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ABSTRACT. Let C be the underlying graph of a configuration
of ! blocks in a path design of order v and block size 3, (V, B).
We say that (V, B) is (l, C)-ordered if it is possible to order its
blocks in such a way that each set of | consecutive blocks has
the same underlying graph C. In this paper we completely solve
the problem of the existence of a (2,C)-ordered path design
P(v,3,1) for any configuration having two blocks.

1 Introduction

Let K, be the complete undirected graph on v vertices and let G be a
subgraph of K, with no isolated vertices. A G-design of K, is a pair (V, B),
where V is the vertex set of K, and B is an edge-disjoint decomposition
of K, into copies of the graph G. Usually we say that B is a block of the
G-design if B € B, and B is called the block-set.

A balanced G-design [4, 6] is a G-design in which each vertex belongs
to the same number of copies of G. A Kj-design is well-known as a bal-
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anced incomplete block design of order v and block-size k; this is of course
balanced in the G-design sense.

A path design P(v,k,1) [4] is a Pg-design of K, where Py is a sim-
ple path with k — 1 edges and k vertices, written as [a;,a2,...,ax] =
{{alt a2}| {a2) 03}, ey {ak—la ak}}-

Clearly a path design P(v,2,1) (V,B) exists for every v > 2 and it
is always balanced. Hung and N.S. Mendelsohn [6] proved that a bal-
anced path design P(v,2h + 1,1) (h > 1) exists if and only if v = 1

(mod 4h), and a balanced path design P(v,2h,1) (h > 2) exists if and
only if v =1 (mod 2h — 1). Tarsi [7] proved that the necessary conditions
for the existence of a P(v,k,1), namely v 2 k (if v > 1) and v(v - 1) =0

(mod 2(k — 1)), are also sufficient.

A configuration on p points and [ blocks in a G-design (V,B) is a pair
(P,L), where PCV,|P|=p, LC B, |L|=landz € Pifand only if z is
a vertex of at least one block of L.

The underlying graph of a configuration (P, L) is the subgraph C of K,
having P as vertex-set and such that e is an edge of C if and only if e is an
edge of some block of L. An ordered G-design is a G-design (V, B) which
has the blocks in B ordered by a 1 — 1 mapping: f: B — {1,2,...,|B]|}.

From now on we suppose that the blocks of an ordered G-design are

always written in an ordered fashion, i.e. B = {By, Bs, ..., B,} means that
f(By)=ifori=1,2,...,n

Definition 1. We say that an ordered G-design is (I, C)-ordered if each
set of | consecutive blocks has the same underlying graph C.

Example 1: Let G be a path P; and V = Zs. Let C be the under-
lying graph of the configuration (P,£) where P = {0,1,2,3} and £ =
{[0,1,2],[0,3,1]}. Put By = {[2,0,4},[0,1,3],(1,4,3],[1,2,4],[2,3,0]} and
B2 = {[0,1,4},]1,3,4),[1,2,4],[2,3,0], 4,0, 2]}. It is easy to see that (V, B,)
is not (2,C)-ordered, but if we order the blocks of B; in the following
way B; = {[0,1,3},(1,4,3],(1,2,4], [2,0,4], [2,3,0]} then (V,B,) is (2,C)-
ordered. It is also easy to check that it is impossible to order the blocks of
B3 in such a way that (V, Bp) is (2, C)-ordered.

The idea and the motivation for ordering the blocks of a G-design are
given by Colbourn and Johnstone [2]; they investigated how to order the
blocks of a simple twofold triple system in such a way that the minimal
change property holds, that is, so that each two consecutive blocks share
exactly two vertices. In our terminology this problem is equivalent to con-
structing a (2, C)-ordered twofold triple system where C is the underlying
multigraph of the configuration ({0, 1,2,3}, {{0,1,2},{0,1,3}}).

Recently many papers have dealt with the problem of decomposing a
Steiner triple system into a given small configuration. The seminal paper
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on this topic is by Horak and Rosa [5]; see also the very interesting survey
(3] by Grannell and Griggs for more results and references. Clearly an
(1, C)-ordered G-design will be C-decomposable (in the sense of [5]) if and
only if ! divides the number of blocks in the design.

Let C be the underlying graph of a configuration of two blocks in a Steiner
triple system. Theorem 5.1 of [5] proves that any Steiner triple system of
order v is exactly (2, C')-decomposable (when the number of blocks in the
triple system is even), except for the cases v = 7 or 9 when the two blocks of
the configuration are disjoint. The same proof of Horak and Rosa’s theorem
gives the following stronger result.

Theorem 1. [5] Let C be the underlying graph of a configuration of two
blocks in a Steiner triple system. Any Steiner triple system of order v can
be (2, C)-ordered except when v = 7,9 if the two blocks of the configuration
are disjoint.

In this paper we consider the existence problem for a (2, C)-ordered de-
sign in the case when G has three nonisolated vertices.

The above theorem gives a complete answer to this problem for G = K,
so only the case G = P3 remains. For [ = 2 there are just the follow-
ing six configurations (we write only the block set, the point set P being
straightforward):

Ly = {[011’2]$[0$ 3, 1]}; Ly = {[0’1’2]: [3: 0:4]};
L3 = {[0’ 1, 2]’ [0, 3’4]}; Ly= {[Ov 1, 2]: [31 4, 5]};
Ls={[0,1,2],[3,1,4]}; Le=1{[0,1,2],[0,3,2]}.

For i =1,2,...,6, let the underlying graph of £; be denoted by C;. It
is easy to see that for i = 5 or 6 there is no (2, C;)-ordered path design
P(v,3,1). We study the remaining four cases in the next section.

Note that the most interesting case is the first one; in fact a (2,C;)-
ordered path design P(v, 3,1) gives a path design P(v, 3,1) with a minimal
change property (see [2]).

2 Main results

We base our constructions on a slight variation of the well-known difference
method. Let B = [z,y, z] be a block in a path design P(v, 3, 1) based either
on Zy or on Z,U{co}. For & € Zy, let B+a be the path [z+c,y+a, 2+a]
where we suppose that the sum is taken modulo v if z € Z,,, or is co+a = oo
ifz =o00. Let D = {d;,dy,...,don} be a set of differences in Z, such that
€ Difviseven. Let I' = {E}, Es,..., E,} be an ordered set of blocks.

Definition 2. We say that T is a (2, C)-ordered set of base blocks using
the differences in D if the following conditions are satisfied:
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1) Each difference in D appears in exactly one block of T'.

2) The blocks of T are (2,C)-ordered, that is, each pair of consecutive
blocks of T' gives the same underlying graph C.

3) There is an element o € Z, such that ged(a,v) = 1 and C is the
underlying graph of the configuration {Ep, E1 + a}.

Remark 1: It is easy to check that a (2,C)-ordered set of base blocks I
gives the following set of (2, C)-ordered blocks F = {F, | 0 = 1,2,..., hv}
where F, = E,_;n+ja, and where j is the element of Z, such that o —jh €
{1,2,...,h}.

Henceforth the notation F; will denote blocks defined in the sense of this
remark.

Note that if v =1 (mod 4) then from the existence of a (2, C)-ordered set
of base blocks I using the differences in D = {1, 2,..., 1’2‘—1}, the existence
of a (2,C)-ordered balanced path design P(v,3,1) having F as block set
follows.

Example 2: Let v = 13, a = 3, By = [0,1,6], E2 = [0,6,4] and E3 =
[3,0,4]. Then I' = {E,, E,, E3} is a (2,C))-ordered set of base blocks and
the set F = {[0,1, 6}, [0, 6,4],[3,0,4],[3,4,9], 3,9, 7], 6,3, 7], [6, 7, 12], [6, 12,
10}, [9, 6, 10, [9, 10, 2], [9, 2, 0}, [12, 9, 0], [12, 0, 5], 12, 5, 3], [2, 12, 3], [2, 3, 8],
[2,8,6), 5,2, 6], [5,6,11], 5,11, 9], [8,5,9], [8,9,1}, [8,1,12], [11, 8,12], [11, 12,
4],[11,4,2),[1,11,2), 1,2, 7}, [1,7, 5}, [4, 1, 5], [4, 5, 10], [4, 10, 8], [7,4, 8], [7, 8,
0, [7,0,11],(10,7,11], (10,11, 3], [10, 3, 1], [0, 10, 1]} is the block set of a (2, C )-
ordered P(13,3,1).

Theorem 2. For each v =1 (mod 4) there is a (2, C))-ordered balanced
path design P(v,3,1).

Proof: For » = 5,13 the theorem is proved by Examples 1 and 2. For the
remaining v it is sufficient to construct a (2, C})-ordered set of base blocks
T using the differences in D = {1,2,..., %1}

Casev=9. Put a=8and I'= {[0,1, 3], [0, 3, 8]}.

Case v =17. Put a =16 and T = {[0, 1, 6], [0, 6, 4], [0, 4, 7], [0, 7, 16]}.

Case v="5+8k, k>2 Puta=1+2kand ' = {E, B,...,Ei 12},
where Ey = [0,1,3(k + 1)], E2 = [0,3(k + 1), 3k + 1}, Egi4+1 = [0,3k +2 —
1,3k + 3+ 1], Eai42 =[0,3k+3+14,3k+1—d] fori=1,2,...,k—1, and
Eoky1=[142k,0,2+ 2k].

Case v = 1+ 8k, £k > 3. Put = 8k and I' = {E, Ey,..., Exx},
where Fy = [0,1,3k], Ez = [0,3k, 3k — 2], Eaiq1 = [0,3k — 1 —¢,3k +1],
Eoiya= [0,3k+i,3k -2 —i] fori=1,2,...,k—2, By = [0,2k,4k - 1]
and Egk, = [0, 4k — 1, Sk]. O
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Theorem 3. For each v =0 (mod 4) there is a (2, C,)-ordered path design
P(v,3,1).

Proof: Case v =4. Put B = {[0,1,2], [0,2,3],[0,3,1]}.

Case v = 8. Let V = Z; U {0}. Put B = {By,B,,..., B4}, where
B = [0,0,3], By = [00,3, 6], Bs = [0,6,2], By = [00,2, 5], Bs = [00,5,1],
Bs =[1,00,4], B = [0,4,1), Bg+i =[0,1,6] + i for i € Z7.

Casev = 12. Let V = Z;;U{o0}. Define the following (2, C )-ordered set
of base blocks (mod 11) using & =10 and D = {1,2,3,4}: I = {E), Bz},
where E; = [0,1,3] and E; = [0,3,10]. Put By = [00,1,7], B2 = [00,7,2],
B3 = [00,2,8], By = [0,8,3], Bs = [00,3, 9], B = [0,9,4], By =
[OO, 4,10], Bs = [00,10, 5], Bg = [oo, 5, 0], BIO = [0, 00, 6], Bu = [0, 6,1],
Buyyi=F fori=1,2,...,22.

Case v = 16. Let V = Z;5 U {o0}. Define the following (2, C;)-ordered
set of base blocks (mod 15) using @ = 14 and D = {1,2,...,6}: T =
{E\, B, Ea}, where E; = [0,1,6], Ez = [0,6,2] and E3 = [0,2,14]. Put
B, = [00101 7]7 B2(j+1) = [0017 - 7,14 _j]1 B2j+3 = [°°1 14 — 5,6 - j]
for j = 0,1,...,5, Biy = [1,00,8], Bis = [0,8,1] and Bjs4; = F; for
1=1,2,...,45.

Case v = 8k, k > 3. Let V = Zgg_1 U {co0}. Define the following
(2, Cy)-ordered set of base blocks (mod 8k — 1) using & =8k —2and D =
{1,2,...,4k-2}: T = {E\, Ey,..., E5k—1}, where E; = [0,1,3k], Eo; =
[0,3k+i—1,3k—i—1], Ey;41 = [0,3k—i—1,3k+id] fori=1,2,...,k—2,
Eok—2 = [0,4k—2,2k—2], E3x_1 = [0,2k—2,8k—2]. Put By = [00,0,4k-1],
32(j+1) = [00,4k—1 —j,8k—2—j], sz+3 = [OO,Sk—2—j,4k—2—j) for
j = 01 l: .. ,4k—3) BSk—2 = [1,CX), 4k]a BSk—l = [oa 4ka 1] and BSk—l-i-i = F;
fori=1,2,...,(2k - 1)(8k — 1).

Case v = 448k, k > 2. Let V = Z3;gx U {oo}. Define the following
(2, C1)-ordered set of base blocks (mod 3 + 8k) using a = 2 + 8k and
D={1,2,...,4k}: T ={E, Es,..., Ez}, where E, = [0,1,142k], Eo; =
[0,2k+1i,4k —i+1), Egiyy = [0,dk—i+1,2k+i4+1] fori=1,2,...,k—1,
Eop 1 = [0, 3k, 8k + 2]. Put B; = [00, 0,4k + 1], Bg(j.,.]) = [00,4k -3+
1,8k — 5 + 2], Bojys = [00,8k — 5 + 2,4k — j] for j = 0,1,...,4k — 1,
Bgry2 = [1,00,4k + 2], Bgk3 = [0,4k + 2, 1] and Bgkis4i = F; for i =
1,2,...,2k(8k + 3). m]

Theorem 4. For each v =1 (mod 4) there is a (2, C3)-ordered balanced
path design P(v,3,1).
Proof: Case v=5. Put V =Z;5 and B = {[0,1,2],[3,0,4], [2,3,1], 4, 2,0],
(1,4,3]}.

Casev=09. Put V=12, a=1and I'= {[0, 1,5], (2,0, 3]}

Case v=13. Put V = Zj3, e = 1 and T' = {[0, 1,5, 11,0, 3], [0, 7, 2]}

13



Case v = 5+8k, k >22 LetV =2Z,andputa=1and T =
{E\, Es,...,Eyy2), where By = [0,1,1 + 4k], Ey; = [4i — 2,0,4i — 1],
Egiy1 = [0,44,8i+ 1] for i = 1,2,...,k — 1, Eox = [4k — 2,0,4k — 1] and
Eiok = [0,3 + 4k, 2].

Case v =90+8k, k>1 Let V=Z,andputa=1and T =
{E\, B, ..., Eoky2}, where Ey = [0,1,5 + 4k], Fy = [4k —4i + 6,0,4k —
4i+ 7], Eyyr = [0,4k — 47 + 4,8k - 8i + 9] for i = 1,2,...,k, and
Eok+2=1[2,0,3). 0

Theorem 5. For each v = 0 (mod 4), v > 8, there is a (2, Cp)-ordered
path design P(v, 3,1).

Proof: It is easy to see that for v = 4 there is no (2, Cz)-ordered path
design P(4,3,1).

Case v = 8. Let V = Z;U{o0}. Put B = {[0, 1, 3], [1, 5, o0}, [5, 3, 2], [3, 0, 9],
[0,5,4], [5,2, 0], 2,0, 6], 0,4, ], [4,2,1], [2, 6, ), [6,4, 3], [4,1, ), [1, 6, 5},
(6,3, 00]}.

Case v = 12. Let V = Z;; U {co}. Define the following (2, C2)-ordered
set of base blocks (mod 11) using & =2 and D = {3,4,5}: T = {E,, Ea},
where E; = [0,3,7] and E; = [00,0,5]. Put Biy; = [0,1,3] 4+ for i =
0,1,...,10 and Bll+i =R fori = 1,2,...,22.

Case v = 16. Let V = Z;5 U {oc0}. Let 'y and I'; be the two following
(2, Cz)-ordered sets of base blocks (mod 15) obtained using a =1, D; =
{1,2,3,4} and a = 2, Dy = {5, 6,7} respectively: 'y = {E}, F2}, where
E, = [0,1,5] and Ep = [2,0,3]; ['; = {E,, B2}, where E; = [0, 1,8] and
E> =[3,8,14]. Put B; = F; and Byy30=F; fori=1,2,...,30.

Case v = 20. Let V = Z;g U {c0}. Let I'; and I's be the two following
(2, Cp)-ordered sets of base blocks (mod 19) obtained using a =1, D; =
{1,2,...,6} and a = 2, D, = {7,8,9} respectively: Ty = {E;, Ey, E3},
where E; = [0,1,17], E2 = [5,0,6] and E3 = [0,4,2]; 'z = {E}, E;}, where
E; = [0, 18,8] and E3 = [3,10,18]. Put B; = F; for i = 1,2,...,57 and
B,'+57 = —F—i fori= 1,2, .. ,38.

Case v =8k, k > 3. Let V = Zg,_; U {co}. Let Iy and I'; be the two
following (2, C2)-ordered sets of base blocks (mod 8k — 1) obtained using
a=1, D, ={1,2,...,4k — 4} and a = 2, D, = {4k — 3,4k — 2,4k — 1}
respectively: Ty = {Ey, B, ..., Eor_2}, where E; = [0,1,4k — 3], Ey; =
[2k — 2,0, 2k +2i — 3], Egiyy = [0,2k—2i— 1,4k —3] fori=1,2,...,k—2
and Epi_2 = [2,0,4k — 5]; T2 = {E1,F2}, where E; = [o0,1,4k] and
E, = [3,4k,8k — 2. Put B; = F; for i = 1,2,...,(8k — 1)(2k — 2) and
Bii(sk—1)2k-2) = Fi fori=1,2,..., 2(8k — 1).

Casev=4+8k, k>3. Let V = Zs+gkU{oo}. Let I'; and I'; be the
two following (2, C3)-ordered sets of base blocks (mod 8k + 3) obtained
usinga =1, D ={1,2,...,4k — 2} and a =2, Dy = {4k — 1,4k, 4k + 1}
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respectively: I'y = {E, By, ..., Esc—1}, where E; = [0,1,8k + 1], Ep; =
[46+1,0,4i+2], Egiy1 = [0,4i+3,8i+7] fori =1,2,..., k—2, Eg_g = [Ak—
3,0,4k—2] and Egk—1 = [0,4, 2]; ['2 = {E1, E;}, where E; = [00, 2+8k, 4k]
and B = [3,2+ 4k,8k +2]. Put Bi=F fori=1,2,..., (8k + 3)(2k — 1)
and Bi+(8k+3)(2k—l) =F;fori=1,2,..., 2(8k + 3). O

Theorem 6. For each v = 1 (mod 4), v > 9, there is a (2, C3)-ordered
balanced path design P(v, 3,1).

Proof: Let V = Z,. It is easy to see that for v = 5 there is no (2, Cs)-
ordered path design P(5,3,1).

Casev=9. Put a =1 and T = {[0,3,1],[1,5,6]}.

Case v=13. Put a=1and T = {[0,7,2], [2,5,1), [1,12,11]}.

Casev=17. Put a =1 and T = {[0,9,2], 2,8, 3], [1,5, 2], [15, 16, 1]}.

Case v = 21. Put a = 1 and I = {[0,11,2],[2,10,3], 3,9, 4], [1,5,3],
(18,19, 1]}.

Cese v = 29. Put & =1 and T = {[0,15,2], [2, 14,3}, [3,13, 4], [4, 12, 5],
(3,9,4], [1,5,3], 26,27, 1]}.

Case v=13+8k, k> 3. Puta=1and I = {E), E,,..., F3, 2}, where
Ey=[0,7+4k2), By =[i+1,4k—i+7,i+2 fori=1,2,... k+1,
Exys=[k+1,3k+3,k+2), Bxyayi=[k—i+ 1,3k —3i+3,k—i+2] for
i=12,...,k—2, Eyy2=1,5,3] and Eypi3 = (10 + 8Kk, 11 + 8k, 1].

Case v =9+8k,k>2 Puta=1andTl = {E\, B, ..., Eory2},
where By = [0,5+4k,2), Eiyy = [i+1,4k—i+5,i+ 2 fori=1,2,....k,
Erin = [k,3k + 2,k + l], Ek+2+i = [k -4,3k -3 +2,k—-1i+ 1] for
i=1,2,...,k—1and By s = [8k +7,8k +8, 1]. 0

Theorem 7. For each v = 0 (mod 4), v > 8, there is a (2, C3)-ordered
path design P(v,3,1).

Proof: It is easy to see that for v = 4 there is no (2, C3)-ordered path
design P(4,3,1).

Casev = 8. Let V = Z;U{oo}. Put B = {[0,1,3],[3,4,6], [6,0, 2], [2,3,5),
[5,6,1][1,2,4],[4,5,0), [00,3, 0], [0, 4, 1, [0, 5, 2], [00, 6, 3], [0, 0,4], [00, 1, 5],
[00,2,6]}.

Case v = 12. Let V = Z;;U{oo}. Define the following (2, C3)-ordered set
of base blocks (mod 11) using o =1 and D = {1,2,3,4}: T = {E\, E»},
where E; = [0,4,1] and Ep = [1,10,9). Put B; = F; fori =1,2,...,22 and
Bozyi =[00,5,0]+ifori=0,1,...,10.

Case v = 16. Let V = Z;5 U {oo}. Define the following (2, C3)-ordered
set of base blocks (mod 15) using @ = 1 and D = {1,2,...,6}: T =
{E\, Bz, E3}, where By = [0,6,1], Bz = [1,5,2] and Es5 = [13,14,1]. Put
B; =F;fori=1,2,...,45 and Byg4i = [00,7,0] +i for i = 0,1,...,14.
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Case v = 20. Let V = Z;9 U {c0}. Define the following (2, Cs)-ordered
set of base blocks (mod 19) using = 1 and D = {1,2,...,8}: T =
(B, Es, Es, B}, where By = [0,8,1], Ex = [1,7,2], E5 = [3,5,1] and
Eq=1[1,17,16]. Put B; = F; for i = 1,2,...,76 and Brry; = [00,9,0] + i
fori=0,1,...,18.

Case v = 28. Let V = Zy7 U {oo}. Define the following (2, C3)-ordered
set of base blocks (mod 27) using @ = 1 and D = {1,2,...,12}: T =
{E\, B, ..., Eg}, where Ey = [0,12,1), By = [1,11,2], Es = [2,10,3], By =
[3,9,4], BEs =[1,5,3] and Eg = [24,25,1]. Put B; = F; fori=1,2,...,162
and Bigs4i = [00,13,0] + i for i=0,1,...,26.

Case v = 848k, k > 2. Let V = Zg7 U {o0}. Define the following
(2, C3)-ordered set of base blocks (mod 8k + 7) using « = 1 and D =
{1,2,...,4k+2}: T = {E\, E»,..., Eog41}, where B; = [i — 1,4k — i+ 3, 1]
fori=1,2,...,k+1, Extit1 = [k—1,3k-3i4+2, k—i+1] fori=1,2,...,k-1
and Eopyy = [8k+5 8k+6,1). Put B; = F;fori=1,2,...,(2k+1)(8k+7)
and B(2k+l)(8k+7)+l+t [00 4k + 3 0] +1 fori = 0 1 6 + 8k.

Case v = 4+ 8k, k > 4. Let V = Z3 g, U {0} Deﬁne the following
(2, C3)-ordered set of base blocks (mod 8k + 2) using @ = 1 and D =
{1,2,...,4k}: T = {E\, E»,..., B}, where E; = [i—1,4k—i+1,4) fori =

k1, Begipr = [k—i, 3k—34, k—i+1] fori =1,2,...,k=3, Bgx_y =
1,5,3] and Eg; = [8k,8k +1,1]. Put B; = F; for i = 1,2,...,2k(8k + 3)
and Bak(sk+3)+1+i = [00,4k +1,0] +i for i =0,1,...,3 + 8k. O

Theorem 8. For each v =1 (mod 4), v > 9, there is a (2, Cy)-ordered
balanced path design P(v, 3,1).

Proof: It is easy to see that for v = 5 there is no (2, Cy)-ordered path
design P(5,3,1).

Let v =144k, k > 2. Put T = {Ey, F,..., Ex}, where E; = [0,2,1],
E; = [2i-1,4i - 1,2{] for i = 2,3,...,k, and either a = 8 if k = 2, or
a=1ifk>3. O

Theorem 9. For each v = 0 (mod 4), v > 8, there is a (2, C4)-ordered
path design P(v,3,1).

Proof: It is easy to see that for v = 4 there is no (2, Cy)-ordered path
design P(4,3,1).

Casev = 8. Let V = Zg and B = {[6,4, 3],[0, 1, 2], [7, 4, 5}, [0, 2, 6], [1, 3, 5],
[4,0,6),[5,1,7), [2,3,0],[6,5,7],[2,4,1),[6,7,3],[2,5,0],[1,6,3], [0, 7, 2]}.

Case v = 4k, k > 3. Let V = Zs,_1 U {o0}. Define the following (2, C,)-
ordered set of base blocks (mod 4k — 1) using a = 1 and the differences
in D ={1,2,...,2k - 2}: T = {E\,E,,..., Ex_1}, where E; = [0,2,1],

=[2i—1,4i—1,2¢] for i =2,3,...,k— 1, and E; = [00,0, 2k —1]. Put
B;=F;fori=1,2,...,k(4k —1). O
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Remark 2: The P(v, 3,1) given in Theorems 2, 4, 6, 8, 9 are (2, C)-ordered
in a cyclic way, that is, the configuration given by the first and last block
also has C as underlying graph.

3 Concluding remarks

The next step in the study of the existence of (I,C)-ordered G-designs
could be either to increase the number of vertices of G or to increase I.
The latter seems to be more interesting, in particular when G = K3 and
£=1{{1,2,3},{1,4,5},{2,4,6}}. In fact Colbourn [1] pointed out that the
solution of this problem has an interesting application to RAID (redundant
arrays of independent disks) disk arrays.
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