(2, C)-ordered path designs P(v, 3, 1)

Elizabeth J. Billington*

Centre for Discrete Mathematics and Computing
Department of Mathematics
The University of Queensland
Queensland 4072, Australia
ejb@maths.uq.edu.au

Gaetano Quattrocchi †
Department of Mathematics
University of Catania
viale A. Doria 6
95125 Catania, Italy
quattrocchi@dipmat.unict.it

ABSTRACT. Let C be the underlying graph of a configuration of l blocks in a path design of order v and block size 3, (V, \mathcal{B}) . We say that (V, \mathcal{B}) is (l, C)-ordered if it is possible to order its blocks in such a way that each set of l consecutive blocks has the same underlying graph C. In this paper we completely solve the problem of the existence of a (2, C)-ordered path design P(v, 3, 1) for any configuration having two blocks.

1 Introduction

Let K_v be the complete undirected graph on v vertices and let G be a subgraph of K_v with no isolated vertices. A G-design of K_v is a pair (V, \mathcal{B}) , where V is the vertex set of K_v and \mathcal{B} is an edge-disjoint decomposition of K_v into copies of the graph G. Usually we say that \mathcal{B} is a block of the G-design if $B \in \mathcal{B}$, and \mathcal{B} is called the block-set.

A balanced G-design [4, 6] is a G-design in which each vertex belongs to the same number of copies of G. A K_k -design is well-known as a bal-

^{*}Research supported by Australian Research Council grant A69701550

[†]Supported by MURST and GNSAGA of CNR Italy

anced incomplete block design of order v and block-size k; this is of course balanced in the G-design sense.

A path design P(v, k, 1) [4] is a P_k -design of K_v , where P_k is a simple path with k-1 edges and k vertices, written as $[a_1, a_2, \ldots, a_k] = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}.$

Clearly a path design P(v,2,1) (V,\mathcal{B}) exists for every $v\geq 2$ and it is always balanced. Hung and N.S. Mendelsohn [6] proved that a balanced path design P(v,2h+1,1) $(h\geq 1)$ exists if and only if $v\equiv 1\pmod{4h}$, and a balanced path design P(v,2h,1) $(h\geq 2)$ exists if and only if $v\equiv 1\pmod{2h-1}$. Tarsi [7] proved that the necessary conditions for the existence of a P(v,k,1), namely $v\geq k$ (if v>1) and $v(v-1)\equiv 0\pmod{2(k-1)}$, are also sufficient.

A configuration on p points and l blocks in a G-design (V, \mathcal{B}) is a pair (P, \mathcal{L}) , where $P \subseteq V$, |P| = p, $\mathcal{L} \subseteq \mathcal{B}$, $|\mathcal{L}| = l$ and $x \in P$ if and only if x is a vertex of at least one block of \mathcal{L} .

The underlying graph of a configuration (P, \mathcal{L}) is the subgraph C of K_v having P as vertex-set and such that e is an edge of C if and only if e is an edge of some block of \mathcal{L} . An ordered G-design is a G-design (V, \mathcal{B}) which has the blocks in \mathcal{B} ordered by a 1-1 mapping: $f: \mathcal{B} \to \{1, 2, \ldots, |\mathcal{B}|\}$.

From now on we suppose that the blocks of an ordered G-design are always written in an ordered fashion, i.e. $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ means that $f(B_i) = i$ for $i = 1, 2, \ldots, n$.

Definition 1. We say that an ordered G-design is (l, C)-ordered if each set of l consecutive blocks has the same underlying graph C.

Example 1: Let G be a path P_3 and $V = \mathbb{Z}_5$. Let C be the underlying graph of the configuration (P,\mathcal{L}) where $P = \{0,1,2,3\}$ and $\mathcal{L} = \{[0,1,2],[0,3,1]\}$. Put $\mathcal{B}_1 = \{[2,0,4],[0,1,3],[1,4,3],[1,2,4],[2,3,0]\}$ and $\mathcal{B}_2 = \{[0,1,4],[1,3,4],[1,2,4],[2,3,0],[4,0,2]\}$. It is easy to see that (V,\mathcal{B}_1) is not (2,C)-ordered, but if we order the blocks of \mathcal{B}_1 in the following way $\mathcal{B}_1 = \{[0,1,3],[1,4,3],[1,2,4],[2,0,4],[2,3,0]\}$ then (V,\mathcal{B}_1) is (2,C)-ordered. It is also easy to check that it is impossible to order the blocks of \mathcal{B}_2 in such a way that (V,\mathcal{B}_2) is (2,C)-ordered.

The idea and the motivation for ordering the blocks of a G-design are given by Colbourn and Johnstone [2]; they investigated how to order the blocks of a simple twofold triple system in such a way that the minimal change property holds, that is, so that each two consecutive blocks share exactly two vertices. In our terminology this problem is equivalent to constructing a (2, C)-ordered twofold triple system where C is the underlying multigraph of the configuration $(\{0, 1, 2, 3\}, \{\{0, 1, 2\}, \{0, 1, 3\}\})$.

Recently many papers have dealt with the problem of decomposing a Steiner triple system into a given small configuration. The seminal paper on this topic is by Horak and Rosa [5]; see also the very interesting survey [3] by Grannell and Griggs for more results and references. Clearly an (l, C)-ordered G-design will be C-decomposable (in the sense of [5]) if and only if l divides the number of blocks in the design.

Let C be the underlying graph of a configuration of two blocks in a Steiner triple system. Theorem 5.1 of [5] proves that any Steiner triple system of order v is exactly (2, C)-decomposable (when the number of blocks in the triple system is even), except for the cases v = 7 or 9 when the two blocks of the configuration are disjoint. The same proof of Horak and Rosa's theorem gives the following stronger result.

Theorem 1. [5] Let C be the underlying graph of a configuration of two blocks in a Steiner triple system. Any Steiner triple system of order v can be (2,C)-ordered except when v=7,9 if the two blocks of the configuration are disjoint.

In this paper we consider the existence problem for a (2, C)-ordered design in the case when G has three nonisolated vertices.

The above theorem gives a complete answer to this problem for $G = K_3$, so only the case $G = P_3$ remains. For l = 2 there are just the following six configurations (we write only the block set, the point set P being straightforward):

$$\begin{split} \mathcal{L}_1 &= \{[0,1,2],[0,3,1]\}; \quad \mathcal{L}_2 &= \{[0,1,2],[3,0,4]\}; \\ \mathcal{L}_3 &= \{[0,1,2],[0,3,4]\}; \quad \mathcal{L}_4 &= \{[0,1,2],[3,4,5]\}; \\ \mathcal{L}_5 &= \{[0,1,2],[3,1,4]\}; \quad \mathcal{L}_6 &= \{[0,1,2],[0,3,2]\}. \end{split}$$

For i = 1, 2, ..., 6, let the underlying graph of \mathcal{L}_i be denoted by C_i . It is easy to see that for i = 5 or 6 there is no $(2, C_i)$ -ordered path design P(v, 3, 1). We study the remaining four cases in the next section.

Note that the most interesting case is the first one; in fact a $(2, C_1)$ -ordered path design P(v, 3, 1) gives a path design P(v, 3, 1) with a minimal change property (see [2]).

2 Main results

We base our constructions on a slight variation of the well-known difference method. Let B = [x, y, z] be a block in a path design P(v, 3, 1) based either on \mathbb{Z}_v or on $\mathbb{Z}_v \cup \{\infty\}$. For $\alpha \in \mathbb{Z}_v$, let $B + \alpha$ be the path $[x + \alpha, y + \alpha, z + \alpha]$ where we suppose that the sum is taken modulo v if $x \in \mathbb{Z}_v$, or is $\infty + \alpha = \infty$ if $x = \infty$. Let $D = \{d_1, d_2, \ldots, d_{2h}\}$ be a set of differences in \mathbb{Z}_v such that $\frac{v}{2} \notin D$ if v is even. Let $\Gamma = \{E_1, E_2, \ldots, E_h\}$ be an ordered set of blocks.

Definition 2. We say that Γ is a (2, C)-ordered set of base blocks using the differences in D if the following conditions are satisfied:

- 1) Each difference in D appears in exactly one block of Γ .
- 2) The blocks of Γ are (2, C)-ordered, that is, each pair of consecutive blocks of Γ gives the same underlying graph C.
- 3) There is an element $\alpha \in \mathbb{Z}_v$ such that $gcd(\alpha, v) = 1$ and C is the underlying graph of the configuration $\{E_h, E_1 + \alpha\}$.

Remark 1: It is easy to check that a (2, C)-ordered set of base blocks Γ gives the following set of (2, C)-ordered blocks $\mathcal{F} = \{F_{\sigma} \mid \sigma = 1, 2, \dots, hv\}$ where $F_{\sigma} = E_{\sigma-jh} + j\alpha$, and where j is the element of \mathbb{Z}_v such that $\sigma - jh \in \{1, 2, \dots, h\}$.

Henceforth the notation F_i will denote blocks defined in the sense of this remark.

Note that if $v \equiv 1 \pmod 4$ then from the existence of a (2,C)-ordered set of base blocks Γ using the differences in $D=\{1,2,\ldots,\frac{v-1}{2}\}$, the existence of a (2,C)-ordered balanced path design P(v,3,1) having $\mathcal F$ as block set follows.

Example 2: Let v=13, $\alpha=3$, $E_1=[0,1,6]$, $E_2=[0,6,4]$ and $E_3=[3,0,4]$. Then $\Gamma=\{E_1,E_2,E_3\}$ is a $(2,C_1)$ -ordered set of base blocks and the set $\mathcal{F}=\{[0,1,6],[0,6,4],[3,0,4],[3,4,9],[3,9,7],[6,3,7],[6,7,12],[6,12,10],[9,6,10],[9,10,2],[9,2,0],[12,9,0],[12,0,5],[12,5,3],[2,12,3],[2,3,8],[2,8,6],[5,2,6],[5,6,11],[5,11,9],[8,5,9],[8,9,1],[8,1,12],[11,8,12],[11,12,4],[11,4,2],[1,11,2],[1,2,7],[1,7,5],[4,1,5],[4,5,10],[4,10,8],[7,4,8],[7,8,0],[7,0,11],[10,7,11],[10,11,3],[10,3,1],[0,10,1]\} is the block set of a <math>(2,C_1)$ -ordered P(13,3,1).

Theorem 2. For each $v \equiv 1 \pmod{4}$ there is a $(2, C_1)$ -ordered balanced path design P(v, 3, 1).

Proof: For v=5,13 the theorem is proved by Examples 1 and 2. For the remaining v it is sufficient to construct a $(2,C_1)$ -ordered set of base blocks Γ using the differences in $D=\{1,2,\ldots,\frac{v-1}{2}\}$.

Case v = 9. Put $\alpha = 8$ and $\Gamma = \{[0, 1, 3], [0, 3, 8]\}$.

Case v = 17. Put $\alpha = 16$ and $\Gamma = \{[0, 1, 6], [0, 6, 4], [0, 4, 7], [0, 7, 16]\}.$

Case v = 5 + 8k, $k \ge 2$. Put $\alpha = 1 + 2k$ and $\Gamma = \{E_1, E_2, \dots, E_{1+2k}\}$, where $E_1 = [0, 1, 3(k+1)]$, $E_2 = [0, 3(k+1), 3k+1]$, $E_{2i+1} = [0, 3k+2-i, 3k+3+i]$, $E_{2i+2} = [0, 3k+3+i, 3k+1-i]$ for $i = 1, 2, \dots, k-1$, and $E_{2k+1} = [1+2k, 0, 2+2k]$.

Case v = 1 + 8k, $k \ge 3$. Put $\alpha = 8k$ and $\Gamma = \{E_1, E_2, \dots, E_{2k}\}$, where $E_1 = [0, 1, 3k]$, $E_2 = [0, 3k, 3k - 2]$, $E_{2i+1} = [0, 3k - 1 - i, 3k + i]$, $E_{2i+2} = [0, 3k + i, 3k - 2 - i]$ for $i = 1, 2, \dots, k - 2$, $E_{2k-1} = [0, 2k, 4k - 1]$ and $E_{2k} = [0, 4k - 1, 8k]$.

Theorem 3. For each $v \equiv 0 \pmod{4}$ there is a $(2, C_1)$ -ordered path design P(v, 3, 1).

Proof: Case v = 4. Put $\mathcal{B} = \{[0, 1, 2], [0, 2, 3], [0, 3, 1]\}.$

Case v = 8. Let $V = \mathbb{Z}_7 \cup \{\infty\}$. Put $\mathcal{B} = \{B_1, B_2, \dots, B_{14}\}$, where $B_1 = [\infty, 0, 3]$, $B_2 = [\infty, 3, 6]$, $B_3 = [\infty, 6, 2]$, $B_4 = [\infty, 2, 5]$, $B_5 = [\infty, 5, 1]$, $B_6 = [1, \infty, 4]$, $B_7 = [0, 4, 1]$, $B_{8+i} = [0, 1, 6] + i$ for $i \in \mathbb{Z}_7$.

Case v=12. Let $V=\mathbb{Z}_{11}\cup\{\infty\}$. Define the following $(2,C_1)$ -ordered set of base blocks $\pmod{11}$ using $\alpha=10$ and $D=\{1,2,3,4\}$: $\Gamma=\{E_1,E_2\}$, where $E_1=[0,1,3]$ and $E_2=[0,3,10]$. Put $B_1=[\infty,1,7]$, $B_2=[\infty,7,2]$, $B_3=[\infty,2,8]$, $B_4=[\infty,8,3]$, $B_5=[\infty,3,9]$, $B_6=[\infty,9,4]$, $B_7=[\infty,4,10]$, $B_8=[\infty,10,5]$, $B_9=[\infty,5,0]$, $B_{10}=[0,\infty,6]$, $B_{11}=[0,6,1]$, $B_{11+i}=F_i$ for $i=1,2,\ldots,22$.

Case v=16. Let $V=\mathbb{Z}_{15}\cup\{\infty\}$. Define the following $(2,C_1)$ -ordered set of base blocks (mod 15) using $\alpha=14$ and $D=\{1,2,\ldots,6\}$: $\Gamma=\{E_1,E_2,E_3\}$, where $E_1=[0,1,6]$, $E_2=[0,6,2]$ and $E_3=[0,2,14]$. Put $B_1=[\infty,0,7]$, $B_{2(j+1)}=[\infty,7-j,14-j]$, $B_{2j+3}=[\infty,14-j,6-j]$ for $j=0,1,\ldots,5$, $B_{14}=[1,\infty,8]$, $B_{15}=[0,8,1]$ and $B_{15+i}=F_i$ for $i=1,2,\ldots,45$.

Case $v=8k,\ k\geq 3$. Let $V=\mathbb{Z}_{8k-1}\cup\{\infty\}$. Define the following $(2,C_1)$ -ordered set of base blocks $\pmod{8k-1}$ using $\alpha=8k-2$ and $D=\{1,2,\ldots,4k-2\}$: $\Gamma=\{E_1,E_2,\ldots,E_{2k-1}\}$, where $E_1=[0,1,3k],\ E_{2i}=[0,3k+i-1,3k-i-1],\ E_{2i+1}=[0,3k-i-1,3k+i]$ for $i=1,2,\ldots,k-2,$ $E_{2k-2}=[0,4k-2,2k-2],\ E_{2k-1}=[0,2k-2,8k-2].$ Put $B_1=[\infty,0,4k-1],\ B_{2(j+1)}=[\infty,4k-1-j,8k-2-j],\ B_{2j+3}=[\infty,8k-2-j,4k-2-j]$ for $j=0,1,\ldots,4k-3,\ B_{8k-2}=[1,\infty,4k],\ B_{8k-1}=[0,4k,1]$ and $B_{8k-1+i}=F_i$ for $i=1,2,\ldots,(2k-1)(8k-1)$.

Case $v=4+8k, \ k\geq 2$. Let $V=\mathbb{Z}_{3+8k}\cup \{\infty\}$. Define the following $(2,C_1)$ -ordered set of base blocks $\pmod{3+8k}$ using $\alpha=2+8k$ and $D=\{1,2,\ldots,4k\}\colon \Gamma=\{E_1,E_2,\ldots,E_{2k}\}$, where $E_1=[0,1,1+2k],\ E_{2i}=[0,2k+i,4k-i+1],\ E_{2i+1}=[0,4k-i+1,2k+i+1]$ for $i=1,2,\ldots,k-1,\ E_{2k-1}=[0,3k,8k+2]$. Put $B_1=[\infty,0,4k+1],\ B_{2(j+1)}=[\infty,4k-j+1,8k-j+2],\ B_{2j+3}=[\infty,8k-j+2,4k-j]$ for $j=0,1,\ldots,4k-1,\ B_{8k+2}=[1,\infty,4k+2],\ B_{8k+3}=[0,4k+2,1]$ and $B_{8k+3+i}=F_i$ for $i=1,2,\ldots,2k(8k+3)$.

Theorem 4. For each $v \equiv 1 \pmod{4}$ there is a $(2, C_2)$ -ordered balanced path design P(v, 3, 1).

Proof: Case v = 5. Put $V = \mathbb{Z}_5$ and $\mathcal{B} = \{[0, 1, 2], [3, 0, 4], [2, 3, 1], [4, 2, 0], [1, 4, 3]\}.$

Case v = 9. Put $V = \mathbb{Z}_9$, $\alpha = 1$ and $\Gamma = \{[0, 1, 5], [2, 0, 3]\}$.

Case v = 13. Put $V = \mathbb{Z}_{13}$, $\alpha = 1$ and $\Gamma = \{[0, 1, 5], [11, 0, 3], [0, 7, 2]\}$.

Case v=5+8k, $k\geq 2$. Let $V=\mathbb{Z}_v$ and put $\alpha=1$ and $\Gamma=\{E_1,E_2,\ldots,E_{1+2k}\}$, where $E_1=[0,1,1+4k]$, $E_{2i}=[4i-2,0,4i-1]$, $E_{2i+1}=[0,4i,8i+1]$ for $i=1,2,\ldots,k-1$, $E_{2k}=[4k-2,0,4k-1]$ and $E_{1+2k}=[0,3+4k,2]$.

Case v = 9 + 8k, $k \ge 1$. Let $V = \mathbb{Z}_v$ and put $\alpha = 1$ and $\Gamma = \{E_1, E_2, \ldots, E_{2k+2}\}$, where $E_1 = [0, 1, 5 + 4k]$, $E_{2i} = [4k - 4i + 6, 0, 4k - 4i + 7]$, $E_{2i+1} = [0, 4k - 4i + 4, 8k - 8i + 9]$ for $i = 1, 2, \ldots, k$, and $E_{2k+2} = [2, 0, 3]$.

Theorem 5. For each $v \equiv 0 \pmod{4}$, $v \geq 8$, there is a $(2, C_2)$ -ordered path design P(v, 3, 1).

Proof: It is easy to see that for v = 4 there is no $(2, C_2)$ -ordered path design P(4,3,1).

Case v = 8. Let $V = \mathbb{Z}_7 \cup \{\infty\}$. Put $\mathcal{B} = \{[0, 1, 3], [1, 5, \infty], [5, 3, 2], [3, 0, \infty], [0, 5, 4], [5, 2, \infty], [2, 0, 6], [0, 4, \infty], [4, 2, 1], [2, 6, \infty], [6, 4, 3], [4, 1, \infty], [1, 6, 5], [6, 3, \infty]\}.$

Case v = 12. Let $V = \mathbb{Z}_{11} \cup \{\infty\}$. Define the following $(2, C_2)$ -ordered set of base blocks (mod 11) using $\alpha = 2$ and $D = \{3, 4, 5\}$: $\Gamma = \{E_1, E_2\}$, where $E_1 = [0, 3, 7]$ and $E_2 = [\infty, 0, 5]$. Put $B_{i+1} = [0, 1, 3] + i$ for $i = 0, 1, \ldots, 10$ and $B_{11+i} = F_i$ for $i = 1, 2, \ldots, 22$.

Case v=16. Let $V=\mathbb{Z}_{15}\cup\{\infty\}$. Let Γ_1 and Γ_2 be the two following $(2,C_2)$ -ordered sets of base blocks (mod 15) obtained using $\alpha=1$, $D_1=\{1,2,3,4\}$ and $\alpha=2$, $D_2=\{5,6,7\}$ respectively: $\Gamma_1=\{E_1,E_2\}$, where $E_1=[0,1,5]$ and $E_2=[2,0,3]$; $\Gamma_2=\{\overline{E}_1,\overline{E}_2\}$, where $\overline{E}_1=[\infty,1,8]$ and $\overline{E}_2=[3,8,14]$. Put $B_i=F_i$ and $B_{i+30}=\overline{F}_i$ for $i=1,2,\ldots,30$.

Case v=20. Let $V=\mathbb{Z}_{19}\cup \{\infty\}$. Let Γ_1 and Γ_2 be the two following $(2,C_2)$ -ordered sets of base blocks (mod 19) obtained using $\alpha=1$, $D_1=\{1,2,\ldots,6\}$ and $\alpha=2$, $D_2=\{7,8,9\}$ respectively: $\Gamma_1=\{E_1,E_2,E_3\}$, where $E_1=[0,1,17]$, $E_2=[5,0,6]$ and $E_3=[0,4,2]$; $\Gamma_2=\{\overline{E}_1,\overline{E}_2\}$, where $\overline{E}_1=[\infty,18,8]$ and $\overline{E}_2=[3,10,18]$. Put $B_i=F_i$ for $i=1,2,\ldots,57$ and $B_{i+57}=\overline{F}_i$ for $i=1,2,\ldots,38$.

Case $v = 8k, k \ge 3$. Let $V = \mathbb{Z}_{8k-1} \cup \{\infty\}$. Let Γ_1 and Γ_2 be the two following $(2, C_2)$ -ordered sets of base blocks $\pmod{8k-1}$ obtained using $\alpha = 1, D_1 = \{1, 2, \dots, 4k-4\}$ and $\alpha = 2, D_2 = \{4k-3, 4k-2, 4k-1\}$ respectively: $\Gamma_1 = \{E_1, E_2, \dots, E_{2k-2}\}$, where $E_1 = [0, 1, 4k-3], E_{2i} = [2k-2i, 0, 2k+2i-3], E_{2i+1} = [0, 2k-2i-1, 4k-3]$ for $i=1, 2, \dots, k-2$ and $E_{2k-2} = [2, 0, 4k-5]$; $\Gamma_2 = \{\overline{E}_1, \overline{E}_2\}$, where $\overline{E}_1 = [\infty, 1, 4k]$ and $\overline{E}_2 = [3, 4k, 8k-2]$. Put $B_i = F_i$ for $i=1, 2, \dots, (8k-1)(2k-2)$ and $B_{i+(8k-1)(2k-2)} = \overline{F}_i$ for $i=1, 2, \dots, 2(8k-1)$.

Case v = 4 + 8k, $k \ge 3$. Let $V = \mathbb{Z}_{3+8k} \cup \{\infty\}$. Let Γ_1 and Γ_2 be the two following $(2, C_2)$ -ordered sets of base blocks (mod 8k + 3) obtained using $\alpha = 1, D_1 = \{1, 2, ..., 4k - 2\}$ and $\alpha = 2, D_2 = \{4k - 1, 4k, 4k + 1\}$

respectively: $\Gamma_1 = \{E_1, E_2, \dots, E_{2k-1}\}$, where $E_1 = [0, 1, 8k+1]$, $E_{2i} = [4i+1, 0, 4i+2]$, $E_{2i+1} = [0, 4i+3, 8i+7]$ for $i = 1, 2, \dots, k-2$, $E_{2k-2} = [4k-3, 0, 4k-2]$ and $E_{2k-1} = [0, 4, 2]$; $\Gamma_2 = \{\overline{E}_1, \overline{E}_2\}$, where $\overline{E}_1 = [\infty, 2+8k, 4k]$ and $\overline{E}_2 = [3, 2+4k, 8k+2]$. Put $B_i = F_i$ for $i = 1, 2, \dots, (8k+3)(2k-1)$ and $B_{i+(8k+3)(2k-1)} = \overline{F}_i$ for $i = 1, 2, \dots, 2(8k+3)$.

Theorem 6. For each $v \equiv 1 \pmod{4}$, $v \geq 9$, there is a $(2, C_3)$ -ordered balanced path design P(v, 3, 1).

Proof: Let $V = \mathbb{Z}_v$. It is easy to see that for v = 5 there is no $(2, C_3)$ -ordered path design P(5, 3, 1).

Case v = 9. Put $\alpha = 1$ and $\Gamma = \{[0, 3, 1], [1, 5, 6]\}.$

Case v = 13. Put $\alpha = 1$ and $\Gamma = \{[0, 7, 2], [2, 5, 1], [1, 12, 11]\}.$

Case v = 17. Put $\alpha = 1$ and $\Gamma = \{[0, 9, 2], [2, 8, 3], [1, 5, 2], [15, 16, 1]\}$.

Case v = 21. Put $\alpha = 1$ and $\Gamma = \{[0, 11, 2], [2, 10, 3], [3, 9, 4], [1, 5, 3], [18, 19, 1]\}.$

Case v = 29. Put $\alpha = 1$ and $\Gamma = \{[0, 15, 2], [2, 14, 3], [3, 13, 4], [4, 12, 5], [3, 9, 4], [1, 5, 3], [26, 27, 1]\}.$

Case v=13+8k, $k\geq 3$. Put $\alpha=1$ and $\Gamma=\{E_1,E_2,\ldots,E_{3+2k}\}$, where $E_1=[0,7+4k,2],\ E_{i+1}=[i+1,4k-i+7,i+2]$ for $i=1,2,\ldots,k+1$, $E_{k+3}=[k+1,3k+3,k+2],\ E_{k+3+i}=[k-i+1,3k-3i+3,k-i+2]$ for $i=1,2,\ldots,k-2,\ E_{2k+2}=[1,5,3]$ and $E_{2k+3}=[10+8k,11+8k,1].$

Case v = 9 + 8k, $k \ge 2$. Put $\alpha = 1$ and $\Gamma = \{E_1, E_2, \dots, E_{2k+2}\}$, where $E_1 = [0, 5 + 4k, 2]$, $E_{i+1} = [i+1, 4k-i+5, i+2]$ for $i = 1, 2, \dots, k$, $E_{k+2} = [k, 3k+2, k+1]$, $E_{k+2+i} = [k-i, 3k-3i+2, k-i+1]$ for $i = 1, 2, \dots, k-1$ and $E_{2k+2} = [8k+7, 8k+8, 1]$.

Theorem 7. For each $v \equiv 0 \pmod{4}$, $v \geq 8$, there is a $(2, C_3)$ -ordered path design P(v, 3, 1).

Proof: It is easy to see that for v = 4 there is no $(2, C_3)$ -ordered path design P(4,3,1).

Case v = 8. Let $V = \mathbb{Z}_7 \cup \{\infty\}$. Put $\mathcal{B} = \{[0, 1, 3], [3, 4, 6], [6, 0, 2], [2, 3, 5], [5, 6, 1][1, 2, 4], [4, 5, 0], [\infty, 3, 0], [\infty, 4, 1], [\infty, 5, 2], [\infty, 6, 3], [\infty, 0, 4], [\infty, 1, 5], [\infty, 2, 6]\}.$

Case v=12. Let $V=\mathbb{Z}_{11}\cup\{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks (mod 11) using $\alpha=1$ and $D=\{1,2,3,4\}$: $\Gamma=\{E_1,E_2\}$, where $E_1=[0,4,1]$ and $E_2=[1,10,9]$. Put $B_i=F_i$ for $i=1,2,\ldots,22$ and $B_{23+i}=[\infty,5,0]+i$ for $i=0,1,\ldots,10$.

Case v=16. Let $V=\mathbb{Z}_{15}\cup\{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks (mod 15) using $\alpha=1$ and $D=\{1,2,\ldots,6\}$: $\Gamma=\{E_1,E_2,E_3\}$, where $E_1=[0,6,1]$, $E_2=[1,5,2]$ and $E_3=[13,14,1]$. Put $B_i=F_i$ for $i=1,2,\ldots,45$ and $B_{46+i}=[\infty,7,0]+i$ for $i=0,1,\ldots,14$.

Case v=20. Let $V=\mathbb{Z}_{19}\cup\{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks $\pmod{19}$ using $\alpha=1$ and $D=\{1,2,\ldots,8\}$: $\Gamma=\{E_1,E_2,E_3,E_4\}$, where $E_1=[0,8,1]$, $E_2=[1,7,2]$, $E_3=[3,5,1]$ and $E_4=[1,17,16]$. Put $B_i=F_i$ for $i=1,2,\ldots,76$ and $B_{77+i}=[\infty,9,0]+i$ for $i=0,1,\ldots,18$.

Case v=28. Let $V=\mathbb{Z}_{27}\cup\{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks (mod 27) using $\alpha=1$ and $D=\{1,2,\ldots,12\}$: $\Gamma=\{E_1,E_2,\ldots,E_6\}$, where $E_1=[0,12,1]$, $E_2=[1,11,2]$, $E_3=[2,10,3]$, $E_4=[3,9,4]$, $E_5=[1,5,3]$ and $E_6=[24,25,1]$. Put $B_i=F_i$ for $i=1,2,\ldots,162$ and $B_{163+i}=[\infty,13,0]+i$ for $i=0,1,\ldots,26$.

Case $v=8+8k, \ k\geq 2$. Let $V=\mathbb{Z}_{8k+7}\cup \{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks $\pmod{8k+7}$ using $\alpha=1$ and $D=\{1,2,\ldots,4k+2\}$: $\Gamma=\{E_1,E_2,\ldots,E_{2k+1}\}$, where $E_i=[i-1,4k-i+3,i]$ for $i=1,2,\ldots,k+1$, $E_{k+i+1}=[k-i,3k-3i+2,k-i+1]$ for $i=1,2,\ldots,k-1$ and $E_{2k+1}=[8k+5,8k+6,1]$. Put $B_i=F_i$ for $i=1,2,\ldots,(2k+1)(8k+7)$ and $B_{(2k+1)(8k+7)+1+i}=[\infty,4k+3,0]+i$ for $i=0,1,\ldots,6+8k$.

Case $v=4+8k, \ k\geq 4$. Let $V=\mathbb{Z}_{3+8k}\cup\{\infty\}$. Define the following $(2,C_3)$ -ordered set of base blocks $\pmod{8k+2}$ using $\alpha=1$ and $D=\{1,2,\ldots,4k\}\colon \Gamma=\{E_1,E_2,\ldots,E_{2k}\}$, where $E_i=[i-1,4k-i+1,i]$ for $i=1,2,\ldots,k+1$, $E_{k+i+1}=[k-i,3k-3i,k-i+1]$ for $i=1,2,\ldots,k-3$, $E_{2k-1}=[1,5,3]$ and $E_{2k}=[8k,8k+1,1]$. Put $B_i=F_i$ for $i=1,2,\ldots,2k(8k+3)$ and $B_{2k(8k+3)+1+i}=[\infty,4k+1,0]+i$ for $i=0,1,\ldots,3+8k$.

Theorem 8. For each $v \equiv 1 \pmod{4}$, $v \geq 9$, there is a $(2, C_4)$ -ordered balanced path design P(v, 3, 1).

Proof: It is easy to see that for v = 5 there is no $(2, C_4)$ -ordered path design P(5,3,1).

Let v = 1 + 4k, $k \ge 2$. Put $\Gamma = \{E_1, E_2, \dots, E_k\}$, where $E_1 = [0, 2, 1]$, $E_i = [2i - 1, 4i - 1, 2i]$ for $i = 2, 3, \dots, k$, and either $\alpha = 8$ if k = 2, or $\alpha = 1$ if $k \ge 3$.

Theorem 9. For each $v \equiv 0 \pmod{4}$, $v \geq 8$, there is a $(2, C_4)$ -ordered path design P(v, 3, 1).

Proof: It is easy to see that for v = 4 there is no $(2, C_4)$ -ordered path design P(4,3,1).

Case v = 8. Let $V = \mathbb{Z}_8$ and $\mathcal{B} = \{[6,4,3], [0,1,2], [7,4,5], [0,2,6], [1,3,5], [4,0,6], [5,1,7], [2,3,0], [6,5,7], [2,4,1], [6,7,3], [2,5,0], [1,6,3], [0,7,2]\}.$

Case v = 4k, $k \ge 3$. Let $V = \mathbb{Z}_{4k-1} \cup \{\infty\}$. Define the following $(2, C_4)$ -ordered set of base blocks $\pmod{4k-1}$ using $\alpha = 1$ and the differences in $D = \{1, 2, \ldots, 2k-2\}$: $\Gamma = \{E_1, E_2, \ldots, E_{k-1}\}$, where $E_1 = [0, 2, 1]$, $E_i = [2i-1, 4i-1, 2i]$ for $i = 2, 3, \ldots, k-1$, and $E_k = [\infty, 0, 2k-1]$. Put $B_i = F_i$ for $i = 1, 2, \ldots, k(4k-1)$.

Remark 2: The P(v, 3, 1) given in Theorems 2, 4, 6, 8, 9 are (2, C)-ordered in a cyclic way, that is, the configuration given by the first and last block also has C as underlying graph.

3 Concluding remarks

The next step in the study of the existence of (l,C)-ordered G-designs could be either to increase the number of vertices of G or to increase l. The latter seems to be more interesting, in particular when $G = K_3$ and $\mathcal{L} = \{\{1,2,3\},\{1,4,5\},\{2,4,6\}\}$. In fact Colbourn [1] pointed out that the solution of this problem has an interesting application to RAID (redundant arrays of independent disks) disk arrays.

References

- [1] C.J. Colbourn, Open problems, Lecture given at University of Catania, December 1999.
- [2] M.J. Colbourn and J.K. Johnstone, Twofold Triple Systems with a Minimal Change Property, Ars Combinatoria 18 (1983), 151-160.
- [3] M.J. Grannell and T.S. Griggs, Configurations on Steiner triple systems, Combinatorial designs and their applications, Research Notes in Mathematics Series (F.C. Holroy, K.L. Quinn, C. Rowley and B.S. Webb, editors), Chapman & Hall CRC, Boca Raton 1999.
- [4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math. 2 (1972), 229-252.
- [5] P. Horak and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria 26 (1988), 91-105.
- [6] S.H.Y. Hung and N.S. Mendelsohn, Handcuffed designs, Aequationes Math. 18 (1974), 256-266.
- [7] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1983), 60-70.