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Abstract

Let G = (V,E) be a connected undirected graph. Suppose a
fire breaks out at a vertex of G and spreads to all its unprotected
neighbours in each time interval. Also, one vertex can be protected in
each time interval. We are interested in the number of vertices that
can be “saved”, that is, which will never be burned. An algorithm is
presented to find the optimal solution in the 2-dimension grid graphs
and 3-dimension cubic graphs. We also determined the upper and
lower bounds of the maximum number o f vertices that can be saved
on the large product graphs. The problem of containing the fire with
one firefighter or more is also considered.

1 Introduction

We shall use the graph-theoretic notation of [1], so that a graph has ver-
tex set V(G), edge set E(G), and €(G) edges. If the vertices u and v are
connected in G, the distance between u and v in G, denoted by d(u,v),
is the length of a shortest path between u and v. Let P, denote a path
containing n vertices (length n — 1). A subset S of V(G) is called an in-
dependent set of G if no two vertices of S are adjacent in G. A weighted
graph is a graph with a real positive number associated to each vertex of
G. A maximum weighted independent set is a set of independent vertices
of maximum weight.
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Imagine a graph as an apartment building with vertices representing
the individual apartments of the building and an edge between two ver-
tices if and only if the two apartments are adjacent. Imagine also, that at
time zero, a fire breaks out in an apartment of the building. The fire will
spread at each time interval to all the adjacent non-protected vertices of
each burning vertex. If a firefighter is present, he can protect one apartment
per time interval. In this paper, a vertex where a firefighter was present
will be referred to as a protected vertex, and any vertices that are not
burned at the end are considered saved vertices. In most of this paper,
we will consider this fire fighting problem under the condition of using one
firefighter to defend the graph. That is one vertex can be saved at each
time interval.

Let MV S(G,v) denote the maximum number of vertices saved in a
given graph G in which the fire starts at a given vertex v, and let S be the
set of vertices that have been protected in the graph G.

This problem was proposed by Bert L. Hartnell [5]. It may also be
known as virus control on a network. There are two different aspects of
this problem. From the firefighters’ point of view, the object is to save the
maximum number of vertices in the graph with a given number of firefight-
ers, by building a fire wall or barrier ( see [7] ). From an architects’ point
of view, the object is to design a graph such that firefighter can defend
the most vertices in the network given a random subset of vertices where
the fires break out. In the other words, they try to find graphs in which
the firefighters can defend the graph most efficiently if fires break out at
random vertices. More precisely, Bert Hartnell et al ( see [2], [4], [6] [3], [8],
and [5]) studied the following problem. Whenever a vertex is attacked, all
vertices within distance 2 are also destroyed indirectly. They were inter-
ested in designing a connected graph such that when a random subset of
the vertices are attacked the expected number of vertices that are destroyed
is minimized.

In general, it is difficult to find the value of MV S(G,v). G. MacGillivray
and P. Wang (7] show that following decision problem is NP-complete even
when restricted to bipartite graphs.

FIRE

INSTANCE: A graph G with a special vertex v, and a positive integer k.
QUESTION: Can at least k vertices be saved? That is, is there a sequence
at most |V (G)| 81, 82, . . . vertices of G such that if vertex s; is protected at
time I then at least k vertices are saved when the process ends.
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Theorem 1.1. FIRE is NP-complete for bipartite graphs.

Since it is NP-complete, we shall focus our attention on finding solu-
tions to special graphs. In [7], G. MacGillivray and P. Wang developed two
algorithms to find the optimal solution of stopping a fire in a tree, where
the fire breaks out at the root of the tree. Furthermore, they converted this
problem into a problem of finding the maximum weighted independent set,
which can solved by using integer linear programming. In the next section,
we shall concentrate on explaining strategies that will save the maximum
number of vertices in the product graphs, Py, P, X P,, and P, x P, x P,,.
In section 3, we shall discuss this problem in the large product graphs.
Finally, we shall also consider the possibility of containing the fire with a
number of firefighters.

2 Optimal Fire Fighting Strategies in the Prod-
uct Graphs

It is obvious that if a fire were to break out at one of the end vertices of
P,, it would take only one firefighter to protect the rest of the n vertices;
MVS(P,,v) = n — 1. If the fire were to break out at any of the other
vertices in P,, MV S(P,,v) =n-2.

Algorithm 2.1.

Given: P, x P, an x n grid. A fire breaks out at a point (a,b), where a
is the row index and b is the column index, 1 < a,b < [n/2] and a > b.

Protect: The following vertices are protected in the order given: (a,b+1),
(a-1,b+1),(a+1,b+2), (a-2,b+2), (a+2,b+3), (a—3,b+3), ..,
(1,b+a-1),(2a-2,b+a-1), (2a-1,b+a), .., (n,b+a).

An example of the fire control on a 7 x 7 grid, with the fire starting at
point (4,4), is given in Figure 1. The total number of vertices saved is 12.
Clearly, MVS(P, x P,,(a,b)) > n(n —b) — (a —1)(n —a), if a > b. We
think that this is the optimal solution but unable to prove it in general.

The problem becomes even harder if one wants to find an optimal solu-
tion for a rectangular grid instead of a square grid. For example, one has
to protect two disconnected regions in the optimal solution for a 5 x 11 grid
where the fire starts at (1,6). There is a need to have a computer program
that we can use to explore the optimal solutions in small product graphs.
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In the following, we shall describe a back tracking program that can be
used to find optimal solution in grids.

Let g be a graph of dimensions n (the number of rows) by m (the number
of columns), and let z be the row coordinate and y the column coordinate
of where the fire starts. Let best.count be the maximum number of ver-
tices burned, let best be the grid that has the minimum number of vertices
burned, and let old be the grid that will change as the fire spreads when
the procedure FIND_BEST() is called recursively. Initially, best-count =
m*n, that is, we assume all vertices burned.

Algorithm 2.2.

FIND BEST(g)
If (maz_burned(g) > best_count) then ezit;
Fori=1tom xndo
If (the vertex ¢ in the grid g has value 1), then old = g;
Save the vertex 7 in old by giving it the value 0;
Burn all the vertices (give them a negative value) in old, that ai
adjacent to the vertices that have been burned in previous time
intervals
If old is not all burned (that is there are still vertices that
can be burned) then
FIND_BEST(old);
Else if (maz_burned(old) < best_count) then
best_count = maz_burned(old); best = old,;
end{For}
END
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The Algorithm 2.2 is basically a back tracking algorithm that has a re-
cursive procedure to find all possible solutions and keep the one that can
save most vertices. To make the program more efficient, it exits the back
tracking procedure when the number of vertices burned exceed the previ-
ous lowest level. This program have been used to find optimal solutions in
small grids (n and m < 10). We also made some changes to Algorithm 2.2
so that it can be used in three-dimension product graphs, P x B, X P,.
As one might expect, it would not be an efficient way to find an optimal
solution for large product graphs. Instead, we will find a solution first and
then run our program only on a small part of P, X P,, x P, to verify that
it is an optimal solution. This idea is illustrated in the following example.
Let (z,y,2) be a vertex of B x Py, x P, on level z, row y and column z.
We will focus our attention on the cases where I and m are relatively small
and n is large.

First, since n is relatively large compared to ! and m, one vertex from
each column must be protected to provide a possible optimal solution in
Py x P, x P,. It follows that we have to protect at least Im vertices. A fire
wall in a graph is defined as a series of protected vertices that will separate
the cube into a section containing the burned vertices of the graph and a
section containing the saved vertices of the graph. Secondly, we start to
build this fire wall from the vertex which has distance Im from the vertex
where the fire breaks out and build it toward the fire. This is because
the fire will spread to all unprotected neighbouring vertices at each time
interval

Let us consider P3 x P; x Py and the fire breaks out at the point (1,1, 1),
as shown in Figure 2. By using the above method, a fire wall contains these
9 protected vertices: level 3: (3, 3, 6), (3, 2, 5), (3, 1, 4), level 2: (2, 3,
6), (2,2, 5), (2, 1, 4), and level 1: (1, 3, 5), (1, 2, 4), (1, 1, 3). It saves
21 vertices among 54 vertices. Qur program proves that this is an optimal
solution. This also provides an optimal solution for n > 6.

Theorem 2.1. MVS(P; x P; x Py, (1,1,1)) = 9n - 33 where n > 6.

Proof. Assume that a solution exists for a P3 x P; x P,, n > 6, that is
better than the above solution. Then it is a solution containing a series of
protected vertices that saves more than 21 vertices and allows less then 33
vertices burned in P3 x P; X Py, a contradiction with the fact that one can
save at most 21 vertices in P3 x Ps X Fg. [}

The optimal solution in P X P, X P, is rather different than the one
in P, x P,. The one obtained from Algorithm 2.1 protects one vertex from
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Figure 2: P3 X Ps X PG

each distance. For example, the protected vertices in the solution in Figure
1 has a distance sequence — 1, 2, 3, 4, 5, 6. The strategy is rather aggressive
and always protects a neighbouring vertex from those vertices to where the
fires just spread. On the other hand, firefighters may want to build a fire
wall away from the fire as in the case of fighting with a forest fire. This is
exactly what occurred in P, x Py, X P,. For example, the protected vertices
in the optimal solution in Figure 2 has a distance sequence — 2, 4, 4, 5, 6,
6,7,8,9.

The above strategy of building a fire wall leads to an lower bound of
MVS(P, x P, x P, (1,1,1)). Let ¥k = n? — 2(n — 1) + 1. We describe
the strategy of protecting the vertices needed to obtain the following lower
bound, by determining which vertices per level need to be protected. The
following vertices form the fire wall.

Level n: (n,n,k),(n,n—-1,k-1),--- ,(n,n — (n - 1),k — (n — 1));

Leveln—-1:(n-1,n,k),(n-1,n-1,k-1),--- ,(n—1,n—(n-1),k-
(n—1));

Leveln-2:(n—-2,n,k-1),(n-2,n—1,k—2),--- ,(n —2,n— (n—
1)7" - (n - 1));

Level1: (1,n,k—(n—-2)),(1,n—-1,k=(n-1)),--- ,(L,n=(n-1),(k—
(n-2)—(n-1)).
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Note that the lower bound in Theorem 2.2 is sharp because of Theorem
2.1

Theorem 2.2. MV S(P, x P, x Py,(1,1,1)) > n*(n + 1)/2+n(n—1)(n—
2)/2,ifp>n?-2(n—-1)+1 andn > 3.

Proof. The number of vertices that can be saved in a P, X P,, x P, graph with
p =n?—2(n—1)+11is equal to the following. We will consider the results in
terms of levels. In each of the levels n and level n—1,1+2+3+- - -+n vertices
are saved. In each of the levels n — 2 down to 1,1+ 2+ 3 + ... + n vertices
plus an additional number of vertices are saved. This additional number of
vertices is equal to n+2n+3n+- - +(n—2)n = n(n—1)(n—2)/2. Thus, the
total number of vertices saved is equal to n?(n + 1)/2+n(n — 1)(n — 2)/2.
Therefore, if p > n% — 2(n — 1) + 1 then the total number of vertices saved
is greater than or equal to n%(n +1)/2 + n(n — 1)(n — 2)/2. O

3 Asymptotic Results

As the number of vertices in the product graphs becomes very large, the
number of vertices that can be saved is affected. Let us examine the upper

and lower bounds of the ratio of the number of vertices
— the number of vertices can be saved
Let R(G' v) ~ the total number of vertices in G °

Theorem 3.1.

1 _1 . M . P .
R(Pa,v) = {1 n if v is ?ne the end vertices of P,;
— & otherwise.

(1)

Proof. Note that the total number of vertices in P, equals n and one can
save either n — 1 or n — 2 vertices depends whether the fire breaks out at
the ends or not. O

Note that we are mainly interested in asymptotic values of R(G). This
result implies that one can save almost all vertices of P, for large n.

Theorem 3.2. } + ¢ < R(P, x Po,v) < 1, where e = o if n is even and
€= % if n is odd.
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Proof. If the fire breaks out at (1,1), then the solution obtained from Al-
gorithm 2.1 will protect every vertex on the second column and will save
n? —n vertices. We shall prove in Theorem 3.3 that this is indeed the opti-
mal solution. If the fire breaks at ([n/2], [n/2]) then the solution obtained
from Algorithm 2.1 will give the lower bound of R(P, x Fy). O

Before we proceed, several notations need to be clarified. We use dis-
tance in the common sense, that is the length of the shortest path between
a pair of vertices. We call a path a fire-path if it starts at the vertex where
the fire breaks out and ends at a protected vertex or burned vertex, and
all intermediate vertices on the path are burned vertices. Furthermore,
we define a fire-distance dg(u) where u is a protected vertex or burned
vertex to be the length of the shortest fire-path from the fire to u. Note
that dy(u) changes according to different vertices being protected. For ex-
ample, ds((1,4)) = 3 if (1,4) is the only protected vertex in P; x P7, but
ds((1,4)) = 5if both (1, 2) and (1,4) are protected. Clearly, d¢(u) > d(v,u)
where the fire breaks out at v. Furthermore, d¢(u) = d(v,u) + 2k where
k > 1in P, x P,. We call a protected vertex u an interior-boundary vertex
if df(u) = d(v,u) where the fire breaks out at v. In the above example,
(1,2) is an interior-boundary vertex when both (1,2) and (1,4) are pro-
tected. Now, we are ready to prove the upper bound in Theorem 3.2 is
sharp.

Observation 3.1. The number of interior-boundary vertices is less or equal
to mazimum distance from the fire to all interior-boundary vertices.

Proof. Since one can protect one vertex at each time interval, the number
of interior-boundary vertices is less or equal to maximum distance from the
fire to all interior-boundary vertices. O

Theorem 3.3. MVS(P, x Py, (1,1)) =n? —n.

Proof. We shall prove an equivalent statement that there is at least one
vertex of distance £ from (1,1) catching the fire at time £ for 1 < ¢ < n by
induction. For ¢ = 1, the fire will spread to at least one of the two vertices
(1,2) and (2,1). Assume that there is at least one vertex say (z,y) where
z+y—2 =t—1 at distance ¢ — 1 from the fire caught the fire at time ¢ — 1.
Let P be the shortest fire-path from (1,1) to (z,y). At rime ¢, if there is
one vertex catch the fire then we done otherwise (z + 1,y) and (z,y + 1)
have to be protected, and one vertex on each row has to be protected from
P to each vertex (z',y’) at distance ¢ with 2’ > z + 1, and one vertex on
each column from P to each vertex (z',y') at distance ¢ with 3’ > y +1
has to be protected. Since ds((z,¥)) = d((1,1), (z,¥)), over all there is at
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Figive 3¢ B, 3Py Pa

least z +y — 24 2 = ¢t + 1 vertices that have been protected in time ¢,
a contradiction with the fact that at most ¢ vertices can be protected in
time ¢. Therefore, there is at least one vertex catching the fire at each time
interval £ for 1 <¢ < n. This implies that the fire started at (1, 1) spreads
to at least n vertices before it ends. a

Conjecture 3.1.

T B(P, % By X Ppi=1.

n—o0

Note that one would have the best chance to save a portion of n® vertices

if the fire breaks out at a corner vertex, (0,0,0) and suppose all the pro-
tected vertices are interior-boundary vertices, and the furthest away corner
of this cube (see Figure 3) can be saved. Suppose a fraction (n/k, where k is
a positive integer) of the three edges of the cube in the corner can be saved.
It follows that [n/k+(n/k—1)+(n/k—=2)+,--- ,+2+1] = 1/2(n*/k* —n/k)
vertices have to be protected in order to save this corner. On the other
hand, the distance from the fire to the protected vertices is less than 3n,
which, in turn, is less that 1/2(n?/k* — n/k) for n large with respect to k,
a contradiction with Observation 3.1.

4 Containing a Fire

In this section, we examine whether we can contain the fire in infinite
graphs. That is, we must build a fire barrier that isolates the fire from all
directions. Since we consider the problem of containing the fire as quick as
possible, the protected vertices must be adjacent to at least a burned ver-
tex. We call those protected vertices boundary vertices if they are adjacent
to both burned vertices and saved vertices that aren’t protected. Clearly,
one of the vertices protected in the last time interval must be a boundary
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vertex. For the convenience, we use the number line (L;), the Cartesian
Plane (L,) and the three-dimensional space (L3) to represent the infinite
graphs in the following way. The vertices are all the points in the line (in
the plane or in the space) whose coordinate (both coordinates or all three
coordinates) is (are) integer (integers), and two vertices are adjacent if they
have geometric distance equal to one. We also assume the fire always breaks
out at origin.

Theorem 4.1. It is possible to contain the fire with one firefighter in L,.

Proof. It is obvious one can protect two vertices at 1 and -2 to contain the
fire. O

Theorem 4.2. It is impossible to contain the fire with one firefighter in L2.

Proof. Assume that one can contain the fire in Ly. There exists a fire
barrier that isolates the burning vertices. Let B be the set of vertices on
interior-boundary and let the vertex (£,7) be an interior-boundary vertex
with the maximum distance from the fire, that is d((0,0), (Z,7)) = max
{ 4((0,0), (=, y))| where (z,y) is any interior-boundary vertex }. We may
assume that both Z and § are positive integers and Z > §. Otherwise, we
can rotate the z-axis and y-axis to place the vertex in the first quadrant.
It follows that d((0,0),(Z,7)) = % + §. Since (Z,7) is the furthest away
interior-boundary vertex, one must protect two vertices on each column
z = ¢ where 0 < ¢ < #. That is, there are at least 2Z vertices that
have to be protected. At least one vertex on left of the origin has to be
protected. Therefore, |B| > 22 +1 > Z + § since £ > §. By Observation
3.1, d((0,0),(z,7)) = £+ § < |B|, a contradiction. Therefore, it is not
possible to isolate the fire in L,. ]

In practice, there are more than one firefighter in any fire department.
The natural question is how many firefighters does it need to isolate the
fire in L2. That is, two or more vertices in the graph can be protected
simultaneously in each time interval. The solution below is similar to the
one obtained by B. Hartnell, S. Finbow and K. Scmeisser However, the fire
can be contained within eight time intervals instead eleven time interval in
our solution. Figure 4 shows how to build the fire barrier by two firefighters.
We are able to show that this is the best solution in terms of the number
of time intervals.

Lemma 4.1. If (z,y) is the vertez that has been protected during the last
time interval in the best solution, then y > 2.
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Figure 4: Containing a fire in L, with minimum number of time intervals

Proof. Clearly, we can protect at most 2d¢((z,y)) vertices. If y = 0,
then one needs to protect at least two vertices (one above the x-axis and
one below the x-axis) in same column with < ds((z,y)). This implies
2d¢((z,y)) + 1 interior-boundary vertices have to be protected, a contra-
diction. If ¥ = 1, then one has to protect the vertices (-1,0),(0,1) and
(0, —1) in order to use less than 2ds((z,y)) +1 interior-boundary vertices to
contain the fire. This is impossible because all three vertices have distance
1 from the fire and one can protect at most two vertices at distance 1. O

Theorem 4.3. One can not contain the fire with two firefighters in less
than 8 time intervals in L.

Proof. We shall prove this in two steps. Let ¢ be the minimum number of
time intervals needed to contain the fire by two firefighters.

Case 1. 1<t <4.

Note that if the fire is contained in ¢ time intervals then all the vertices
at distance ¢ must be saved. There are 4t vertices at distance ¢. It is easy
to see that two vertices at distance ¢ can save at most ¢ + 2 — ¢ vertices at
distance ¢. It follows that the total number of vertices that can be saved
at distance ¢t is (£ +1) + ¢+ (t — 1) + (¢ — 2) < 4t for ¢ = 4. Therefore, it is
impossible to contain the fire in four time intervals.

Case 2. 5<t<T.
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The same argument is used for ¢ = 5,6 and 7. For simplicity, we
shall illustrate the case when ¢ = 7. Since ¢ = 7, the vertices protected
in the last time interval, say (z,y), should have d¢((z,y)) = 7. This
plus the facts that y < z and y > 2 leads to at least one vertex from
{(2,2),(3,2),(4,2),(5,2), (3,3),(4,3)} has to be protected in the last time
interval. It is impossible to protect any vertex from {(2,2), (3,3),(4,2)} in
time interval seven since the fire-distance has to be the distance plus 2k for
k > 1. If the vertex (3,2) is protected in time interval 7, then the shortest
fire-path P has to pass either (3,3) or (4,2), say (4,2). Thus, (3,1) has to
be protected to force P pass (4, 2) and back to (3,2). This implies that P
is on z-axis, turns at (4,0) and passes through (4,1) and (4,2). One needs
to protect at least two vertices on the left of y-axis, two vertices on each
z =0,z =1,z = 2 and z = 4, three vertices on = 3, and three vertices on
the right of P, a contradiction with the fact that at most fourteen vertices
can be protected in seven time intervals. It follows that either (5,2) or
(4, 3) is one of the vertices that has been protected in the last time interval.

(i) (5,2) is one of the vertices that has been protected in the last time
interval.

Suppose three vertices with z < 0 are protected. It follows that exactly
two vertices (one in the upper boundary and one in the lower boundary)
will be protected on each column from z = 0 to £ = 4. Among the three
vertices with z < 0, one vertex with z < 0 and y = 0 has to be protected
and it is within distance 3 from the origin. The other two protected ver-
tices must be on the column z = —1. Otherwise, the fire will penetrate
the containing boundary on column z = —1. Moreover, these two vertices
must have |y| < 2. Hence, they must be within distance 3 from the ori-
gin. Since these two vertices have |y| < 2, the two vertices on the column
z = 0 must have |y| < 3. Again, they are within distance 3 from the ori-
gin. To contain the fire and connect to the vertex (5,2), the first three
vertices in the lower boundary can be no further than distance 3 from the
origin. These vertices are (1,~2),(2, —1) and (0, 3). So far, there are eight
vertices protected within distance 3 from the origin. But one can protect
at most six vertices within distance 3, a contradiction. Thus, there must
be two protected vertices with z < 0. Without loss of generality, we may
assume they are (0, —-1), (=1,0), (-1,1) and (0,2). The two vertices on the
column z = 1 can be no further away than (1,3) and (1, -2). The vertex
in the lower boundary on the column z = 2 must have y > —2. Other-
wise, one cannot contain the fire from spreading with three vertices from
the lower boundary between —2 < z < 1(four rows to cover). It follows
that the next two vertices in the lower boundary must be within distance 4.
Again, nine vertices have to be protected within distance 4, a contradiction.

30



(ii) (4,3) is one of the vertices that has been protected in the last time
interval.

Since nine vertices with z > 0, have to be protected, 2 < | the number
of vertices with z < 0 that has to be protected | < 5. We shall proceed
with four different cases.

(a) Two vertices with z < 0 are protected.

We may assume that (—1,0) and (—1,1) are the two protected vertices
with z < 0. Then (0, —1) and (0,2) must be the two vertices protected in
the z = 0 column. It follows that one has to protect at least one vertex in
the upper boundary on the columns z = 1,2, and 3. This implies that there
are at most six vertices available to be used in the lower boundary between
(0,-1) and (4,3). The protected vertex in the lower boundary on the col-
umn z = 1 must have y > —2. It cannot have y < —1 due to the fact that
there are five vertices within distance 2. Hence, (1, —2) must be protected.
Consequently, either (2, —1),(3, ~1) and (4,0) or (2, -2), (3,—1) and (4,0)
are protected and exactly 6 vertices are needed in the lower boundary be-
tween (0,—1) and (4,3). Clearly, the vertex that has to be protected in
the upper boundary on the column z = 1 is (1,3). There are nine vertices
protected within distance 4, a contradiction.

(b) Three vertices with < 0 are protected.

This similar to the previous case, where there are at most five vertices
available to be used in the lower boundary between the y-axis and (4, 3).
This implies that two vertices on the columns z = 1 and 2 must have
0>y 2>-2and 1>y > —1 respectively. These vertices are also within
distance 3 from the origin and the five vertices with z < 0 are within dis-
tance 3, a contradiction.

(c) Four vertices with z < 0 are protected.

There are at most four vertices available to be used in the lower bound-
ary between the y-axis and (4,3). This implies that the three vertices on
the columns z = 1,2 and 3 must have 0 > y > -1,1>y>0and2>y>1
respectively. If the vertex in the lower boundary of column z = 1 has
y =0, then (0, -1), (-1, -1), (-2,0),(-2,1),(~1,2) and (0, 4) must be the
six protected vertices on the left of (1,0), and (2,0) and (3,1) must be
the next two protected vertices on the right of (1,0). Clearly, these nine
protected vertices are all within distance 4. This is impossible. Hence, the
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Figure 5: Containing a fire in L

vertex in the lower boundary of column z = 1 must be (1, —1). It follows
that (2,0) and (3,1) must be the next two protected vertices on its right.
These three vertices in addition to the six vertices with z < 0 are within
distance 4, a contradiction.

(d) Five vertices with z < 0 are protected.

Similar to the previous case, (1,0),(2,1),(3,2) are the three protected
vertices between y-axis and (4,3). The vertex in the upper boundary of
column z = 3 must be (3,4) and the vertex in the upper boundary of
column z = 2 must be (2,4) because in the case of (2,5) we can change
the x-coordinate with the y-coordinate and use Case (i). It follows that the
vertex in the upper boundary of column z = 2 must be (2,5). Otherwise,
there are eleven vertices within distance 5. Since (1,0) is the vertex in the
lower boundary of column 2 = 1, (0, —1) must be the vertex in the lower
boundary of column z = 0. It follows that (—1,0) cannot be protected. This
implies that the vertex in the upper boundary of column z = —1 must have
y < 3 and the vertex in the upper boundary of column z = 0 must be y = 4.
Hence, all fourteen protected vertices except (3,3),(4,3),(3,4),(2,4) and
(1,5) are within distance 4, a contradiction. This completes the proof. 0

This is not a unique way to build a fire wall. In fact, it is not necessary
to have two firefighters working full time. This may prolong the process
of containing the fire and will eventually lead to more damage. In Figure
5, only one fire firefighter is used at time intervals 7 and 8. This makes
the problem of determining the number of firefighters needed to contain
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the fire in the three-dimensional space a much harder problem. It implies
that two firefighters could start to contain the fire at a certain z — level,
for example z = 0, and then one (or more) of the firefighters could move
to another z — level and come back sometime later. The following theorem
gives an upper bound of the number of firefighters needed to contain a fire
in a n-regular graph.

Theorem 4.4. One can contain a fire in two time intervals by n — 1 fire-
fighters in a graph with regular degree n.

Proof. One can first protect n—1 neighbours of the fire and then the fire will
spread to the unprotected neighbor vertex. On can protect n— 1 neighbours
of the unprotected vertex in the second time interval. O

Corollary 4.1. The number of fire fighters to contain a fire in L3 is less
or equal to five.

As we know, we cannot contain the fire in a L, with one fire fighter.
Therefore, two firefighters are needed to contain the fire in Ls. We believe
that five firefighters are needed to contain the fire in L.

Acknowledgments
The authors are very grateful to Drs. M. van Bommel, G. Dueck, Haizhu
Li and B. L. Hartnell for the conversations on the topics of this article.

References

(1] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. North-
Holland, Amsterdam, 1976.

(2] A.S. Finbow and B.L. Hartnell. On designing a network to defend
against random attacks on radius two. Networks, 19:771-792, 1989.

(3] G. Gunther and B.L. Hartnell. Grpahs with isomorphic survivor graphs.
Congressus Numerantium 79, pages 69-77, 1990.

(4] G. Gunther and B.L. Hartnell. On m-connected and k-neighbor-
connected graphs. In D.R. Aldrmann Y. Alari, G Chartramd and
A.J. Schweuk, editors, Graph Theory, Combinatorics, and Applications,
pages 585-596. John Wiley and Sons, Inc, 1991.

(5] B.L. Hartnell. The optimium defense against random subersions in a
network. Congr. Numerantium 24, pages 493499, 1979.

33



[6] B.L. Hartnell and W. Kocay. On minimal neighbourhood-connected
graphs. Discrete Mathematics 92, pages 95-105, 1991.

[7] G. MacGillivray and P. Wang. On the network virus control. preprint.

[8] A. Meir and J.W. Moon. Survival under random coverings of trees.
Graphs and Combinatorics, 4:47-65, 1988.

34



