factorization of G.

Our aim in this paper is to show that Q(n) = FC(n) for all odd positive
integers n, with no exceptions.

Some of the following constructions are complicated by the fact that
when the complete bipartite graph Kgg is 2-factored, as is well-known, it
is not possible to have all three 2-factors consisting of two 6-cycles. In
other words, although we can take 2-factorizations of Kg g containing 0, 2
or even 4 6-cycles, we cannot obtain the maximum expected number of
6-cycles, namely 6. That is, 6 ¢ Q(Ks,e), although 6 € FC(Kgg). Owing
to this fact, in our constructions below, we generally work modulo 24 rather
than modulo 12, and we use 2-factorizations of K2, 2 rather than of Kgg.
However, in parts we avoid this difficulty by using the fact that Q(Ks 6.6)
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contains 18 and Q(K4,4,4) contains 8; see Sections 4 and 5 below.

2 The constructions

The following construction is used in the next section.
Construction I

Let the odd order complete graph K, have n = 12(2k + 1) + ¢ where
€€ {1,3,5,7,9,11}. Let Z = {z,22,...,2}. Let (Q, o) be any idempotent
commutative quasigroup of odd order 2k + 1 (for instance, take addition
modulo 2k + 1 and relabel symbols so z o z = z). Take the vertex set X of
K, tobe ZU(Q x J) where J ={1,2,...,12}.

We take a collection of 2-factors F' of K, formed from the following;:

(i) Ontheset ZU{(7,7) | 1 < j < 12} of order 12+¢, take 6+ (¢ —1)/2 2-
factors F; = {f,',l,f,"z, RN 7 T 1fi,(ll+e)/2}a for some fixed i with
1<i<2%+1.

(ii) For each pair a,b with a < band aob = i, on the set {(a,j) |1 < j <
12} U {(b,5) | 1 < j < 12}, take a 2-factorization of K)3,2; this has
six 2-factors, say Fu . = {fab,1, fab,2,- -+, fab6}-

Then the set of final 2-factors, F, contains 6(2k + 1) + (¢ — 1)/2 2-factors
as follows:

{fims fabm |@0b=14, a<b} for1<i<2k+1and1<m<6.

(This makes 6(2k+1) 2-factors.) Also, from {f;7,..., fi (e+11)/2}, we obtain
a further (e — 1)/2 2-factors as follows:

For 2 < i < 2k + 1, when € > 1 we ensure that the 2-factors {f;7,...,
fi,(114¢)/2} in F; each contain a sub-2-factorization { on Z = {21, 2s,...,2¢}
of order ¢, and containing either 0 or max FC(12 + €) 6-cycles.

Let fi;, = fit\(,for2<i<2k+1and 7 <t <6+ (e—1)/2; that is,
;¢ is the 2-factor f;; with the sub-2-factorization ¢ on Z removed.

Then the final (e — 1)/2 2-factors are:
{fie, fis |2<i<2k+1} fort with 7<¢t< (11+¢€)/2.

As a consequence of the above construction and the fact that {0, 6,12, 18,
24} € FC(Ki2,12), we have the following result. Here m * X denotes the
set of integers {mz |z € X}.
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THEOREM 2.1 There is a 2-factorization of Ky, where n = 24k+12+¢,
and € € {1,3,5,7, 9,11}, containing

(2k+1

5 ) *{0,6,12,18,24} + Q(12+¢) +2k*{0, maz FC(12+¢€)} 6-cycles.

COROLLARY 2.2 If Q(12+¢€) = FC(12 +¢) for € € {1,3,5,7,9,11},
then Q(n) = FC(n) for n =24k + 12 + €.

The next construction is used in Section 4.

Construction II

Let the odd order complete graph K, have n = 12(2k) + ¢ where € €
{1,3,5,7,11}. Let Z = {21,22,...,2}. Let (Q,0) be any idempotent
commutative quasigroup of order |Q| = 2k with holes of size 2; such a
quasigroup exists for all 2k > 6 (see for example [5], page 19, Theorem
1.5.5). In particular, let @ = {1,2,...,2k} where the holes of size 2 are
{1,2},{3,4},...,{2k — 1,2k}. Let the vertex set X of K, be ZU (Q x J)
where J = {1,2,...,12}.

The construction involves the following:

(i) On the set Z U {(2i — 1,5),(24,5) | 1 < j < 12} of order 12 + ¢, for
each 1 < i<k, take 12+% 2-factors F; = {fi1, fi2zy---r J1,125- 5
fi2s+e)2}, for 1 <i < k.

(ii) For each pair a,b in different holes in @, with aob = 2i — 1, on the

set P = {(a,j) | 1 <j <12}U{(b,j) | 1 £ j < 12} we place a
2-factorization of K)2,12 with 2-factors Fop = {fab,1,.--, fab,6}

Also for each pair aq,b in different holes in Q with a o b = 2¢, on
the same set P we place a 2-factorization of K3,;2 with 2-factors

F‘:,b = {ffzb,vfc'.b,z, seey ;b,e}'

Then the set of final 2-factors, F, contains 12k + (e — 1)/2 2-factors as
follows:

{fims fabm |aob=2i—-1} for1<i<k, and1<m<6,

{fim+6, fapm |@a0b=2i} for1<i<k, and1<m <6,

(making 2 x 6 x k£ 2-factors or 12k 2-factors). Then, from {f;s,...,
fi(23+¢)/2}, we obtain a further (¢ — 1)/2 2-factors as follows:
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For 2 < i < k, when € > 1, we ensure that the 2-factors {fi13,..-,
fi,(23+¢)/2} in F; each contain a sub-2-factorization { on Z = {z1, 22,..., 2}
of order ¢, and containing either 0 or maxFC(24 + ¢) 6-cycles.

Let fi, = fix\(for 2 < i <k and 13 <t < (23 +¢€)/2; that is, f], is
the 2-factor f;; with the sub-2-factorization { on Z removed.

Then the final (e — 1)/2 2-factors are: {f1., fi, |2 < i < k} for ¢ with
13<t < (23+¢€)/2.

As a consequence of the above construction, and the fact that {0, 6,12,
18,24} CFC(K12,12), we have the next result.

THEOREM 2.3 There is a 2-factorization of K,,, where n = 24k +¢€ and
e€ {1,3,5,7,11}, k > 3, containing

4(’;) £{0,6,12,18,24) + Q(24+ €) + k + {0, mas FC(24 + €)} 6-cycles.

COROLLARY 2.4 IfQ(24+¢) = FC(24 +¢) for e € {1,3,5,7,11}, then
Q(n) = FC(n) forn =24k +¢€, k > 3.

We give one more construction here which is useful for some ad hoc
cases; it reduces the number of “small” cases which have to be found by
computer. First we need a simple lemma.

LEMMA 2.5 Q(K»22) = {1,2}.

Proof Let K322 have vertex set {{1,2}, {3,4},{5,6}}. Then

{(1,3,2,5,4,6);(1,4,2,6,3,5)} shows that 2 € Q(K2,2,2), and {(1,3,5),
(2,4,6);(1,4,5,2,3,6)} shows that 1 € Q(K3z,2.2). It is also clear from the
latter 2-factorization that it is not possible to have 0 in Q(K3,2,2). O

Construction III

Let K, have order n = 2(6k + 2) + ¢, where € = 1 or 3. Let the vertex
set be

{00 |1<i < e}U{(i,d) |1<i<6k+2; §=1,2).

On the set {i | 1 < ¢ < 6k + 2} we take a punctured Kirkman triple system
(of order 6k + 3, with one point deleted). This has 3k + 1 parallel classes,
and each parallel class contains 2k blocks of size 3 and one block of size 2.
For each of these parallel classes, in turn, we obtain two final 2-factors of
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K, (making 6k + 2), and if € = 3 we have one further 2-factor. These arise
as follows:

Suppose one of the 3k+1 parallel classes is {12, 345, 678, ...,6k 6k+
16k+2}. Then on {o0; | 1 <i <€}U{(1,1),(1,2),(2,1),(2,2)} we place a
2-factorization of K5 (if € = 1) or of K (if e = 3), containing, in the latter
case, the triangle (001, 002,003). Also on {{(37,1),(3%,2)}, {(3i+1,1),(3i +
1,2)},{(3:+2,1),(3i + 2,2)}}, for 1 < i < 2k, we place a 2-factorization of
K> 2. The resulting 2-factorization of K, contains

(3k+1)*{0} + 2k(3k+1)*{1,2} = {2k(3k+1),2k(3k+1)+1,...,4k(3k+1)}

6-cycles. (Note that the maximum number of 6-cycles possible for order
12k +4+¢, when € = 1 or 3, is 2k 6-cycles per 2-factor, so 2k(6k + 2) when
€ =1, or 2k(6k + 3) when ¢ = 3.)

COROLLARY 2.6 (i) {8,9,...,16} C Q(17); (i) {8,9,...,16} C
Q(19); (iii) {28,29,...,56} C Q(29); (iv) {28,29,...,56} C Q(31).

Proof These all follow from Construction III above, with ¢ = 1 (in (i)
and (ii)), ¥ = 1 (in (i) and (iii)), ¢ = 3 (in (iii) and (iv)), and k = 2
(in (ii) and (iv)). Note also that the 2-factorization of K,7 contains a
sub-2-factorization of K5, and the 2-factorization of K9 contains a sub-2-
factorization of K7. O

In the case of order 9 (mod 24) we use a fairly similar construction;
details are given in Section 5 below, since this is the only time it is used.

3 Cases n= 13, 15, 17, 19, 21, 23 (mod 24)

[n =13 (mod 24)|

We start with a crucial example.
EXAMPLE 3.1 Q(Ki2,12) 2 {0,6,12,18,24]}.

Trivially 0 € Q(K2,12); for instance, we can take a 2-factorization of
K212 into all 4-cycles.
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6 € Q(Ki2,12):

(0,12,1,13,2,14), (3,15,4,16,5,17,6,18,7,19,8, 20,9, 21, 10,22, 11, 23);
(0,13,3,12,2,15), (1,14,4,17, 7,16,6,19, 5,18, 8, 21, 11, 20, 10, 23,9, 22);
0,16,1,15,5,20), (2,17,3,14,6, 12,9,13,10,18,11,19, 4,21, 7, 22, 8, 23);
(0,17,1,18,2,19), (3,16,8,12,10, 14,9,15,11,13, 4,20, 7,23, 5,21, 6, 22);
(0,18,3,19,1,21), (2,20,6,23,4,12,11,17,9, 16, 10,15, 8,13, 7, 14, 5, 22);
(5,12,7,15,6,13), (0,22,4,18,9,19, 10,17,8,14,11,16, 2,21, 3,20,1, 23).
12 € Q(K12,12):
(0,12,1,13,2,14), (3, 15, 4, 16, 5, 17), (6, 18,7, 19,8, 20), (9, 21, 10, 22,11, 23);
(0,13,3,12,2, 15), (1, 14, 4,17, 6, 16), (5,18, 8,21, 11,19), (7, 22,9, 20, 10,23);
(0,16.2,17.1,18), (3,14, 5,12, 7, 20), (4, 21,6, 22,8, 23), (9,13, 11,15, 10, 19);

(0,17,7,13,4,12,6,14,
(0,19,3,16,7,15,1,21,
(0,20,2,18,3,23,1,22,

18 € Q(Ki2,12):
(0,12,1,13, 2,14), (3,15,
(0,13,3,12,2,15), (1,14,
14
5

15,9, 16,10, 18, 11,20, 1,19, 2, 21, 3,22, 5, 23);
20,4,18,9,12,8,17,11, 14,10, 13, 6, 23, 2, 22);
19,6,15,5,13,8,16,11,12,10,17,9, 14, 7, 21).

w Ot Co

b
)
1)

), (6,18,7,19,8,20), (9,21, 10,22,11,23);
), (5,18,8,21,11,19), (7, 22,9, 20, 10, 23);
), (4,21,6,22,8,23), (9,13,11,15,10,19);
), (2,20,11,12,6,23), (8,14,9, 18,10, 16);
9,12,10,13,8,17,11,18,4, 22, 5,23);
19,6,13,5,20,4,12,8,15,7,21,1,23).

4,16,5,17
4,17,6,16
(0,16,2,17,1,18),(3,14,5,12,7,20
(0,17,7,13,4,19),(1,15,5,21, 3, 22),
(0,20,1,19,2,21),(3,16,7,14,6,15
8,3,

(9,16, 11,14, 10,17), (0, 22,2,
24 € Q(K2,12):

(0,12,1,13,2, 14), (3, 15,4, 16, 5, 17), (6, 18, 7, 19,8, 20), (9, 21,10, 22,11, 23);
(0,13,3,12,2,15), (1,14,4,17,6,16), (5,18,8,21,11,19), (7, 22,9, 20, 10, 23);
(0,16,2,17,1,18), (3, 14, 5,12, 7, 20), (4, 21,6, 22,8, 23), (9, 13, 11, 15,10, 19);
(0,17,7,13,4,19), (1,15, 6, 14,11, 20), (2, 21, 5,22, 3, 23), (8,12, 9, 18, 10, 16);
(0,20,5,23,1,21), (2,19, 3,18, 4, 22), (6,12, 10, 14,8, 13), (7, 15,9, 17,11, 16);
(0,22, 1,19, 6,23), (2,18, 11,12, 4,20), (3,16,9,14,7, 21), (5,13, 10,17,8, 15).

]
EXAMPLE 3.2 Q(13) =FC(13) = {0,1,...,6}.
0 € Q(13): a hamilton decomposition of K3, for example, shows this.

1€ Q(13):
(0,1,2,3,4,5), (6,7,8,9,10,11,12); (0,2,4,1,3,5,6,8), (7,10,12,9,11);
(0,3,6,1,5,9,2,10), (4,7,12,8,11); (0,4,6,2,7,9,1,11), (3,10,8,5,12);
(1,7,0,9,6,10,4,12), (2,5,11,3,8); (1,8,4,9,3,7,5,10), (0,6,11,2,12).

2 € Q(13):

b}
b

(QLZ&QQJ&Z&9ﬁmHJa;mﬂAJﬁﬁxﬁﬂﬂJ, mlm,
(0,3,5,1,6,8,2,10), (4,9,12,7,11); (0,4,6,2,7,10,5,9), (1,8,12,3,11);
(0,7,1,9,3,10,6,11),(2,5,8,4,12); (0,8,3,7,4,10,1,12),(2,9,6,5,11).
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3€ Q(13):

(0,1,2,3,4,5),(6,7,8,9,10,11,12), (0,2,4,1,3,6),(5,7,9,11,8,10, 12);
(0,3,5,1,6,8),(2,9,12,4,10,7,11); (0,4,6,9,1,7,2,10),(3,11,5,8,12);
(1,8,3,7,4,11,6,10), (0,9,5,2,12); (2,6,5,10,3,9,4,8),(0,7,12,1,11).

4 € Q(13):
(0,1,2,3,4,5), (6,7,8,9,10,11,12); (0,2,4,1,3,6),(5,7,9,11,8, 10, 12);
(0,3.5,1,6,8), (2,9,12,4,10,7,11); (0,4,6,9,1,7),(2,10,5,11,3,8,12);
(0,9,3,12,1,10,6,11), (2,5,8,4,7); (1,8,2,6,5,9,4,11), (0,10,3,7,12).
5 € Q(13):
(0,1,2,3,4,5), (6,7,8,9,10,11,12); (0,2,4,1,3,6),(5,7,9,11,8,10,12);
(0,3,5,1.6,8), (2,9,12,4,10,7,11); (0,4,6,9,1,7),(2,10,3,11,5,8,12);
(0,9,3,8,4,11), (1,10,6,5,2,7,12); (0,10,5,9,4,7,3,12), (1,8,2,6,11).

6 € Q(13):

(0,1,2,3,4,5), (6,7,8,9,10,11,12); (0,2,4,1,3,6),(5,7,9,11,8,10,12);
(0,3,5,1,6,8),(2,9,12,4,10,7,11); (0,4,6,9,1,7),(2,10,3,11,5,8,12);
(0,9,5,2,6,10), (1,8,3,12,7,4,11); (2,7,3,9,4,8),(0,11,6,5,10,1,12).

LEMMA 3.3 Q(24k+13) = FC(24k+13) = {0,1,2,...,6(2k+1)(4k+1)},
for all integers k > 0.

Proof Here n =12(2k+ 1) + 1; we use Construction 1 with ¢ = 1. Then
Theorem 2.1 gives Q(24k + 13) = FC(24k + 13) as required. (m]

|n =15 (mod 24)|

Subsequent examples, marked with an asterisk, have been placed in an
Appendix, available from
http://wuw.maths.uq.edu.au/~ejb/IJCMCCappendix.html
or by email from ejb@maths.uq.edu.au.

EXAMPLE* 3.4 Q(15) = FC(15) = {0,1,...,14}, and each 2-
factorization contains a Kj.

LEMMA 3.5 Q(24k+15) = FC(24k+15) = {0,1,2,...,(12k+7)(4k+2)},
for all integers k > 0.

Proof Here n = 12(2k+1) + 3; we use Construction I with e = 3. Noting
that Q(K12,12) contains {0, 6,12, 18,24}, Q(15) = FC(15) and 2-factors f; 7
(for here t = 7) of K5 for 2 < i < 2k+1 satisfy fi7 = fi ;U( where ( is K3
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on Z = {z,22,23}, then Theorem 2.1 gives Q(24k + 15) = FC(24k + 15)
as required. ()

ln =17 (mod 24)|

EXAMPLE* 3.6 Q(17) = FC(17) = {0,1,...,16}, and two 2-factors
contain a 2-factorization of K5 on five fixed vertices.

The Appendix shows {0,1,...,7} C Q(17) while the other values follow
from Corollary 2.6.

LEMMA 3.7 Q(24k+17) = FC(24k+17) = {0,1,2,..., (12k+8)(4k+2)}.

Proof Here n = 12(2k+ 1)+ 5; we use Construction I with e = 5. Noting
that Q(K2,12) contains {0, 6,12, 18,24}, Q(17) = FC(17) and 2-factors f; 7
and f; g (for here t = 7 and 8) of K7 for 2 < i < 2k+1 satisfy fi7 = f; ;UG
and f;g = figU(2 where GU(2 is Ks on Z = {21,22,23, 24,25}, and (1, G2
are two edge-dls_pmt 5-cycles on Z, then Theorem 2.1 gives Q(24k +17) =

FC(24k + 17) as required. O

|n =19 (mod 24) |

EXAMPLE* 3.8 Q(19) = FC(19) = {0,1,...,18}, and three 2-factors
contain a 2-factorization of K7 on seven fixed vertices.

The Appendix shows {0,1,...,7,17,18} C Q(19), while {8,9,...,16} C
@(19) from Corollary 2.6.

LEMMA 3.9 Q(24k+19) = FC(24k+19) = {0,1,2,.. ., (12k+9)(4k+2)},
for all integers k > 0.

Proof Heren = 12(2k+1)+7; we use Construction I with e = 7. We have

Q(19) = FC(19), and 2-factors fis, t = 7,8,9, of Kyg for 2<i <2k +1
satisfy fis = fi,U( where (U(3UCo is K7 on Z = {21, 22, 23,24, 25, %6, 21}
and (; are a 2-factorization of K7 on Z. Then Theorem 2.1 gives Q(24k +
19) = FC(24k + 19) as required. O

|n = 21 (mod 24)J

EXAMPLE* 3.10 Q(21) = FC(21) = {0,1,...,30}, and four 2-factors
contain a 2-factorization of Ky on nine fixed vertices. The Appendix gives

231



{25,26,27,28,29,30} C Q(K>1). For the other values we use Ks 6, noting
that {01 2,4} g Q(Kﬁ,G): but 6 ¢ Q(KG.G)'

Let the vertex set of K¢ be {{0,1,2,3,4,5},{6,7,8,9,10,11}}.
Then 0 € Q(Ks,): (0,6,1,7,2,8,3,9,4,10,5, 11); (0,7,3,6,4,8,5,9,1,11,
2,10); (0,8,1,10,3,11,4,7,5,6,2,9).

Also 2 € Q(Ks,6): (0,6,1,7,2,8),(3,9,4,10,5,11); (0,7,3,6,4,8,5,9, 1,
10,2,11); (0,9,2,6,5,7,4,11,1,8,3, 10).

And 4 € Q(Ks 6): (0,6,1,7,2,8),(3,9,4,10,5,11); (0,7,3,6,4, 11), (1,8,
5,9,2,10); (0,9,1,11,2,6,5,7,4,8, 3, 10).

Now let the vertex set of Ka; be {00;1,002,003}U{(i,7)|1<i<3,1<
J £6}. On {oo; | 1 <i < 3}U{(3,5) | 1 < j < 6} we place a 2-factorization
of Ky, with one 2-factor containing the triangle (001,002,003). Then on
{G+1,7) 11<j <6,{G+24) | 1<j < 6}} (addition modulo
3) we place a 2-factorization of Kgg. Since Q(K,) = {0,1,2,3,4}, and
Q(Ks,6) 2 {0,2,4}, it follows that

Q(K21) 23%{0,1,2,3,4} + 3% {0,2,4} = {0,1,...,24}.
0

LEMMA 3.11 Q(24k+21) = FC(24k+21) = {0,1,2, ..., (12k+10)(dk+
3)}.

Proof Here n = 12(2k + 1) + 9; we use Construction I with ¢ = 9.
We have Q(21) = FC(21), and 2-factors fis, t = 7,8,9,10, of Ky, for
2<i1<2%k+1 satisfy fig = f:!,t U ¢ where (7 U (g U o U G0 is Ky
on Z = {z,2,...,29}, and {; are a 2-factorization of Ky on Z. Then
Theorem 2.1 gives Q(24k + 21) = FC(24k + 21) as required. O

|7 = 23 (mod 24)]

EXAMPLE* 3.12 Q(23) = FC(23) = {0,1,...,33}, and five 2-factors
contain a 2-factorization of K, on eleven fixed vertices. To obtain all but
the top six values, we use a construction extremely similar to Example 3.10
above, using Kg g, but we have five “infinity” elements rather than three.
And we use a 2-factorization of K; with a sub-2-factorization of Ky in it
(see the Appendix for this). The result is that Q(Ka3) contains

3% Q(Ku) +3%{0,2,4} = {0,1,...,27).
The values {28, 29, 30, 31, 32, 33} are in the Appendix. (]
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LEMMA 3.13 Q(24k+23) = FC(24k+23) = {0,1,2, .., (12k+11)(4k+
3)} for all integers k > 0.

Proof Here n = 12(2k + 1) + 11; we use Construction I with ¢ =
11. We have Q(23) = FC(23), and 2-factors f;;, 7 < t < 11, of Ka3
for 2 < i < 2k + 1 satisfy fiy = fl, U ¢ where U2, G is K11 on Z =
{z1,22,...,211}, and (; are a 2-factorization of K1; on Z. Then Theorem
2.1 gives Q(24k + 23) = FC(24k + 23) as required. O

4 Casesn= 1, 3,5, 7,11 (mod 24)

Before we deal with separate orders mod 24, the following lemma shows
that FC(v) = Q(v) for v = 49, 51, 53, 55 and 59.

LEMMA 4.1 FC(w) = Q(v) for v = 49, 51, 53, 55 and 59.

Proof Take the vertexset {o0; |1<i<e}U{(35)]|1<1<8,1<j<
6} wheree = 1, 3, 5, 7 or 11 according as the order is 49, 51, 53, 55 or 59. On
the set {1,2,...,8} we take a pairwise balanced design PB(8; {2,3,3};1}
with four parallel classes: 12, 345, 678; 37, 148, 256; 46, 157, 238; 58, 136,
247. (This may also be regarded as a punctured affine plane of order 3.)

We have (see the Appendix) Q(Ks6.6) 2 {0,6,12,18}, and also

(i) Q(13) =FC(@13) = {0,1,...,6} (see Example 3.2);

(i) Q(15) = FC(15) = {0,1,...,14}, with a K3 in each 2-factorization
(see the Appendix);

(iii) Q(17) = FC(17) = {0,1,...,16}, with two 2-factors in each 2-factor-
ization containing a sub-2-factorization of K on five fixed vertices
(see the Appendix and Corollary 2.6);

(iv) Q(19) = FC(19) = {0,1,...,18}, with three 2-factors in each 2-
factorization containing a sub-2-factorization of K; on seven fixed
vertices (see the Appendix and Corollary 2.6);

(v) Q(23) = FC(23) = {0,1,...,33}, with five 2-factors in each 2-factor-
ization containing a sub-2-factorization of K, on eleven fixed vertices
(see the Appendix and Example 3.12).
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Now for each of the four parallel classes of the pairwise balanced design
above, we obtain six 2-factors as follows. For the parallel class 12, 345, 678:
on {oo0; | 1 < i < €e}U{(1,4),(2,7) | 1 < j < 6} we take six of the 2-factors of
K3, K15, K17, K19 or K3 (with a sub-2-factorization on {oo; | 1 < i < €}
for ¢ = 3,5,7,11 respectively). Also on {{(a,7) |1 <j <6},{(a+1,5)|
1<j<6},{(a+2,7) |1 < j < 6}}, for a =3, and again for a = 6, we place
a 2-factorization of Kjg g6, which has six 2-factors also. We do likewise for
the other three parallel classes. This yields 24 2-factors. For orders 51,
53, 55 or 59, when € = 3, 5, 7 or 11 respectively, we have a further one,
two, three or five 2-factors. (For K5 has seven 2-factors altogether, K7
has eight, K9 has nine and K»3 has eleven.) So saving one 2-factor from
K5 on the sets

{ooi | 1<i<3}U{(i,5) |1<j <6}

for each i € {1,2}; {3, 7}; {4,6}; {5, 8}, containing a K3 on {o0;, 002,003},
which is taken once only, we obtain one further 2-factor for K.

Similarly, saving two 2-factors from K7 on {oo; | 1 < i < 5} U
{(3,5) 1 1 £ j < 6} for each i € {1,2};{3,7}; {4,6}; {5,8}, with a sub-
2-factorization of K5 on {o0; | 1 < i < 5} in each of the pairs of 2-factors
(taken once only), we can obtain two further 2-factors of Ks3.

Similarly we can save three 2-factors from the 2-factorization of Ky,
and five from the 2-factorization of Ks3.

It follows that the total number of possible 6-cycles is
4*xQ(12+¢€) + (2 x 4) % {0,6,12,18}
for order 48 +¢,€ =1, 3, 5, 7 or 11. This equals FC(48 +¢€), as required. O
In =1 (mod 24)|

We need the following examples.

EXAMPLE 4.2 Q(25) = FC(25) = {0,1,...,36}.

Let Kp; have vertex set {oo} U {(4,7) | 1 <1 <3, 1< j <8} For
a=1,2,3,on {oo}U{(a,j) | 1 < j < 8}, place a 2-factorization of Ky, and
on {{(a+1,5) |1 <j<8},{(a+2,5)|1<j < 8}}, place a 2-factorization
of Kg g, where a+1, a+2 are taken mod 3. This yields 3 x4 or 12 2-factors,
as required. Moreover, since Q(9) = {0,1,2,3,4} and Q(Kss) 2 {0,4,8},
the 12 2-factors contain

3%{0,1,2,3,4} + 3% {0,4,8} = {0,1,2,...,36}
6-cycles. Hence Q(25) = FC(25), as required. a
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LEMMA 4.3 Q(24k + 1) = FC(24k + 1) = {0,1,2,...,12k(4k — 1)} for
all integers k > 1.

Proof Here n = 12(2k) + 1; we use Construction II with e = 1. We
have Q(25) = FC(25) from Example 4.2. Then Corollary 2.4, together with
Example 4.2 and order 49 from Lemma 4.1, gives Q(24k+1) = FC(24k+ 1)
as required.

[n =3 (mod 24)|

EXAMPLE 4.4 Q(27) = FC(27) = {0,1,2,...,52}, and each 2-
factorization contains a Kj.

There are 13 2-factors altogether. Let the vertex set be {(i,j) |1 <i <
9, 1<j <3} On{(:3)| 1< i< 9} we take a 2-factorization of Ky (with
four 2-factors, and a K3 in each: this is easy to find, and one possibility
appears in Example 5.2 in the next section). On the graph Ky \ F, with
vertex set

{1 1<i<9} {2 |1<i<9}},

where F is the 1-factor {{(%,1), (¢,2)} | 1 < i < 9}, we take a 2-factorization
which also has four 2-factors. This exists with no 6-cycles and also with 12
6-cycles:

Ky \ F into four 2-factors, each with three 6-cycles:

((1,1),(2,2),(3,1),(1,2),(2,1),(3,2)),
((4,1),(5,2),(6,1),(4,2),(5,1),(6,2)),
((7a 1)1 (8’ 2): (91 1)’ (7$ 2), (81 1)’ (9: 2));

((1,1),(4,2),(7,1),(1,2),(4,1),(7,2),
((2,1),(5,2),(8,1),(2,2),(5,1),(8,2)),
((3,1),(6,2),(9,1),(3,2),(6,1),(9,2));

((11 1)’ (5? 2)’ (9’ 1)’ (1’ 2)’ (5’ 1)’ (9’ 2))’
((2,1),(6,2),(7,1),(2,2),(6,1),(7,2)),
(3,1),(4,2),(8,1),(3,2),(4,1),(8,2));

((1,1),(6,2),(8,1),(1,2),(6,1),(8,2),

((2,1),(4,2),(9,1),(2,2),(4,1),(9,2)),
((3’ 1)7 (5, 2)’ (7’ 1)’ (3) 2)’ (5) 1)7 (77 2))'
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Ky \ F into four 2-factors, with no 6-cycles (each 2-factor is an 18-
cycle):

((1,1),(2,2),(5,1),(6,2),(9,1),(7,2),(4,1), (5,2), (8,1),(9,2), (3, 1),
(1’ 2)! (7, l)a (8: 2)1 (2’ 1)’ (3’ 2): (61 1)1 (41 2));

((1,1),(3,2),(9,1),(8,2),(5,1), (4,2),(7, 1),(9,2),(6,1),(5,2),(2,1),
1, 2)7 (4,1),(6,2), (31 1): (2,2),(8,1),(7, 2));

((1,1), (9, 2)v (2, 1), (6,2), (81 1),(3,2), (5, 1)) (1a2)’ (6s 1)’ (7: 2): 3,1),
4,2), (9’ 1)’ (5, 2)7 (7a 1)1 (2’ 2)1 (41 1)’ (8’ 2))1

((1’ 1)’ (51 2)7 (3’ 1)7 (8’ 2)’ (6? 1)’ (2, 2)! (9’ 1)’ (11 2)’ (8’ 1)7 (47 2)7 (2’ 1)’
(71 2)’ (5’ 1)’ (91 2)’ (4’ 1)! (3’ 2)7 (71 1)’ (6’ 2))'

Now we have Q(9) = {0,1,2,3,4}, and Q(Kyp \ F) contains {0,12}.
We repeat the above twice more, using {(3,2) | 1 < ¢ < 9}, and then
{(#,3) | 1 < <9}. We have left the three 1-factors from the three lots of
Ky 9. These form one further 2-factor, either with no 6-cycles, as in

{((m,1),(m,2),(m,3)) | 1<m <9},
which has nine triangles, or with four 6-cycles and one triangle, as in

{((1,1),(1,2),(2,3),(2,1),(2,2), (3,3)),

((3,1),(3,2),(4,3),(4,1),(4,2), (5,3)),
((5,1),(5,2),(6,3),(6,1),(6,2),(7,3)),

((7,1),(7,2),(8,3),(8,1),(8,2),(9,3)), ((9,1),(9,2),(1,3))}.

In the former case the three 1-factors are
{{tm,1),(m,2)} | 1 <m <9}, {{(m,2),(m,3)} | 1<m <9},
{{(m,1),(m,3)} |1 < m < 9}.
In the latter case the three 1-factors are taken as: ‘
{(m,1),(m,2)} |1<m <9}, {{(m,2),(m+1,3)}|1<m<9},
and

{{(1,1),3,3)},  {(2,1),(2,3)}, {(3,1),(5,3)}, {(4,1),(4,3)},
{(5,1),(7,3)},  {(6,1),(6,3)}, {(7,1),(9,3)}, {(8,1),(8,3)},
{(9,1),(1,3)}}-
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In any case, the total number of 6-cycles that may be obtained in a 2-
factorization of K3 in this manner is

3+{0,1,2,3,4) + 3% {0,12} + {0,4} = {0,1,2,...,52} = FC(27),

as required. o

LEMMA 4.5 Q(24k + 3) = FC(24k + 3) = {0,1,2,...,(12k + 1)4k} for
all integers k > 1.

Proof Here n = 12(2k) + 3; we use Construction II with ¢ = 3. We
have @(27) = FC(27) from Example 4.4. Then Corollary 2.4, together with
Example 4.4 and order 51 from Lemma 4.1, gives Q(24k +3) = FC(24k+3)
as required. (]

|n‘=‘5(mod 24)|

EXAMPLE 4.6 Q(29) = FC(29) = {0,1,2,...,56}, and two 2-factors
in each 2-factorization contain a sub-2-factorization of K5 on five fixed
vertices.

Construction III (and Corollary 2.6) show that {28,29,...,56} C Q(29).
The next construction yields the lower numbers of 6-cycles.

Let K29 have vertex set {oo; | 1 <1 < 5}U{(3,5) |1<i<3,1<5<8}.
We have Q(K3s,s) 2 {0,4,8} (see the Appendix). We also have a special
case of K3 with two of the six 2-factors containing a sub-2-factorization of
Ks, together with either a cycle of length 8, or two cycles of length 4. So
this special 2-factorization of K3 contains 0+0+4x* {0,1} = {0, 1, 2,3,4}
6-cycles.

Now we take a 2-factorization of K13 on {o0; |1 <i<5}U{(1,5)|1<
j < 8} (with of course a sub-2-factorization of K5 on {oo; | 1 < i < 5}),
and a 2-factorization of Kgg on {{(2,5) |1<j <8} {(3,5)|1<j<8}},
which has four 2-factors.

We save the two special 2-factors of K3, and place the other four 2-
factors with those of Kjgg.

Repeat this three times altogether: we may then obtain a total of 3 x
4+ 2 = 14 2-factors, as required. (The two extra come from the two
2-factors in each K3 with the sub-2-factorization of K, which is included
just once.) We thus obtain

3+{0,1,2,3,4} + 3% {0,4,8} = {0,1,2,...,36)
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6-cycles. This completes the result Q(29) = FC(29). O

LEMMA 4.7 Q(24k + 5) = FC(24k + 5) for all integers k > 1.

Proof Here n = 12(2k) + 5; we use Construction II with ¢ = 5. We
have Q(29) = FC(29) from Example 4.6. Then Corollary 2.4, together with
Example 4.6 and order 53 from Lemma 4.1, gives Q(24k+5) = FC(24k+5)
as required. a

In'='7 (mod 24)|

EXAMPLE 4.8 Q(31) = FC(31) = {0,1,...,60}, and three 2-factors
in each 2-factorization contain a sub-2-factorization of K7 on seven fixed
vertices. Corollary 2.6 shows {28,29,...,56} C Q(31), and the Appendix
gives {57,58,59,60} C Q(31).

We now show that {0,1,...,54} C Q(31), which will complete the ver-
ification that Q(31) = FC(31).

Let the vertex set be X UAUBUC where X = {z; | 1<i< 7}, A=
{(LNI1<j<8}L, B={(2,j)I1<j<8},and C={(3,7)|1<j <8}
Then a decomposition is taken as follows:

(i) K15 on XU A, with Kg,g on {B, C};
(ii) K15 \ K7 on X U B, with Kgg on {A, C},
(iii) K15 \ K7 on X U C, with Kgg on {4, B}.

Note that Kg g contains four 2-factors, and these may contain {0,1,...,
8} 6-cycles. Also K5 contains seven 2-factors, and we have a 2-factorization
with a sub-2-factorization of K7, so with three of the seven 2-factors con-
taining 2-factors of X. Thus the K5 or K5 \ K7 contains {0,1,...,8}
6-cycles (This is 0, 1 or 2 in each of the four 2-factors having no edge in
X).

Let the various 2-factors in the parts of the decomposition be as follows:

(1) {Fai |1 <1< 7} for K15 on XUA; {Fpci |1 <i <4} for Kgg on
{B.C}.

(ii){FBi= ’B,-UFI’;,-]15i53}U{FB.-|4_<_i57},forK150nXUB,
where Fg,; is on B and Fg; ison X; {Faci |1 < i <4} for Kz on {A,C}.
(iii) {Foi = FG;UFE; |1<i<3}U{Fci|4<i< 7} for K15 on XUC,
where F{,; is on C and Fg; ison X; {Fapi | 1 < i < 4} for Kgg on {4, B}.

238



Then the final fifteen 2-factors for K3; are:

(FaUFpUFS, |10 <3}, {Fages)UFsci|1<i<4),
{Fi+s) UFaci|1<i<4}, {Fcouss)UFapi|l1<i<d),

and these may each contain (respectively) the following numbers of 6-cycles:
{0,1,2}, {0,1,2}+{0,1,2}, {0,1,2}+ {0,1,2}, {0,1,2}+{0,1,2}.

Hence 3% {0,1,2} +12%{0,1,2,3,4} C Q(31), or {0,1,2,...,54} C Q(31).
This completes the case of order 31. O

LEMMA 4.9 Q(24k+ 7) = FC(24k + 7) for all integers k > 0.

Proof Here n = 12(2k) + 7; we use Construction II with ¢ = 7. We
have Q(31) = FC(31) from Example 4.8. Then Corollary 2.4, together with
Examples 4.8 and order 55 from Lemma 4.1, gives Q(24k+7) = FC(24k+7)
as required. o

kz =11 (mod 24) |
EXAMPLE* 4.10 Q(11) =FC(11) = {0,1,...,5}.

EXAMPLE 4.11 Q(35) = FC(35), and five 2-factors in each 2-
factorization contain a sub-2-factorization of K; on eleven fixed vertices.
We use an ad hoc construction here. Take the vertex set {oo;,002} U
AUBUC where A = {a; |0 < i <10}, B={b;| 0 < i< 10} and
C={ci|0<1i<10}.

First, a decomposition of K35 is given by:

(1) K11 on vertex set A, with K212 on vertex set B U {001}, C U {002},
and

(ii) K11 on vertex set B, with K312 \ {001,002} on vertex set AU {002},
CU {001}, and

(iii) K11 on vertex set C, with K312 \ {001,002} on vertex set AU {001},
Bu {002}

From Example 3.1, we have {0,6,12,18,24} C Q(Ki2,12)- And a 2-
factorization of K22 contains six 2-factors, while a 2-factorization of K;;
contains five 2-factors. From (i), we have five 2-factors of K;; on vertex set
A, together with five (of a possible six) 2-factors of K2,12 with vertex set
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{BU {o01},C U {002}}. From (ii), we have five 2-factors of K1, on vertex
set B, together with five 2-factors of Kj3,12 with vertex set {AU{o02},CU
{o01}} (leaving out the 2-factor containing the edge {003, 002}). Similarly,
from (iii), we have five 2-factors of K; on vertex set C, together with five
2-factors of K3,12 with vertex set {AU {001}, BU {002}} (leaving out the
2-factor containing the edge {c0;,002}). This makes a total of 15 2-factors
of K35, containing

3% Q(11) + 3% {0,4,8,12,16,20} = {0,1,2,...,75} 6-cycles.

There remain two more 2-factors, to be formed from a 2-factor on {B U
{001}, CU{02}}, and 2-factors with {oo;, 002} removed, on {AU{o02},CU
{o01}} and on {A U {00;}, BU {002}}.

Note that we may choose the 2-factor left from (i) above, as well as the
paths (2-factors minus edge {o0;,002}) left from (ii) and (iii). For five or
ten 6-cycles in the last two 2-factors of K35, we start with the 4-cycles (with
edge {001,002} only once):

(1) (mh 002’b0)00)$ (bi,Ci, bi+l’ci+l)1 1=1,3,5,7,9;
(“) (001, 002, Cg, aO)) (ai)cia Qi+1, ci+l)a i= 113,5’ 7) 9;
(u') (001, 002, aO)b0)7 (aisbi:ai+labi+l)1 i= li 31 5v 7) 9.

These reassemble into the last two 2-factors for K35: we have Ky on
{ao,bo,co,001,002} and five lots of K222 on {{ai,air1}, {bi,bis1},
{cisci+1}}, ¢ = 1,3,5,7,9. Since Ky 22 has a 2-factorization with either
one 6-cycle and two triangles, or else two 6-cycles (see Lemma 2.5), this
gives 5 or 10 6-cycles in these 2-factors of K3s.

For no 6-cycles at all in these last two 2-factors, we start with a different
2-factor in case (ii), namely

(“)l {(001, 002, Co, aO)) (01,03, az, C4), (03,65, a4, cﬁ)’
(as, c7,a6,c8), (a7, co, a3, C10), (ag, 1, a10,¢2)}.

Then (i), (i)’ and (iii) re-form to give two 2-factors of K35 having cycles
of lengths 5, 10, 10, 10 ( so no 6-cycles):

{(a0, bo, co, 002,001), (@1,c¢3, b3, a3, cs, bg, cs, a4, ba, cs),

(a2, b1, 2,010, b10, co, bg, a9, 1, b2), (as,bs,as,c7,b7,a7,c10,08,bs,¢58)}
and

{(aO: Co, OOl,bo, m?)a (ala bh cl’a107b9, C10, blOa ag, C2, b2)7
(0,2,63, b47 as,Ceg, b51 Cs,0a4, b3: 04); (05: ¢y, b8) ay, Cy,as, b’h Csg, dg, bs)}-

Hence Q(35) = {0,1,...,75} + {0,5,10} = {0,1,...,85} =FC(35). O
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LEMMA 4.12 Q(24k + 11) = FC(24k + 11) for all integers k > 0.

Proof Heren = 12(2k)+11; we use Construction IT with e = 11. We have
Q(11) = FC(11) from Example 4.10, and Q(35) = FC(35) from Example
4.11. Then Corollary 2.4, together with Example 4.11 and order 59 from
Example 4.1, gives Q(24k + 11) = FC(24k + 11) as required. 0

5 The case n= 9 (mod 24)

Here we have a different construction which requires fewer big examples.
First we consider the tripartite graph Ky 4 4.

EXAMPLE 5.1 Q(Ky44) 2 {0,4,8).

Let the vertex set be {{1,2, 3,4}, {5,6, 7,8}, {9,10,11,12}}.

0 € Q(Ky,a,4):
(1,5.2,6),(3,11,4,12),(7,9,8,10);  (1,7,2,8),(3,9,4,10),(5,11,6,12);
(1,9,2,10),(3,5,4,6),(7,11,8,12); (1,11,2,12),(3,7,4,8),(5,9,6,10).

4€Q(Kya,4):
(1,5,9,2,6,10),(3,7,11,4,8,12); (1,8,11,2,5,12),(3,6,9,4,7,10);
(1,7,9),(2,8,10),(3,5,11),(4,6,12); (1,6,11),(2,7,12),(3,8,9),(4,5,10).

8¢ Q(K4,4,4):
(1,5,9,2,6,10),(3,7,11,4,8,12); (1,8,11,2,5,12),(3,6,9,4,7,10);
(1,9,7,2,12,6),(3,8,10,4,5,11); (1,7,12,4,6,11),(2,8,9,3,5,10).

EXAMPLE 5.2 Q(9) =FC(9) = {0,1,2,3,4}.

Let the vertex set of Ky be {0,1,2,...,8}.

(i) 0 € Q(9): take a Kirkman triple system of order 9.

(ii) 1 € Q(9): take the 2-factorization

(0,1,2,3,4,5)(6,7,8); (0,2,4,1,6,3,7,5,8); (0,3,1,5,6,4,8,2,7);
(0,4,7,1,8,3,5,2,6).

(iii) 2 € Q(9): take the 2-factorization

(0,1,2,3,4,5)(6,7,8); (0,2,6,3,5,7)(1,4,8); (0,3,8)(1,5,6)(2,4,7);
(0,4,6)(1,3,7)(2,5,8). '

(iv) 3 € Q(9): take the 2-factorization

(0,1,2,3,4,5)(6,7,8); (0,2,4,6,5,7)(1, 3,8); (3,5,1,6,2,7)(0, 4, 8);
(0,3,6)(1,4,7)(2,5,8).

(v) 4 € Q(9): take the 2-factorization

(0,1,2,3,4,5)(6,7,8); (0,2,4,6,1,7)(3,5,8); (1,3,7,2,6,5)(0, 4, 8);
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(1,4,7,5,2,8)(0,3,6). m]

Construction IV

Take K, with n = 24k + 9 on the vertex set {oo} U {(i,5) | 1 <
i £ 6k+2 1< j < 4} Take a Kirkman triple system on the set
{1,2,3,...,6k+3}, and suppose one of its 3k+1 parallel classes is {1, 2, 6k+
3},{3,4,5},{6,7,8},...,{6k,6k + 1,6k + 2}. Now delete the point 6k + 3.
Each parallel class will now contain one block of size 2 and 2k of size 3. For
each such punctured parallel class we do the following:
On the set {0} U {(¢,5) | 1 = 1,2, j = 1,2,3,4}, where {1,2} is the block
of size 2 in the (punctured) parallel class, we take a 2-factorization of Ky,
which contains four 2-factors.
Now for each block {i1,2,%3} in the rest of the parallel class, on the sets
{G1,5) 17 =1,2,3,4} U {(32,5) | § = 1,2,3,4} U {(i3,7) | § = 1,2,3,4}, we
place a 2-factorization of Ky 4,4, which contains four 2-factors.
Doing this for each of the 3k +1 (punctured) parallel classes yields 4(3k+1)
2-factors altogether. Moreover, these 2-factors may contain Q(9) + 2k *
Q(Ka,4,4) or {0,1,2,...,16k + 4} 6-cycles, so we obtain Q(24k + 9) =
{0,1,2,...,(3k + 1)(16k + 4)} = FC(24k + 9).

We record this result as follows.

THEOREM 5.3 Q(24k +9) = FC(24k+9) = {0,1,2,...,4(4k +1)(3k +
1)} O

6 Conclusion

We have now shown:

THEOREM 6.1 There ezists a 2-factorization of K,, n odd, containing
z 6-cycles, where 0 < x < FC(n), and FC(n) is given in the following table.

Ordern  FC(n)

12k+1  {0,1,...,6k(2k - 1)}
12t+3 {0,1,...,(6k + 1)2k}
126+5 {0,1,...,(6k + 2)2k}
12t+7 {0,1,...,(6k + 3)2k}
126+9  {0,1,...,(6k +4)(2k + 1)}
12k +11 {0,1,...,(6k + 5)(2k + 1)}

In other words, FC(n) = Q(n) for all odd n.
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The next problem in this area is the case of K, minus a 1-factor when
n is even; the possible number of 6-cycles awaits counting!

Appendix

Please see http://www.maths.uq.edu.au/~ejb/JCMCCappendix.html or
email a request to ejb@maths.uq.edu.au.
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