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Abstract

We give a necessary and sufficient condition of Hall’s type for
a family of sets of even cardinality to be decomposable into two
subfamilies having a common system of distinct representatives. An
application of this result to partitions of Steiner Triple Systems into
small configurations is presented.

1 Introduction

A family of sets A = {A;, As,..., A2n} i8 halvable if it is possible to split
A into two subfamilies of cardinality n each having a common system of
distinct representatives. Thus A is halvable if there exists a family B =
{Bi1,B2,...,B2,} 80 that B; C A;,|Bi] = 1,4 = 1,...,2n, and for each
i,1 < i < 2n, there exist exactly one j,1 < j < 2n,j # i, so that B; = B;.
Further, a family A = {A,...,A2n—1} of an odd cardinality is halvable
if one can halve the family C = {Ci,...,Can}, where C; = A; U {z} for
i=1,...,2n — 1 and Cs, = {z}, = being a new element.

The problem of characterizing halvable families of sets can be seen as a
?dual” problem to characterizing pairs of families of sets having a common
system of distinct representatives. For various generalizations and modifi-
cation of the latter problem see (6] and [5].

A family A = {A;;i € I} of subsets of a set S is often represented by a
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bipartite graph G where one part is formed by the index set I and the other
by S, and iz is an edge of G if = € A;. In the language of graph theory, A
is halvable if there exists a factor F of G so that the degree degp(v) = 2
for all v € I, and degp(v) =0 or 1 for all v € S. It follows from a result in
[2] that a decision problem whether G contains the factor F can be decided
in a polynomial time. However, as far as we know, no characterization of
graphs possessing such a factor has been given so far.

As the main result of this paper we give a necessary and sufficient condition
of Hall’s type for a family of sets to be halvable. Further, it will be shown
that the condition cannot be relieved. A deficient version of the result is
provided as well.

In the second part of the paper we show how it is possible to apply the above
result to partitioning Steiner triple systems into some small configurations.

2 Halving a family of sets

In this section we provide a necessary and sufficient condition for a family
of sets to be halvable.

Let Jy, ..., Jt be sets forming a partition P of {1,...,2n} so that |J;| is odd

fori=1,...,t — 1, and there are no restrictions on J;, we admit also J, = .

Then the family of sets A* = {4],..., A}}, where A} = | Aj,i=1,..,t,
JES;

will be called a reduction of the family A = {A,, ..., A2,} associated with

the partition P.

2.1 Characterization of halvable families

Theorem 2.1 A family A = {Ay,..., A2} is halvable if and only if for
any reduction A* = {A}, ..., At} of A it holds

) 4zl > > M (1)

i=1
Proof. First we show the necessary part of the statement. Set N =

{1,...,2n}. Suppose that A is halvable, and B = {B, ..., B2, } is a transver-
sal of A. That means, |B;| = 1,B; C A;,i € N, and for each i € N there
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exists exactly one j € N,i # j, so that B; = B;. Let A* = {A},..., Al}
be a reduction of A associated with a partition P of {1,...,2n} into ¢
parts Ji, ..., J;. To show that A satisfies (1) it suffices to show that B* =
{B%,...,Bt}, a reductlon of B associated with the same partition P, satis-

fies (1) since | U Afl2 > | U B?la. As |Ji|, i = 1,...,t — 1, is odd there is

at least one j € J, so that the mate B; of B; is off B}, i.e., By = B; and
l ¢ J;. Hence, there are at least t — 1 sets B; with then' ma.tes belonging to
a different set of B* than B;. Let B; = {z}. If the mate of B; belongs to

t-1
Bj,s <t—1, then z € (|J Bf)2. Since at most |J¢| of these B}s have their
i=1

t-1
mates in By, 2| | Bf|2+|J:| 2t — 1, and (1) follows.
i=1

Given a family A = {4,,...,A2,}. Set U = U A;. To prove the sufficiency

of (1) consider a bipartite graph H = (N, U E), where i € N,z € U are
joined by an edge, i.e., iz € E if z € A;. Construct a new graph G by
substituting each vertex = € U by a set V; = {3, ...,24}, where the vertex
zj,j = 1,2, is joined with a vertex i € N iff iz € E, zjzm,j =1,2,m = 3,4
and z3z4 are edges of G, that is, for the subgraph of G induced by V,, it is
[Vm] = K4 - Z1T9.

It is easy to check that A can be halved iff G has a 1-factor. Suppose for
the sake of contradiction that (1) is satisfied for any reduction of A but G
does not have a 1 -factor. By Tutte’s theorem there is a cutset S so that
the number of odd components of the graph G — S is bigger than |S|. We
construct a cutset §’ C S as follows. If, for some z, only one of the two
vertices ; and z, is in S then we remove the vertex from S. Further, if
there are in S vertices x3 and/or z4 for some x € U, we remove them from
S. Denote the obtained subset of S by §’. It is easy to check from the
definition of the graph G that S’ is also a cutset of G, and the number of
odd components of the graph G— S’ is bigger than |S’| . Moreover, from the
construction of §’, if C is an odd component of G — §’, then |[V(C) N N|
is an odd number. Let C),...,Ci—1 be all odd components of G. Consider
a reduction of A, A* = {4},..,At}, A = | Aj, where J; = V(Ci))NN
J€Ji
fori=1,..,t—2,J;-1 = (V(Ci—1) NN)U{j, j € N, j belongs to an even
component of G — S'}, and finally, j € J; if j € §' N N. Clearly, |J;| is odd

t—1
for i = 1,...,t — 1. Moreover, if z € (|J Af)2 then both z; and z; are in
i=1
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S, thus

t-1 , _
| g1 < OG-0 @
i=1

However,

t—1>|9=|8NN|+15'N(V(G) - N)| = || + |8 n(V(G) — N)]|,

ie.,
!
- t—1-—
15’ N (V(2G) Ml . 12 | el @)
Combining (2) and (3) we arrive at contradiction as we assumed that any
reduction of A satisfies (1). 0

2.2 Independence of (1) for distinct reductions

To verify Theorem 1 it is not necessary to verify the condition (1) for those
reductions A* where t — 1 — |J;| < 0 as in this case (1) is trivially satisfied.
However, it is not possible to simplify Theorem 1 any further as (1) is
independent for all other reductions. To demonstrate this we will give an
example where (1) fails for only one reduction given in advance.

Example. Let Jj,...,J; form a fixed partition P of {1,...,2n} so that
|Ji| is odd, ¢ = 1,...,t — 1, and t — 1 — |J¢} > 0. We construct a family
A = {A,..., A2n} which satisfies (1) for all reductions but the reduction
A* = {A}, ..., At} associated with the partition P.

Let A},i € {1,...,2n} — J, be sets so that (a) if %, j belong to the same set
of P then A} = Aj; (b) if 4, j belong to different sets of P then A;NA) =
(c) |A}] = 2n. Now we are ready to construct the family A = {A,,..., A2n}.
Let K be a set so that KN|J A, = 0 and |K| = 1-1_;I£l — 1. Then, for
’L¢ Jt, Ai=A2UK, and, fori € J;, A; = U A_,'.

ig¢Je

Clearly, A* does not satisfy (1) as ‘ U A“ K| < ——l'lﬂ It is not

difficult to check that (1) is satisfied for all other reductions A**of A. To
see this it suffices to note that |4; U A;|, > 2n for 4,j from the same part
of P and for i ¢ J;, j € J;. Hence, for any partition P’ of {1,...,2n} into ¢/
sets Ji,..., Jj; where the above mentioned ¢ and j belong to different sets

t'=1 ’
U A > [A:UA4jl, > 2n > B850 g5 the
2

8=1

J)y 8 <t —1 we have
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number t’ of parts of any partition of {1,...,2n} is at most 2n. Further, if
P’ is obtained from P by adding another element of {1, ...,2n} to J;, then
the value of right-hand side of (1) is decreased by at least 1, as well as for a
partition P’ obtained by merging sets of P but in both cases the left-hand
part of (1) is at least | K|, thus (1) is satisfied. 0O

2.3 Deficiency

Given a family of sets A = {A;,...,A2,}. If A is not halvable then it is

desirable to know what is the largest subfamily of \A which can be halved.
t—1

For a reduction A* = {A},...,A}} of A, define def(A*) = —|U Af| +

i=1 2

ﬂ?ﬂ, and call this number the deficiency of .A*. An answer to the above

mentioned question is given by:

Theorem 2.2 Let A = {Ay,..., A2} be a family of sets. Then there exist
a halvable subfamily A',|A’| = 2n— 2k, of A if and only if k > def(A*) for
all reductions A* of A.

Proof. Consider a family B = {By,...,Ban}, Bi = A; UK,i = 1,...,2n,
2n
where K is a set of k new elements, ie., |K| = k, K N(J 4) =0. It is

=1
obvious that there is a halvable subfamily A’ of A, |A'| = 2n — 2k, if and
only if B is halvable. Thus we need to show that B is halvable if and only
if k > d = maxdef(.A*), where the maximum runs over all reductions A*

of A.

Let k > d. Consider a reduction B* = {Bj,...,Bf} of B associated with
a partition P of {1,...,2n}, and A* = {A4},...,A;} be a reduction of A
associated with the same partition P. For ¢t = 2 there is nothing to prove
since in this case t — 1 — |J;| <0 as |J;| > 0. For t > 3,

t—-1
UB; UA" +k> UA: +def(A*)
i=1 i=1 i=1 2
t—-1
* * IJtI t—1- lJtl
A} A; + .
- |G| -0 4] 2

Thus B is halvable. On the other hand, let B be halvable. Then, for any
reductions A*, B* associated with a partition P of {1,...,2n} into ¢ parts
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J1y ey Jt, t > 2 (again, the case t = 2 is trivial, as in this case def(A*) < 0),

it is -
i=1 2 i=1
t—1 t—1 | il t—1
=4 - UAi +—— U 4;| +def(a),
i=1 2 i=1 i=1 2
hence k > def(.A*) which in turn implies k& > d. (]

3 Partitioning Steiner Triple Systems

Steiner triple system of order v, STS(v), is a pair (V, B), where V is a v-set
and B is a collection of 3-subsets of V' , called triples, such that every 2-
subset of V is contained in exactly one triple of B. It is well known that an
STS(v) exists iff v = 1,3(mod6). If in the definition of an STS we replace
"exactly” with "at most” we have a partial triple system. In this paper we
use the term ”k-configuration” to describe a partial triple system with k
triples. A Steiner triple system S = (V, B) is said to be decomposable into
copies of a k-configuration T if either the set B of triples, or a set of triples
B from which less than k triples have been deleted, is decomposable into
copies of T (this definition abuses slightly the standard language because,
when k > 0, the word packing would be more appropriate).

The interest in decomposing Steiner triple systems into configurations has
been triggered by a conjecture due to Fiiredi. For the formulation and
partial results on the conjecture see [7] and [4]. As a matter of fact a question
along this line has already been considered by Brown, Erd6s and Sés [9]and
subsequently by Ruzsa and Szemerédi in their celebrated paper [8].

We deal in this paper only with 2-configurations. There are two of them. A
2-configuration called the bow-tie comprising two intersecting triples and a
2-configuration comprising two disjoint triples called 2 -parallel configura-
tion, shortly 2-PC. The interested reader can find in [4] also results dealing
with decompositions of Steiner triple systems into all five 3-configurations
as well as k-configurations comprising k triples intersecting at the same
point or k pairwise disjoint triples. It has been shown:

Theorem 3.1 [4/(i) Any STS(v) can be decomposed into bow-ties. (ii)
Any STS(v), v # 7,9, can be decomposed into 2-PC.
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In fact there are in [4] two different proofs of the part (i). Another proof of
(i) can be found in [1]. However, the argument employed to prove (ii) differs
from the main idea in all of these three proofs of (i). As an application
of the result on halving families we show that it allows to prove (i) and
(ii) as a consequence of the same result. This also suggests that finding
a sufficient condition for splitting a family of sets into three subfamilies
having a common system of distinct representatives might be a possible
way how to tackle Fiiredi’s conjecture.

Proof of Theorem 8. Let S = (V,B) be an STS(v) and C be a 2-
configuration. Then |B| = ﬂ"s—“lz = n. Denote T3, ...,T, the triples of B.
Clearly, the total number of 2—configurations in S is (3). Let m be the
number of those 2-configuration of S which are isomorphic to the configu-
ration C. (A surprising result by Grannel, Griggs and Mendelhson (3] says
that if C is a k-configuration where & < 3, then the number m does not
depend on the choice of Steiner triple system S but only on C.) Denote the
2-configurations of triples of S isomorphic to C by C4,...,Cm. Consider a
family A(S, C) = {Ay, ..., An} of subsets of {1,...,m}, where j € A; iff the
triple T; is in Cj. Clearly, each number from {1,...,m} occurs in exactly 2
sets of A, and |4;| = |A4;] for 1 < 4,j < n. It is easy to see that the Steiner
triple system S can be decomposed into 2-configuration C if and only if
the family A(S, C) can be partitioned into 3 subfamilies A1, A3, A3 so that
|A1] = |A2|,]As| < 1 such that the subfamilies A;, A; have a common
system of distinct representatives. Indeed, if ¢ is an element of a common
system of distinct representatives chosen from sets T; € A;,i = 1,2, then
the triples of S corresponding to T;'s make up a copy of the configuration
C. On the other hand, let triples T}, T3 form a copy of C in a decomposition
of S into C. Then we construct a partition of .A(S, C) into A, A3, A3 so
that the sets of A(S, C) corresponding to T}s belong to different subfamilies
Ay, A2 and a triple of S, if any, which is not in any copy of C, is put into
Aa.

To simplify the proof, in the case that |B| = -'%'—H is odd we remove
from A(S, C) an arbitrary set (=triple). By A'(S,C) and B’ we will mean
either the original .A(S, C) and B or A(S, C) and B with the triple removed,
respectively. Thus we need to show that .A’(S, C) is halvable. By Theorem
1, A'(S,C) is halvable if any reduction of A'(S,C) satisfies the condition
(1). Consider a reduction of A'(S,C}, A* = {A},..., A7}, associated with
a partition P of {1,...,2n} into ¢ sets Jj, ..., J;. We remind the reader that
each set of A’(S,C) corresponds to a triple of B and we will sometxmes
abuse the language and say a triple A;, triples from A"‘ etc. Fors=1,.

denote by V;, the subset of V where z € V belongs to V, if there is a trnple
T in Aj; so that z € T. Thus, |V;| 2 3,8 = 1,..,t — 1, and |V;| = 0 or
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Vil > 3.

We prove (1) by induction with respect to t. For t = 2, |J] is odd, that is,
|J2| > 0, and we are done as %&l = 1——12131 < 0. For t =3, (1) is again
trivially satisfied if |J3| > 0 as then |J3| > 2. Otherwise, for |J;| = 0, it is
sufficient to show that

|A7 U A3, 2 1. 4)
Obviously, A} and A3 form a partition of B’. It is not difficult to see that,
for v > 7, there are triples T € A},T; € A} of B’ sharing a point, i.e., (4)
is satisfied for C being the bow-tie; for v > 13, there are disjoint triples
T € A}, T € A3, ie., ( 4) is satisfied also for C being 2-PC.

—1
Now suppose that ¢ > 3. If there is an ¢ € | U Aj|2 we construct a new

reduction A** of A(S, C) associated with a partltlon P’ of {1,..,2n} into
t — 2 sets, as follows: Let the sets containing ¢ be in A} and A;,1 <
s<r<t—1andlet g <t—1,8 # q # r. Then A** = {A}*,i € I},
where I = {1,...,t} — {s,7}, A?* = A} for i € {1,..,, t} — {s,7,q} and
A3* = A7 U A; U 4j. By the induction hypothesis applied to A™* we get

t—-1

. t=3—1|%| t—1—|%
UA|,>|UA‘|+1> 2 +tl=—p
i=1 i€l

and we are done.

Now let | U Atla = 0. We show that then t — 1 — |J;| < 0, hence (1) is
trivially satxsﬁed

First we consider the case when C is the bow-tie. Then the sets V3,...,V;_;
are pairwise disjoint. As |[V;| > 3,s=1,...,t -1, it is v > 3(¢ — 1). Hence,

if {z,y} is a pair of elements of V' which do not belong to the same set
Vs, 8 < t — 1, then the triple of B’ containing both of them is in A}. Thus,

(v) z:r-'l IV‘I)

|Je| = -1

A routine calculus exercise gives that maximum of Z ('V ) is attained in

the case when one of V3,1 < s <t—1, has ca.rdma.hty v—3(t —2) and
the other Vs have cardinality 3. We get

()= () -@-2Q) | _6ut-2)-9¢-22-6¢-2)

|7l 2 3 6
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_(t-2)(2v-3t+4) (t—2)(3t -2) _

2

as v > 3(t — 1). Thus, for the right-hand side of (1) it is M
=ﬁﬂ'5‘—- < 0 for t > 3, and also in this case (1) is satisfied.

—-1> 1=15t2—4t+1

Suppose now that C is the 2-PC. In this case the condition | U All2=0

means that if 77 and T, are two disjoint triples of B’ then at least one
of them is from A} or there is an 3,1 < s < t — 1, so that both 7} and
T> belong to A}. Set M = xgneag_cl{s, 1<s<t-1,z€V,}|. Since we have
t > 3, it follows that M > 2. Let z € V occursin M of sets V,, 8 =1, ...,1—1.
If M > 4, then any triple of B’ not containing z has to belong to A}. Since
there are in B’ at most 252 triples containing z, it is |J,| > (M 1)1
andt—1 < 251, Hence also in this case t—1—|J;| < O forv > 13.If2 < M <
3,thent—-1 < M + 4 < 7 as there are at most 4 triples not containing z,
having pairwise non-empty intersection and, at the same time, intersecting
three (two) fixed triples containing z , these seven triples constitute a Fano
plane. For M =4 it ist — 1 =4 and at most 4 triples not containing z do
not belong to J;. Thus, for 2 < M < 4, |J;| > 3(”6—"11 —1-(%t+4)as 4]
has to contain all triples without = with the possible exception of the four
triples, and t —1 < 7. Weget £ —1 — |J;| < —v%2 +4v + 75 < 0 for v < 13.
O
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