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Let V be a finite set of order v. A (v, k, A) covering design of index A and
block size k is a collection of k-element subsets, called blocks, such that every
2-subset of V occurs in at least A blocks. The covering problem is to

determine the minimum number of blocks, @ (v, k, A), in a covering design. It

%[K:% ')‘”=¢(V/k,7\f),where

[x] is the smallest integer satisfying X < [x] . In this paper we determine the

is well known that o (v, k, A) 2

value 0 (V,5,A) , with few possible exceptions, for A =3,
v=2(mod 4)and A=9,10,v25and A=11,v=2 (mod 4).

1. Introduction
A (V, k, ) covering design (or respectively packing design) of order v, block
size k and index A is a collection [ of k-element subsets, called blocks, of a v-

set V such that every 2-subset of V occurs in at least (at most) A blocks.
Let o (v, k, A) denote the minimum number of blocks in a (v, k, A)

covering design; and G (V, k, A) denote the maximum number of blocks in a
(v, k, A) packing design. A (v, k, A) covering design with
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| B I = 0V, K, A) is called a minimum covering design. Similarly, a
(v, k, A) packing design with | BI = o(v, k, A) will be called a maximum
packing design. It is well known that [43]

QNKMZHHEH”=MWKMW

qwhmskkzp”=mwhm

where [x] is the smallest and [x] is the largest integer satisfying [x] £ X < [x]
Hanani has sharpened this bound in some cases by proving the following result.

Theorem 1.1

MIf A(v-1)=0(@modk—-1)and Av (v-1)/(k-1)=- 1(mod k)
then ot (V, kK, A) 2¢ (v, Kk, A) + 1.

G)If A(v=1)=0(mod k—1)andAv (v-1)/(k-1)=1 (mod k)
then ¢ (v, kK, ) Sy (v, k, A)—1.

When o (v, K, A) = ¢ (v, k, A) the (V, k, A) covering design is called a
minimal covering design. Similarly, when & (v, k, A) = y(v, k, A) the
(v, k, A) packing design is called an optimal packing design.

Many researchers have been involved in determining the covering numbers
known to date (see bibliography) most notably W.H. Mills and R.C. Mullin.

The following two Theorems summarize what is known about covering with
k=5.

Theorem 1.2 [37] Let v be an odd integer greater than 5.
(i) Ifv= I(mod 4)and A > I, then O.(v,5,A)= ¢ (v,5,A) + ¢ where e = 1 if

A(v-1)= 0(mod4)and 3’# =-—1 (mod 5) and e = 0 otherwise
with the exceptions that ¢ (9,5,2) = ¢ (9,5,2)+1, 0 (13,5,2) = § (13,5,2)+1

and the possible exceptions of the pairs (v, 7\,) € {(53,2), (73,2)} and,
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(ii)Ifv= 3(mod4)and A =1 then QL (v,5A)= (v,5,1) + e where ¢ is
asin (i) with the exceptions that 0. (15,5,A) = ¢ (15,5, )+1 for
A =1, 2 and the possible exception of the pairs (v, A )€ {(63,2), (83,2)}.

For the next theorem let S = {389,469,789,869,1189,1269,1589,1609,1669,
1729,1789,1849, 1909,1929,1969,1989,2009,2049,2069,2089,2109,2129,
2149,2169,2189,2209,2229,2269, 2289,2309}.

Theorem 1.3 Let v 2 5 be an integer and e as in Theorem 1.2. Then:
1) Let v = 17 (mod 20) be a positive integer. Then O (17, 5, 1) =¢ (17, 5, 1)
+2(34], and O (v,5,1) = ¢ (v,5,1) with the possible exceptions of vE

{37,57,77,137,157,177,237,257,277,337,357,377,437,457,637)}, (3, 29, 39].

2) Let v = 9 (mod 20) be a positive integer. Then O (v,5,1) = ¢ (v,5,1) for
all v22349 and v € S with the possible exception of v = 3149 |3, 29, 39].

3) Let v = 13 (mod 20) be a positive integer. Then QL (13,5, 1) =
¢ (13,5, 1) + 2, [34], and O (v,5,1) = ¢ (v,5,1)+1 with the possible

exceptions of v€ {13,53,73,153,273}, (3, 29, 39].

4) Let v = 2 (mod 4) be a positive integer. Then O (v,5,1) = ¢ (v,5,1),
[29, 39].

5) Letv 2 5 be an even integer. Then O (v,5,2) = ¢ (v,5,2) [40].

6) Letv = 5, v # 2 (mod 4) be an integer. Then O, (v,5,3) = O (v.5,3)+e
[18, 19, 37].

7 oL(v,5A)=® (v,5,A)+e for all integers v = 5and A = 0 (mod 4)
[7, 12, 15, 16]
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8) OL(v,5,5) = ¢ (v,5,5) for all even v, v 2 5 with the possible exceptions of v
€ {24,28,56,104,124,144,164,184}, [4].

9) Ol (v,5,6) = § (v,5,6) for all even integers v, v 2 5 with the possible
exception of v=18 [5].

10) O (v,5,7) = ¢ (v,5,7) for all even integers v, v 2 5 with the possible
exceptions of v =22,28,142,162, [6].

11) & (v,5,A)= ¢ (v,5,A ) forall v= 0 (mod 4), v 2 5,and 11 S A < 21
with the possible exceptions of (v, A) = (44,13) (28,17) (44,17) [8].

The previous two theorems do not cover the cases v = 2 (mod 4) and A=3;v
even,and A=9, 10;and v = 2 (mod 4) and A2 11. Our goal in this paper is

to deal with these cases. We shall prove the following:
Theorem 1.4 1) OL(v,5,3) = § (v,5,3) for v = 2 (mod 4), v 2 6 with the
possible exceptions of v € {18,26,122,126,138,142,146,158,162,178,186,

218,226,278}.

2) 0L(v,5A)=0 (v,5,A)for A =9, 10 and even v 2 5 with the possible
exceptions of (v,A ) = (28,9) (56,9).

3) OL(v,5,A) = (v,5,A )+e, where e as before, and for all v = 2 (mod 4),
v26,and11 < A< 19,

2. Recursive Constructions

In order to describe our recursive constructions we require the notions of

transversal designs, group divisible designs, and balanced incomplete block
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designs. For the definition of these combinatorial designs we refer the reader to
[4]. We shall adopt the following notations: a T[k,A ,m] stands for a
transversal design with block size k, index A, and group size m. A (k,A)-
GDD of type 12 2Y 3¢ denotes a group divisible design with block size k,
index A and a groups of order 1, b groups of order 2, etc. A B[v, k, A ] stands
for a balanced incomplete block design on v points, with block size k and index
A . Itis clear that if a B[v,k,A ] exists then OL(v, k, A)=Av(v-1)/k (k-
D=0 (v,k,A). In the case k=5 Hanani [26] has proved the following:

Theorem 2.1 Necessary and sufficient conditions for the existence of a B[v,5,A ]
are :

A (v-1)= 0(mod 4)and A v(v - 1) = 0 (mod 20) and (v, A ) # (15, 2).
The following obvious lemma is most useful to us.

Lemma 2.1 If there exista B [v, 5, A] and ot (v, 5, M) =¢ (v, 5, X)),
then a (v, 5, A+A) = ¢ (v, 5, A+ ).

Corollary 2.1 Let v = 0 or 6 (mod 10) be a positive integer. Then
o (v,5,A)=6¢(v,5 A) for A>9 with the possible exception of
(v, A) =(56,9).

Proof If v=0 or 6 (mod 10) then there exists a B[v, 5, 4]. On the other hand
for such v, oL (v, 5, A) = (v, 5, A) holds for A = 5, 6, 7 with the possible
exception of (v,A) = (56,5). Furthermore, 0.(56,5,13) = ¢ ((56,5,13) [8]. Now
invoke Lemma 2.1 to get the result.

Let v, h and k be positive integers, v>h. A (v, k, A ) minimal covering design

(or respectively optimal packing design) with a hole of size h is a triple (V, H,
B ) where V is a v-set, H is a subset of V of cardinality h, and B is a collection
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of k-subsets of V, called blocks, such that:

1) no 2-subset of H appears in any block;

2) every 2-subset {x, y} of V where at least one of x, y does not lie in H,
appears in at least (at most) A blocks;

3)IBI=¢ (vk,A)- ¢ (hkA), (IBI=Y(v.k,A) - Y(hk,A).
We shall make use of the following

Lemma 2.2 If there exists a (v,k,A) minimal covering design with a hole of size
h 2 k and 0i(h,k,A) = ¢ (h,k,A) then 0(v,k,A) = § (v,k,A).

In many places throughout this paper, instead of constructing a (v,5,A) minimal
covering design we construct a (v,5,A) minimal covering design with a hole of
size h> 5 where 0((h,5,A) = § (h,5,A) and then apply Lemma 2.2.

The proof of the following theorem may be found in [1, 26] and references

therein.

Theorem 2.2_(1) There exists a T[6,1,m] for all positive integers m, m # 2,3,
4, 6 with the possible exceptions of m € {10,14,18,22}.

(2) There exists a T[6,A,m)] for all positive integers A > 1.

By deleting (m - u) points from a group of T[6,A,m] and from all blocks
containing them we obtain a ({5,6}, A) - GDD of type moul, Furthermore, by
inflating a ({5,6}, A) - GDD of type mbdul by a factor of four and replacing the
blocks of size 5 and 6 by the blocks of a (5,1) - GDD of type 45 and 48
respectively we obtain a (5,A) - GDD of type (4m)5(4u)1. Hence, we have
the following.
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Theorem 2.3 Let m,uand A>1, m>u be positive integers such that
m, u = 0(mod 4). Then there exists a (5,A) - GDD of type m>u! .

In the case A = 3 and v = 2 (mod 4) we shall make use of the following

theorem.

Theorem 2.4 Letm,u=0(mod4) m2u 20 and h= 2 (mod 4), h 2 0 be
integers. Further, assume we have the following :

(1)a (5,3)-GDD of type m>u! . (2) a (u+h, 5,3) minimal covering design.
(3) a (m+h, 5, 3) minimal covering design with a hole of size h.

(4) {3(m+h)2 - 2(m-+h)} and {3h? - 2h} are the same congruency modulo 20.
Then ¢ (Sm +u +h,5,3) =¢(Sm+u+h,5,3) .

Proof Take a (5,3)-GDD of type m>u! and adjoin a set H of h points to the
groups. On the first five groups we construct a (m+h,5,3) minimal covering
design with a hole of size h and on the last group we construct a (u+h,5,3)
minimal covering design.

To complete the proof of Theorem 2.4, we need to show that the total
number of blocks obtained by this construction is equal to ¢(5Sm +u +h,5,3) .
But a (5,3)-GDD of type m3u! has the following number of blocks :

%(Zm2 +mu). ()

Since u+h = 2 (mod 4) it follows that a (u+h, 5, 3) covering design has the

following number of blocks

3(u+h—1)l
2

d(u+h, 5,3) = S%h) (u ; h) (3(u +h)-2)

4

2
3(u+h) —2(2)(u+h)+c a

where c is an integer uniquely determined by u and h.
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A (m+h, 5, 3) minimal covering design with a hole of size h has the following
number of blocks: ¢ (m+h, 5,3)- ¢ (h, 5,3) =

3(m + )2 —2(m + h) _[3112-211]
20 20

And since {3(m+h)? - 2 (m+h)} and {3h? - 2h} are the same congruency
3m2+6mh — 2m

meodulo 20, the above number is equal to 20 am
On the other hand,

2 —
o(5m + u + h) _3(6m+u+h) 2S(Sm +u+h)+c -

Where c is the same integer as in (II) since 5Sm+u+h and u+h are the same
congruency modulo 20.

Now it is easily checked that the total number of blocks in (I), (IT) and 5 times
the blocks in (III) is equal to the total number of blocks in (IV).

Theorem 2.5 Let m = 10 or 14 (mod 20). If there exists a (5,3) - GDD of type
m™and 0(m,5,3)=¢(m,5,3) then o(mn,5,3) = ¢ (mn,5,3).

The following two constructions are modifications of Theorem 2.4 and Theorem

2.18 of [13] respectively.

Theorem 2.6 If there exists a (6,\) - GDD of type 5Mand a (20 +h,5,A)
minimal covering design with a hole of size h then there exists a (20(n-
1)+4u+h,5,A) minimal covering design with a hole of size 4u+h where

0suss.

Theorem 2.7 If there exists a (6,A) - GDD of type 5" a (20+h,5,\) minimal

covering design with a hole of size h and a (20+h,5,A.) minimal covering design
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then there exists a (20n+h,5,A) minimal covering design.

The application of the above two theorems requires the existence of a (6,A) -
GDD of type 5™. Our authority for this is the following lemma of Hanani [26
p. 286]

Lemma2.3 (1) There exists a (6,A) - GDD of type 57 for A > 2.
(2) There exists a (6,10) - GDD of type 5°.

Theorem 2.8 Assume there exists (1) a (5,1) - RGDD of type 5 m as,A)-
GDD of type t6 where t= 0 (mod 4) (3)a (5t+h,5,A ) minimal covering

design with a hole of size h. Then there exists a (Smt+ut+h,5, A ) minimal

S(m-—1)
=

covering design with a hole of size tu+h where 0 < u<

Proof Take a (5,1) - RGDD of type 5 M and inflate it by a factor of t. To each
of u parallel classes we adjoin t new points and on each block of the u parallel
classes construct a (5,A. ) - GDD of type t6. On the remaining parallel classes
we construct a (5,A ) - GDD of type t° for each block in the parallel classes.
To the groups we adjoin a set H of 4 new points and on each group we
construct a (5t+h,5, A, ) minimal covering design with a hole of size 4 on H.
Then it is clear that the resultant design is a (Smt+ ut +h,5,A ) minimal

covering design with a hole of size ut+h.

Another notion that is used in this paper is modified group divisible design
(MGDD). We refer the reader to [4] for the definition. A (5,A ) - MGDD of
type n™ stands for a modified group divisible desgin with block size 5, index
A, groups size n and row size m. A resolvable modified group divisible design
is one the blocks of which can be partitioned into parallel classes. It is clear that
a(5,1) - RMGDD of type 5™ is the same as RTI[S5,1,m] with one parallel class
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of blocks singled out, and since RT[S,1,m] is equivalent to a T[6,1,m] we have

the following existence theorem:

Theorem 2.9 There exists a (5,1) - RMGDD of type 5™ for all positive
integers m, m#2, 3, 4, 6 with the possible exception of
m € {10,14,18,22}.

The following theorem is our main recursive construction and it is a

generalization of Theorem 2.3 of [3].

Theorem 2.10 Let r = 0 (mod 5) and q,s,t = 0 (mod 4) be positive integers.
Further, assume the following designs exist :
(1) a (r,1)- RMGDD of type r™ which is equivelant to (r-1) MOLS of order m
(2 a(5,A)-GDD of type t**, t'q! and t™s!
3)a (rt+h,5,A ) minimal covering design with a hole of size h.
Then there exists a (rmt+tu+wq+h+s,5,7\, ) minimal covering design with a

hole of size tu+wq+h+s where u and w are nonegative integers such that
0<u+w<m-1.

Proof Take a (r,1)-RMGDD of type r'™ and inflate this design by a factor of t.
To each of u parallel classes adjoin t new points and on each block of the parallel
classes construct a (5,A )-GDD of type t"*!. Toeachof w parallel classes
adjoin q new points and on each block of the parallel classes construct a (5,A -
GDD of type trq 1. Onthe remaining parallel classes we construct a (5,A )
GDD of type t" for each block in the parallel classes.

To the parallel class of size m we adjoin s new points and construct a (5,A )
GDD of type tMs1, Finally, to the groups we adjoin a set H of h new points
and on each group construct a (rt+h,5,A ) minimal covering design with a hole
of size h on H. It is clear that the total number of points we adjoined is

ut+wqg+s+h and that the resultant design is a (rmt+tu+wq+h+s,5,7\.) minimal



covering design with a hole of size tu+wq-+h+s.

To complete the proof of Theorem 2.10 we need to show that the number of
blocks obtained by this construction is equal to the number of blocks of a
(rmt+tu+wq-+h+s,5, A ) minimal covering design wilh a hole of size tu+wq+h+s.
Notice first that a (r,1)-RMGDD of type r™ has (m-1) parallel class each parallel
class has m blocks. Now following the steps of this construction we observe

that

Amu t2(r2 +r
1) The u parallel classes contribute ——28—) blocks (I)

2) The w parallel classes contribute lg(l)w (r2t? + 2rtq — rt2) blocks (II)
3) The remaining parallel classes contribute

Am(m-u-w-Dt’(r-1) blocks (I1T)

20
Ar(t?m2 + 2tms — t?m
4) The parallel class of size m contributes ( 30 ) blocks

aw)

5) Since t= 0 (mod 4), a (rt+h, 5,A ) minimal covering design with a hole of

242 _
size h has the following number of blocks: Ar#te + 27"1.2% Art +crt V)

where c is an integer determined by A and h. On the other hand, a
(rmt+tu+wq+h+s,5,A ) minimal covering design with a hole of size tu+wq+h+s
has the following number of blocks:

O (rmt+tu+wq+h+s,5,A ) - O (tu+wq+h+s,5,A );
And since q,s,t = 0 (mod 4), this expression can be simplified to:

Ar2m?2t2 + 2Arm{tu+wq+h +s)— Armt+crmt

20 (VD

Now it is easily checked that the number of blocks is (I}, (II), (IIT), (IV) and m
times the blocks of (V) is equal to the number of blocks in (VI).
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Again the proof of the following theorem is very similar to the proof of
Theorem 2.4 of [3].

Theorem 2.11 If there exists (1) a (5,1)-RMGDD of type 5m 2)a 5,A )-GDD
of type 4™~ 1g1 (3) a (20, 5, A ) minimal covering design (4) a (24,5,\)
minimal covering design with a hole of size 4. Then there exists a

(20m+4u+4,5,7&. )} minimal covering design with a hole the size 4u+4 where
0<u<m-1.

Proof Take a (5,1)-RMGDD of type 5 ™ and inflate this design by a factor of 4.
To each of u parallel classes, 0< u< m-1, adjoin four points and on each block
of these parallel classes construct a (5,A )-GDD of type 46 . On the remaining
blocks of the parallel classes construct a (5, A, )-GDD of type 43 For each
block of the parallel class of block size m, after inflating by 4, adjoin four new
points {a,b,c.d} to the last group and then construct a (5, A )-GDD of type
qm-lgl, Finally on the first (n-1) groups we construct a (20, 5, A.)
minimal covering design and on the last group we construct a (24, 5, A)
minimal covering design with a hole of size 4 such that the hole is {a,b,c,d}. It
is clear that this construction yields a (20m+4u+4, 5, A ) minimal covering

design with a hole of size 4u+4.

Theorem 2.12 [3] If there exist (1) a (5,1) - RMGDD of type 5m 2 a,\N)-
GDD of type 4™ 's! (3) a (20+h,5,\ ) minimal covering design with a hole of
size h. Then there exists a (24(m-1)+h+s,5,A ) minimal covering design with a
hole of size 4(m - 1)+h+s.

It is clear that the application of the above theorems requires the existence of a
(5,A)- GDD of type 4™s!. We observe that we may choose s =0 if m =
4(m -1)

1(mod 5), s=4 if m=0 or 4(mod S) and s = 3

if m =1 (mod 3). (See

[3]). We may also apply the following:
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Theorem 2.13 [25] There exists a (5,1) - GDD of type 4™81 where m= 0 or 2
(mod 5), m2 7 with the possible exception of m = 10.

Our last recursive construction is the following:

Theorem 2.14 If there exists (1) (5,1) - MGDD of type 5m (2)a (5,A) - GDD
of type 4m (3) a (20+h,5,A) minimal covering design with a hole of size h (4)
0(20+h,5,A) = ¢ (20+h,5,A) Then OL(20m+h,5,A) = ¢ (20m+h,5,A).

Proof Take a (5,1) - RMGDD and inflate this design by a factor of 4. Replace
all its blocks by the blocks of a (5,A ) - GDD of type 4%, Addh points to the
groups and on the first m - 1 groups construct a (20+h,5,A) minimal covering
design with a hole of size h and on the last group construct a (20+h,5,A)
minimal covering design . Finally, on the blocks of size m construct a (5,A ) -
GDD of type 4™.

3. The Structure of Packing and Covering Designs

Let (V, B) be a (v, k, A) packing design, for each 2-subset e = {x, y} of V define
m(e) to be the number of blocks in B which contain e. Note that by the
definition of a packing design we have m(e) < A for all e.The complement of
, B), denoted by C (V, [3) is defined to be the graph with the vertex set V and
edges e occurring with multiplicity A-m(e) for all e. The number of edges
(counting multiplicities in C (V, B)) is given by 7\.(‘2’)—| B |(l§) The degree
of each vertex is A(v - 1) - I, (k - 1) where 1, is the number of blocks

containing x.
In a similar way we define the excess graph of a (V, [3) covering design denoted

by E(V, B), to be the graph with vertex set V and edges e occurring with
multiplicity m(e) - A for all e. The number of edges in E(V, B) is given by
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| B l( 12() - )\{X) ; and the degree of each vertex is I, (k - 1) - A(v - 1) where

r, is as before.

x

The following lemmas are easy to prove:

Lemma 3.1 Letv = 2 or 4 (mod 5) be a positive integer greater than 5. Then
the complement graph of a (v,5,4) optimal packing design consists of v-2

isolated vertices and another two vertices joined by four edges.

Lemma 3.2 The complement graph of a (v,5,1) optimal packing design, v = 2
(mod 20), and the excess graph of a (v,5,3) minimal covering design, v = 10 or
14 (mod 20) is a 1-factor.

Lemma 3.3 The excess graph of a (v,5,4) minimal covering design forv = 2 or
4 (mod 20) consists of v-3 isolated vertices and other three vertices the pairs of

which are joined by two edges.

Lemma 3.4 Letv = 3 (mod 10), v 2 23 be positive integer. Then the
complement graph of a (v,5,2) optimal packing designs consists of v-3 isolated

vertices and 3 other vertices the pairs of which are connected by 2 edges.

Theorem 3.1 If there exists

1A (v,S,)» ) covering design with ¢ (v,5,A) blocks.

2) A (v,5,\") packing design with  (v,5,A. ") blocks.

3) O (v5A)+ Y (v,5A)=0 (V.5 A+A").

4) The complement graph C(V, B ) of the packing design is isomorphic to a
subgraph G of the excess graph E(V, P ) of the covering design. Then there
exists a (v,5,7\. +A7) covering design with a (b (v,5,7\.+7\, ’) blocks, that is, a

(v,5,A +A.’) minimal covering design.
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4, Notations and a Few More Designs

In this short section we discuss the notations used through this paper and

construct a few more minimal covering designs for 2<A<7.

A block <k k+m k+n k+j f(k)> (mod v) where f(k) = a if k is even and f(k)=b
if k is odd is denoted by <0 m n j> U {a, b} (mod v). Similarly, a block <k
k+m k+n k+j f(k)> where f(k) =aifk = 0 (mod 4); f(k) =b ifk = 1 (mod
4); fk) =cif k = 2 (mod 4), and f(k) =d if k = 3 (mod 4) is denoted by <0

m n j> VU {a, b, c,d} (mod v). Note that a, b, ¢, d are not necessarily distinct.

In a similar way, a block <(0, k) (0, k+m) (1, k+n) (1, k+j) f(k)> mod (-, v)
where f(k) = a if k is even, f(k) = b if k is odd is denoted by <(0, 0) (0, m) (1,
n) (1,j)> U {a,b} mod (-, v).

We now improve the result of Theorem 1.3.

Lemma 4.1
(i) 0L (v,5,5) = O (v,5,5) for v = 24,104,124,144,164,184.
(i) o (18,5,6) = § (18,5,6)
(iii) O (273,5,1) = $ (273,5,1) + L.
(iv) 0. (28,5,7) = § (28,5,7).
Proof For a (24,5,5) minimal covering design proceed as follow:

1) Take a (24,5,1) optimal packing design. This design is constructed by
deleting all blocks through the point 25 from the blocks of a B[25,5,1].
Assume in this design we have the block <a b ¢ 1 22>. In this block change

22 to 24.

2) Take a (26,5,1) minimal covering design with a hole of size two. This
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design is constructed by taking a B[25,5,1] then partitioning the 25 points of
B[25,5,1] into quadruples and adjoining a new point, say 26, to these
quadruples. Since 25 = 1 (mod 4) there will be a pair of points, say {25, 26}
which we delete. Further, we may assume that the repeated pairs in this design
are exactly those missing in design (1). We also can assume that we have the
following two blocks <a b ¢ 24 25> <d e f 24 26>

In the first block change 25 to 22 and in the second change 26 to 23. In all
other blocks change 25 and 26 to 24.
3) Take the (23,5,2) optimal packing design in [14]. This design has a triple,
say, {21, 22, 23} the pairs of which appear in zero blocks. Furthermore this
design has the following four blocks: <1 2 3 21 4>

<567 228 <9 101123 12> <de f 5 23>

In the first block change 4 to 22, in the second change 8 to 23, in the third
change 12 to 21, and in the fourth change 23 to 24.

4) Take a B[25,5,1] and assume that the blocks through the point 25 are
<8 13 14 21 25><12 15 16 22 25><4 17 18 23 25>
<1 2319 25><5 6 7 20 255<9 10 11 24 25>

Then in the first block change 25 to 22, in the second change 25 to 23, in the
third change 25 to 21, in the fourth change 25 to 4, in the fifth change 25 to 8,
and in the sixth change 25 to 12. Then it is easy to check that the above four
steps yield the blocks of a (24, 5, 5) minimal covering design.

For v = 104,144,164,184 apply Theorem 2.14 with h = 4, A =5 and m=5,7,8,9
and see [11] for a (5,5)-GDD of type 45,47,48,49 and [4] for a (24,5,5) minimal
covering design with a hole of size 4.

For v=124 apply Theorem 2.10 with m=r=5, h=s=t=u=4, w=0 and A =5.
(ii) For an (18,5,6) minimal covering design proceed as follows:

1) Take an (18,5,4) packing design with Y/(18,5,4) -1 blocks [17]. This design

has a triple, say, {a, b, c} the pairs of which appear in zero blocks.
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2) Take the (18,5,2) minimal covering design in [40]. It can be seen that there
is a triple, say {a,b,c} the pairs of which appear in five blocks.

3) Adjoin the block <a b c> to the blocks obtained in (1) and (2). Then it is
easy to check that the above three steps yield the blocks of an (18,5,6) minimal
covering design.

(iii) For v = 273 apply Theorem 2.10 withr=5,t=4,m=12, u=6,h = 1,
s=8,w=0and A =1.

(iv) For a (28,5,7) minimal covering design proceed as follows:

1) Take a (27,5,4) minimal covering design. This design has a triple, say,
{3,6,27} the pairs of which appear in six blocks. assume in this design we have
the block <a b ¢ 27 3 >. In this block we replace 3 by 28.

2) Take a (29,5,2) packing design with (29, 5, 2)-1 blocks [14]

The complement graph of this design consists of 1

the following 12 edges. Assume in this ' :
design we have the block <a b ¢ 28 29 >. 27 . 8
In this block replace 29 by 3 and in all
other blocks replace 29 by 28. 29 . 3
3) Take the (30,5,1) minimal covering design in [29]. Close observation of this
design shows that its excess graph consists of three mutually isomorphic graphs
G 1.G 5 and G 3 so that the vertices of these graphs partition the point set of

the design. Hence G 1 has ten vertices and 15 edges. We may permute the
points of this design so that the excess graph contains the following graph.
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In this design we need to replace 29 and 30 by 28 and to gain the edges of the
complement graph of design (2). Notice that the edge { 28, 29 } can be dismissed
since 29 is to be replace by 28. Further, the edges of the triple { 3, 6,27 } are
repeated in design (1), and the edges {27,28} and {3,28} are gained in step (1) and
step (2) respectively. Also the pairs {6,10} {6,28} {3,28} {3,29} {10,29} and
{10,27} are edges in the excess graph of design (3). Hence the previous three
steps yield a design such that each pair appears in at least seven blocks except
(10, 28) which appear in exactly six blocks. Assume in design (3) we have the
following three blocks : <1232830><4562930><7892829>,
where { 1,2,...9 } are arbitrary numbers. Then in the first block replace 30 by
10, in the second replace 29 by 8 and 30 by 27 and in the third replace 29 by 12.
Finally, assume in design (2) we have the block < 12 13 14 15 28 > and in
design (1) we have the block < 4 5 6 14 27 >, In the first block replace 28 by 10
and in the second replace 27 by 28.

5. Covering with Index 3, v = 2 (mod 4)

The following construction combines other known designs to handle the case
v= 2 (mod 20).

Lemma 5.1 (a) OL(v,5,3) = ¢ (v,5,3) for v = 22,42,62,82,102.
(b) There exists a (v,5,3) minimal covering design with a hole of size 2 for
v =42,62,82.
(c) There exists a (v,5,3) minimal covering design with a hole of size 6 for
v =38,46,58,66,86,106.

Proof (a) For v = 22 the construction is as follows

1) Take a B[21,5,110n {1, 2,.. ., 21} and assume we have the following three
blocks <1 2 3 4 21> <5 6 7 8 21> <9 10 11 12 21>. In these three
blocks change 4, 8 and 12 to 22.
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2) Take the (v+1,5,2) optimal packing design in [14] on {1, 2, .. ., 23}. This
design has a triple {21,22, 23}, say, the pairs of which appear in zero blocks
while each other pair appears in two blocks. Close observation of this design
shows that we may assume we have the following four blocks <1 2 3 14 23>
<56 7 15 23>,<9 10 11 16 23>,<4 8 12 19 23> where {14, 15, 16,
19} are arbitrary numbers. In the first block change 23 to 4, in the second
change 23 to 8, in the third change 23 to 12 and in the fourth change 23 to 21.
In all other blocks we change 23 to 22.

For v = 42, 62, 82 the construction is as follows:

1) Take a B[v -1, 5, 1]. Assume in this design we have the blocks
<abcdv-1>and <xyzmv-1>. In the first block we replace d by v and in
the second block we replace m by v.

2) Take a (v,5,1) optimal packing design which is equivalent to a (5,1) - GDD
of type 2" whereu = % [2]. Assume the groups are (2i+1, 2i+2) for

i€ Z(y.2)12)

3) Take a (v+1,5,1) minimal covering design with a hole of size three, say {
v-1, v, v+1 }, such that the excess graph contains a 1 - factor on v - 2 vertices.
We may assume that the 1- factor is (2i+1, 2i+2) for i€ Zy_4y/p. In this
design we replace v+1 by v. Further, assume we have the blocks<abce v>,
< xyzdv>. In the first block replace v by d and in the second replace v by m.

4) Finaly,adjoin the block < v-1 vimed>.

To complete our construction we have to show that there exists a (v+1,5,1)
minimal covering design with a hole of size three such that the excess graph

contains a subgraph which is a 1 - factor on v - 2 vertices for v+1 = 43,63,83.

For v = 42 see [38], for v = 62,82 see [4].
For a (102,5,3) minimal covering design let X =7, X Z 45U Hy, . On
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Z,xZ4yU H 5 constructa (93,5,1) minimal covering design with a hole of
size 13 on Hy3 [25]. Further, take the following blocks:

<(i, 0) G, 10) (i, 20) (i, 30) h ;4> orbit length 10,i =0, 1.

<(@i, 0) G, 1) (i, 3) G, 18)>U {h, h,},i=0,1,

<@, 0) (i, 5) G, 11) (i, 26)>U {h3, h4}.i=0, 1.

<@, 0) G, 7) G, 17) (i, 26)>U {hg, hg}.i=0, 1.

<(0,0) (0, 13) (1, 0) (1,39)> U {h s, h ¢}

<(0,0) (0,3) (1,5 (1, 12)>U {h 7, h g}

<(0, 0) (0, 9) (1, 10) (1, 23)>U {h }g, h g}

<(0,0) (0, 11) (1,17 (1,30)> U {hy;, hy}

<(0,0)(0,4) (1,7) (1,38)hy>  <(0,0) (0,8) (1,21) (1,37) hg>
<(0,0)(0,12) (1,4) (1,8 hg>  <(0,0) (0,16) (1,11) (1,31) ho>
<(0,0) (0, 5) (1,25) (1,33) hy;> <(0,0) (0,6) (1,22) (1,24) hy,>
<0,0)(0,4) (1,0) (1,Hhq3>  <0,0)0,8)(1,1)(1,5hp
<(0,0)(0,12) (1,2)(1,31)h15>  <(0,0) (0, 16) (0, 8) (1,26) h 14>
<(0, 0) (0, 18) (1, 29) (1, 34) h 17> <(0, 0) (0, 1) (0, 18) (0, 24) h 15>
<(0,0)(0,7)(0,20) (1,28) h 19>  <(0,0) (0, 13) (1, 22) (1,38) h g >
<(0,0) (0,2) (1,6) (1, 14) h oy > <(0,0) (0,20) (1, 7) (1,35 hyp >

To complete the construction for the (102,5,3) minimal covering design we fill

the hole, H,,, with a (22,5,3) minimal covering design.

(b) For a (v,5,3) covering design with a hole of size two, v=42, 62, 82,proceed
as follows:
1) Take a B[v-1, 5, 1].
2) Take a (v,5,1) optimal packing design, which is equivalent to a (5,1) - GDD
of type 2% where u= Y | and assume that {v-1, v} isa group, [2].
3) Take a (v+1,5,1) minimal covering design with a hole of size three, say

{ v-1 v v+1 }, such that the excess graph contains a 1 - factor on v - 2
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vertices. We may assume that the 1- factor here covers all but the pair {v-1, v}
of the complement graph of the design in (2). Replace v+1 by v, then it is easy
to see that the above 3 steps yield the blocks of a (v,5,3) covering design with a
hole of size two for v=42, 62, 82.

(c) See [6].

Lemma 5.2 0(v,5,3) = § (v,5,3) for v= 2 (mod 20), v222 with the possible
exceptions of v=122,142,162.

Proof For v = 22,42,62,82,102 the result follows from Lemma 5.1.
For v = 2 (mod 40) v 2 202 take a (5,3)- GDD of type 40™ [11]. Adjoin two

points to the groups and on all the groups except one we construct a (42,5,3)
minimal covering design with a hole of size two and on that group construct a

(42,5,3) minimal covering design.

For v = 262 apply Theorem 2.4 with m = 44 u =32 and h = 10. To complete
the construction of v = 262 we need to construct a (54, 5, 3) minimal covering
design with a hole of size 10. For this purpose let X =Z, X Z,, U H,,.
Then take the following blocks mod (_, 22)

<(@0)@ 1)@3) (5@ 13)> a=0,1

<(0,0 0,4 (0,9 (0, 15) (1, )> <(0,0) (1,2) (1, 3) (1, 6) (1, 10) >
<(0.0)(0,3) (0,9 (1,16 >U {h, h,}

<©0,0 (1,0 (1,5, 11> Uhy, hy)
<©0,00,1)(1,03>Uh;,h,)

<(0,0)(0,3) (1,7 (1,20)> U {hs, h4}

<(0,0)(0,5 (1,14) (1,15 > U {hs, h)

<(0,0) 0.7 (1,13)(1,18)> U{h, hg}

<(0,0) (0, 11) (1, 1) (1, 8) > U {hg, h,o} <(0,0)(0,1)(1,00(1, D hy>
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<(0,0)(0,2) (1,3) (1, 15) h4> < (0, 0) (0, 4) (1, 16) (1, 18) h 5>
<(0,0)(0,6) (1,4) (1,17 hg> <(0,0)(0,7) (1,9 (1,17 hy>
<(0,0) (0,8) (1,5) (1, 16) hg> <(0,0) (0, 8) (1, 4) (1,20) hg >
<(0,0) (0, 10) (1,9 (1,15 h g >

For v = 182, 222, 302, 342, apply Theorem 2.4 with (m,u,h) = (32,16,6),
(40,16,6), (60,0,2), (60,40,2) respectively .

For v = 582 apply Theorem 2.8 with m=13, t=8, h=6 and u=7 and then apply
Lemma 2.2 for the hole of size 62.

For all v = 22 (mod 40), v2 382, v# 582 simple calculations show that v can
be written as v = 40m+8u+h+s where m,u,h, and s are chosen so that
1) There exists a (5,1)-RMGDD of type 5™;
2) m=0,1 or 4( mod 5), m#10, 14; s=8 if m=0 or 4 (mod 5) and
s=0 if m=1 (mod 5);
3) 0< u€<m-1, r=5, h=2,6, t=8;
4) 8u+h+s = 22,42,62,82,102;
5) There exists a (5,1.)-GDD of type 8™s1;
Now apply Theorem 2.10 with A=3, and w=0 to get the result.

Lemma 5.3 0(v,5,3) = ¢ (v,5,3) for v= 10 (mod 20), v2 10.

Proof: For v=10,30 see [6].

For v2 50 take a (5,3)-GDD of type 1071, vz 230, 270, 390 and then apply
Theorem 2.5 [11].

For v = 230,390 apply Theorem 2.10 with r=5, h=6, A=3, s=t=8, u=2, w=0, and

m=5,9 respectively. It should be noted that when invoking Theorem 2.10 for
v=230,390, we require a (5,3)-GDD of type 86 and 810, our authority is [ 11]
For v = 270 take a T[5,3,54] and then apply Theorem 2.5.
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Lemma 5.4 0(v,5,3) = ¢ (v,5,3) for v= 14 (mod 20), v=> 14.
Proof: For v=14,34,54,74,94 see [6].

For v = 114, 134 see next table. In general, the construction in this table, and all

other tables to come is as follows: Let X=Z,, _  UH _ or

2, X2Zv=n UH, whereH ={hy,h,,...h}is the hole. The blocks
2

are constructed by taking the orbit of the tabulated base blocks, mod (v-n) or

(v—n)
mod 5 -

For v = 154 apply Theorem 2.5 and see [11] for a (5,3)-GDD of type 141! .

For v = 254 apply Theorem 2.4 with m = 44, u = 24, and h = 10 and see Lemma

5.2 for a (54,5,3) minimal covering design with a hole of size 10.

For v= 174, 194, 274, 294, 314, 334, 354 apply Theorem 2.4 with h=6 and
(m,u)= (32,8),(32,28),(52.8), (52,28), (60, 8), (60, 28), (60, 48) respectively
and see [6] for a (38,5,3) and a (58,5,3) minimal covering design with a hole of

size 6.

For v=534,554,574,594 apply Theorem 2.8 with m=13, A=3, t=8, h=2,6 and
u=1,4,6,9 respectively and see Lemma 5.1 for the appropriate (v,5,3)
minimal covering design with a hole of size 2 and 6.

For all other values of v, simple calculations show that v can be written as v=
40m+8u+h+s where m, u, h, and s are choosen as in Lemma 5.2 with the

difference that 8u+h+s=14,34,54.74.94.

Now apply Theorem 2.10 with A=3, t=8, and w=0 to get the result.
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y

Point Set

Base Blocks

114

134

Zys VHy

ZippVHy,

<07 52 59>U {hyh,,} half orbit <0 1 37 12>

<0 821 46 72><0 10 33 61 77><0 14 34 63 82>
<0 15 39 57 74><0 6 24 46 54><0 1 3 9 25>

<04 31 52 69><0 5 34 47 67><0 10 28 54 68>

<0 11 41 60 72><0 1529 50>U {h}!_,
<0113449>Uh}}_; <01326>U {hy, hy}
<04937> U {hs, hy} <072039>U {hs, h)
<0102763>U {h7, hg}

<0 1243 59>U {hg, h}.

On Z 50V Hg construct a (129,5,1) minimal
covering design with a hole of size 9 say Hg. Further,
take the following blocks

<0 30 60 90 h,, > orbit length 30 <0 1 6 14 35>
<0 7 40 56 84><0 9 26 57 67><0 18 38 68 98>

<0 19 42 66 88><0 4 20 48 66><0 3 15 37 39>
<0138>Ufh;,h,} <041323> Uth,h,}

<0 11 49 80>V {hg, he} <0 11 53 68> U fhy, hg}
<0 12 37 87>V [hg, h,,}

<014 41 73>U {hy;, hy,)

<0 17 56 77> U {hy,, h,,} <0 6 35 615U {h}i?

i=11

Lemma 5.5 0(v,5,3) = ¢ (v,5,3) for v&= 6 (mod 20), v 6 with the possible
exceptions of v=26,126,146,186,226.

Proof: For v=6,46,66,86 see [6].
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For v= 6 (mod 40), v 2 206, take a (5,3)-GDD of type 40". Adjoin six points
to the groups and on all but one group construct a (46,5,3) minimal covering
design with a hole of size six and on that group, construct a (46,5,3) minimal

covering design.

For v=106 let X=Z.5 X Z55\UHg. On Z, X Z 55U H4 constructa
B[105,5,1] with a hole of size 5, say, <h thyhzhhg >. Further take the
following blocks mod (-, 50)

<(0, 0) (0, 25) (1, 0) (1, 25) h ¢ > half orbit

<(@i, 0) (i, 2) (i, 10) (i, 16) (i, 29)> i=0,1 <(0, 0) (0, 1) (0, 4) (0, 24) (1, 2)>
<(0, 0) (1, 3) (1, 4) (1, 8) (1, 10)> <(0, 0) (0, 7) (0, 18) (0, 35) (1, 41)>
<(0,0) (1, 5) (1, 15) (1, 27) (1, 42)> <(0, 0) (0, 1) (0, 25) (1, 19) (1, 37)>
<(0, 0) (0, 13) (1, 9) (1, 29) (1, 45)> <(0, 0) (0, 9) (0, 12) (1, 0) (1, 5)>
<(0, 0) (0, 14) (1, 7) (1, 31) (1, 40)> <(0, 0) (0, 5) (0, 20) (1, 17) (1, 26)>
<(0, 0) (0, 16) (1, 30) (1, 38) (1, 49)> <(0, 0) (1, 20) (1, 31) (1, 32) (1, 35)>
<(0, 0) (0, 4) (0, 22) (1, 23) (1, 40)> <(0, 0) (0, 2) (0, 19) (1, 13) (1, 39)>
<(0, 0) (0, 9) (0, 21) (1, 4) (1, 24)> <(0,0) (0, 5) (1, 13) (1, 16) h | >

<(0, 0) (0, 6) (1, 30) (1, 48) h, > <(0,0) (0,7)(1,9)(1,34) h3 >

<(0,0) (0, 8) (1,22) (1,29) h4 > <(0,0) (0, 10) (1,7) (1,35) h5>

<(0, 0) (0, 11) (1, 10) (1, 39) h¢ >

For v = 166 apply Theorem 2.4 withm=32,h=6andu=0.

For v = 266,306,346,386,466 apply Theorem 2.4 with (m,u,h) = (52,0,6),
(60,0.6),

(60,40,6), (64,56,10), (80,60,6) respectively and see [6] for a (74,5,3) minimal
covering design with a hole of size 10.

For v = 586, 626 and 786 apply Theorem 2.8 with t =8, A =3 and (m,u,h) =
(13,8,2), (13, 13,2), (17,13,2) respectively.
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For v = 986 apply Theorem 2.10 withm=11,t=16,h=2,r=5,s=0,u=6,
w =1, and q =8 and see [11] for a (5,3)-GDD of type 16!1.

For v = 1186,1386,1586,1786,1986 apply Theorem 2.10 withr =10, t=4, w =
0, h=6 and (m, u,s) = (27,23,8), (32,23,8), (37,23,8), (43,1,56), (47,23,8)
respectively.

For all other values of v= 186 (mod 200), v2 2186 write v = 40m + 346 then
apply Theorem 2.10 withr=5,t=8,h=2,u=43,s=q=0and m= 1 (mod
5).

For all other values of v, v# 186 (mod 200), v# 146,166,186,226 write v =
40m + 8u + h + s, then the proof is the same as Lemma 5.2 with the difference
that 8u +h + s = 6,46,66,86,106.

Lemma 5.6 O (v,5,3) = ¢ (v,5,3) for all v=18 (mod 20) with the possible
exceptions of v = 18,138,158,178,218,278.

Proof For v = 38,58,78,98 see [6].

Forv=118let X=Z;5 U Hg. Then the blocks are:

<0 43 56 99> Ufhs hg} half orbit.

<0 13728 <05 19 64 81> <0 8 32 73 83> <0 11 34 49 69>
<0 12 30 56 72> <0 1 3 9 19> <0 5 25 57 83> <0 11 35 72 84>
<0 13 36 66 81> <0 14 41 62 79> <0 4 22 42 66> <0 1 3 7 12>
<0 7 15 55 85> <0 14 31 67 83> <0 9 22 55> U {hi};‘=l

<0 10 33 87>U{hhjy} <0 19 41 80>Uthg hyl

<0 21 47 84>Uihjshy)

For v = 258 apply Theorem 2.4 with m = 44, u = 28, and h = 10, see Lemma

5.2 for a(54,5,3) minimal covering design with a hole of size 10.

For v = 198,238,298,318,338,358,378,458,538,558,578,598, apply Theorem
2.4 as indicated in the table below and see [6] and Lemma 5.1 (c) for the
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appropriate (v,5,3) minimal covering design with a hole of size h.

v 198 238 298 318 338 358 378 458 538 558 578 598

m 32 40 52 52 60 60 64 8 100 100 100 100

u 32 32 32 52 32 52 48 52 32 52 72 92

For v= 618,778 apply Theorem 2.8 withr=35,t=8, h=2 and (m,u) = (13,12)
(17,12) respectively.

For v = 978,1778 apply Theorem 2.10 withr=5, t = 12, w = 0 and (m,u,h,s)
= (15,6,6,0), (29,2,2,12) respectively.

For v =1178,1378,1578,1978 apply Theorem 2.10 withr=10,t =4, h = 6,
w=0,u=2l,s=8and m =27,32,37,47 respectively.

For v= 178 (mod 200), v2 2178 write v = 40m + 338 then apply Theorem
2.10 withr=5,t=8,h=2,s=w=0,u=42 and m= 1 (mod 5).

For all other values of v, v# 138,158,178,218,258,278 write v = 40m + 8u +
h +s and then the proof is the same as Lemma 5.2 with the difference that 8u +
h + 5 =38,58,78,98,118.

In this section we have shown the following:
Theorem 5.1 Let v= 2 (mod 4), v2 6 be an integer. Then 0. (v,5,3) =

¢ (v,5,3) with the possible exceptions of v

€ {18,26,122,126,138,142,146,158,162,178,186,218,226,278}.

From now on we make use of Theorem 2.10 in its simplest form, that is, when
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r=5, w=0and t=4. It should be noted that the requirement in (1) is

equivalent to 4 MOLS of order m. This Theorem can be stated as follows:

Theorem 5.2 If there exists (1) a (5,1)-RMGDD of type 5™, (2) a (5.A) - GDD
of type 4mgl, (3) a (20+h,5,A ) minimal covering design with a hole of size h,
then there exists a (20m+4u+h+s,5,A ) minimal covering design with a hole of

size 4u+h+s where 0 < u < m-1.

6. Covering With Index 9

In this section, we distinguish the following cases.
6.1 v=4 (mod 20)

Lemma 6.1 (a) 0(v,5,9) = §(v,5,9) for v = 24,44,64,84.

(b) There exists a (24,5,9) minimal covering design with a hole of size 4.

Proof For a (24,5,9) minimal covering design with a hole of size 4 proceed as
follows:

1) Take a (23,5,2) optimal packing design [14]. In this design each pair appears
in precisely two blocks except a triple, say, {21,22,23}, the pairs of which
appear in zero blocks.

2) Take two copies of a B[25,5,1]. Assume in each copy we have the block
<21 22 23 24 25>. Delete this block and in all other blocks change 25 to 24.
3) Take a (24,5,5) minimal covering design with a hole of size 4 [7].

For a (24,5,9) minimal covering design, proceed as follows:
1) Take a (24,5,4) optimal packing design [17]. By Lemma 3.1 each pair of
this design appears in four blocks except one pair, say, {23,24} that appears in

zero blocks. Assume that this design has the following three blocks through the
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point24:<abc2422><def241><ghi2d4 5> where {ab,,}, {de,f)
and {g,h,i,} are arbitrary numbers not necessarily disjoint. Then in the first block
replace 22 by 23, in the second replace 1 by 23 and in the third 5 by 23.

2) Take the (24,5,5) minimal covering design in Lemma 4.1. Close
observation of this design shows that the following pairs appear at least six
times {23,24}, {22,24}, {5,24) {1,24}, {6,23}, (15,23} and {16,23}. Further,
close observation of this design shows that we may permute the points so that
we have the following blocks: <abc623><def1523><ghi 1623 >.
In the first block replace 23 by 22, in the second replace 23 by 1 and in the third
replace 23 by 5. Then it is easy to check that the above construction yields the

blocks of a (24,5,9) minimal covering design.

The construction of a (v,5,9) minimal covering design for v = 44,64,84, is given

in the following table.

A% Point Set Base Blocks
44 Z36¢JHg On Z34UH; construct a B[41,5,5] with a hole of

size5, say, Hs. Further, take the following blocks:
<09 18 27 hg>+i, i € Zg.

<0 7 18 25> U {hq,hg}, half orbit.
<021016h;> <035 17hy><01 3 11 hs>
<0416 21 hy><06 13 27 hs> <01 12 16 hg>
<061323hg><0125hy> <03923hy,
<049 28 hg> <07 1525 hg>

64 ZsgWHg On Zsg \U Hs construct a B[61,5,7] with a hole of

size 5, say, Hg. Furthermore, take the following blocks:
<0 14 28 42 hg>+i, i € Z14. <04 826 h6>
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<013 11 hg> <05 12 40 hy> <0 6 15 32 hy>

<0 6 9 42 hg> <0 9 25 36 hg> <0 5 12 295U {h},hy}
<0 10 23 41>U {h3, hy)

<0 13 22>U(hs, hs, hy, hg}.

84 Z;4UHg On Z,6UHjg construct a B[81,5,7] with a hole of
size 5, say Hg. Furthermore, take the following
blocks:
<019 38 57 hg>+i,i € Zjg <013717>
<0 524 42 54> <0 8 31 51>U{hy,hy}
<0 9 35 48>U{h3,hy} <0 11 32 47 hg>
<013 11 hg> <0 4 20 38 hy> <0 6 32 49 hy>
<0 7 29 52 hg> <0 12 25 40 hg>
<0 5 14 35> U{hg,hg,h7,hg}.

Lemma 6.2 Let v =4 (mod 20) be a positive integer greater than 4. Then
ouv,5,9) = 4(v,59).

Proof For v = 24,44,64,84 the result follows from Lemma 6.1. For v =104
apply Theorem 2.14 withm=5,h=4and A = 9. For v > 124, v # 144,
simple calculation shows that v can be written in the form v = 20m+4u+h-+s
where m, u, h and s are chosen so that:

1) there exists a (5,1) - RMGDD of type 5" ;

2) there exists a (5,9) - GDD of type 4™ s!;

3) 4u + h + s =24,44,64,84;

4) 0<u<m-1,s=0(mod4)and h=0or4.

Now apply Theorem 5.2 with A =9 and the result follows.
For v = 144 Apply Theorem 2.7 with n=7 h=4 and A =9 and see Lemma 2.3 for
a (6,9)-GD of type 57.



6.2 v =8 (mod 20)
Lemma 6.3 0(v,5,9) = $(v,5,9) for v = 8,48,68,88.

Proof For v = 68 the construction is as follows:

take a T[6,9,3] [26] and delete one point from last group. Inflate the resultant
design by a factor of 4, that is, replace the blocks of size 5 and 6 by the blocks
of a (5,1) - GDD of type 4° anda(5,1) - GDD of type 45 respectively.
Finally on the groups construct a (v,5,9) minimal covering design where v =
8,12. See Lemma 6.5 for a (12,5,9) minimal covering design.

For v = 8,48,88, sce the following table.

v Point Set Base Blocks
8 Zg <0246>+,i € Z3<01345><0123 5> twice
48 Z49\IHg  Take three copies of a (47,5,2) minimal covering design

with a hole of size 7, say, H [14]. Furthermore, take
the following blocks:

<08 16 24 32>+, i € Zg, twice. <09 2029 hy>
half orbit , <02 6 15 28> <0 6 10 22 hg>

<0 1320 hg> <012 7>U{h}4

<0 3 14 21>U{h;}8;_5 <015 105U {hy,hy)

<0 1728>U{h3,hg} <03 11 26>U(hshg}

88 Zgy\JHg  Take three copies of an (87,5,2) minimal covering
design with a hole of size 7, say H; [14]. Take also an
(80,5,1) minimal covering design [35]. Furthermore,
take the following blocks:
<0 16 32 48 64>+i, i € Zg, twice.
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<0 13 40 53 hy> half orbit. <0 13 39 59>

<0 51533 61><06 14 51 63> <0 4 26 38 hg>
<0 4 25 31 hg> <0 11 25 305U {h;} 4

<0 13 10>U{h;}8;.5 <0718 51>U{h;,h,)
<0 8 23 43>U{h3,hg} <0 9 26 39>U{hs,hg).

Lemma 6.4 Let v= 8 (mod 20) be a positive integer. Then Ql(v,5,9) =
#(v,5,9) with the possible exception of v = 28. ’

Proof For v = 8,48,68,88 the result follows from the previous Lemma. For v
2 108, v #128,168,208,268 simple calculation shows that v can be written in
the form v = 20m + 4u+h+s where m, u, h, and s are chosen as in Lemma 6.2
with the difference that 4u+h+s = 8,48,68,88, and h = 0 or 4. Notice that a
(20,5,9) minimal covering design exists by Corollary 2.1.

Now apply Theorem 5.2 with A, = 9 and the result follows. For v = 128 apply
Theorem 2.6 withn=7, A =9, h=0and u=2. For v = 168 apply theorem
2.11 with m=8,A=9andu=1. Forv =208 take a T[5,9,40] [26]. Add
eight points to the groups and on the first four groups construct a (48,5,9)
minimal covering design with a hole of size 8 and on the last group construct a
(48,5,9) minimal covering design.

For v = 268 apply Theorem 2.8 with m=13, h=0 t=4 and u=2. This construction
gives a (268,5,9) minimal covering design with a hole of size 8. But 0/(8,5,9) =
$(8,5,9). Hence, 0.(268,5,9) = $(268,5,9).

63 v =12 (mod 20)
Lemma 6.5 0((v,5,9) = §(v,5,9) for v = 12,32,52,72,92.

Proof For v=12,32,52,92 see next table. For v = 72 take a T[6,9,3] [26] and

inflate it by a factor of 4, that is, replace all blocks which are of size 6 by the
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blocks of a (5,1) - GDD of type 45 Finally on each group construct a

(12,5,9) minimal covering design.

v Point Set Base Blocks

12 ZigWHy <014h;hy><0157h><0145hy><01234>
<01357><0257>Ufhy,hy)

32 Z3y <0124 11>3times <038 1521> 3 times
<0410 19 24> 3 times <0391620><0123 16>
<0261018><05101625><031019 24>

52 Z40\WH19 On Zy\JH;; construct a B[51,5,4] with a hole of
size 11, say, Hy;. Such design can be constructed
by taking a T[5,4,10] [26], add a new point to the
groups and on the first four groups construct a
B[11,5,4] and take this point with the last group to
be the hole. Furthermore, take the following blocks:
<0816 24 32>+, i € Zg. <013 185U {h;}4
<0 5 11 26>U{h;}8;_5 <07 17 26>U{h;} 129
<0137h;><051527hy><08 17 28 hy>
<0 137hg><05 1527 hs><08 17 28 hg>
<013 10hy><04 18 24 hg> <0 5 13 24 hg>
<013 14hjp><041026h;;><04 1725 h)>
<0 51221 hjp>

92 Zgo\WH9 On Zgy\UH  construct a B[91,5,6] with a hole of

size 11, say, Hyy. This design can be constructed
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by taking a T[6,1,8] [26]. Delete 5 points from last
group and inflate the resultant design by a factor

of 2. Replace its blocks, which are of size 5 and 6,

by the blocks of a (5, 6) - GDD of type 25 and 26 [26]
respectively. Finally, add 5 points to the groups of size
16 and construct a B[21,5,6] with a hole of size 5 where
the hole is the new 5 points. Now take these 5 points
with the group of size 6 to be the hole. Further, take
the following blocks:

<0 16 32 48 64>+, i € Z)q 3 times.

<0 13 40 53 hyp> half orbit. <0259 15>
<013737><082034 58>

<0 82847 57><09244562><01125 54>U{hi}4i=l
<017 35 585U {h;)5i_s <0526 305U (hi} g

<0 8 20 38 hyo>

<0 13 28>U{hy,hy} <0 12 31 595U (h3,hy}

<04 9 65> {hg,hg} <0 6 23 37> {h7,hg}

<0 7 29 40>U{hg, hjg}<0 1 11 36> {hyy,hy5 }

Lemma 6.6 Let v= 12 (mod 20) be a positive integer. Then 0l(v,5,9) =

0(v,5,9).

Proof For v =12,32,52,72,92 the result follows from the previous Lemma.

For v 2 112, v # 132, simple calculation shows that v can be written in the

form v = 20m+4u + h+s where m, u, h and s are chosen as in Lemma 6.2

with the difference that
4u+h+s = 12,32,52,72,92, and h = 0 or 4. Now apply Theorem 5.2 with A=9

to get the result.
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For v = 132 apply Theorem 2.6 withn=7,h=4, u=2, and A =9 and see
Lemma 2.3 for a (6,9)-GD of type 5.

64 v =2 (mod 20)

Lemma 6.7 (a) Let v =2 (mod 20), v 2 22 be a positive integer. Then
0l(v,5,9) = $(v,5.9).

(b) There exists a (22,5,9) minimal covering design with a hole of size 2.

Proof For all positive integers v = 2 (mod 20), v 2 22, the construction is as
follows:
1) Take a (v,5,8) covering design with {¢(v,5,8)+1 blocks [7]. Assume that the
pair (v-1,v) appears at least nine times.
2) Take a (v,5,1) minimal covering design with a hole of size two, [29]. Itis
readily checked that the above two steps yield the blocks of a (v,5,9) minimal
covering design.

For a (22,5,9) minimal covering design with a hole of size 2 take two copies
of a (22,5,4) minimal covering design with a hole of size 2 [17]; and take a

(22,5,1) minimal covering design with a hole of size two.
65 v =14 (mod 20)

Lemma 6.8 Let v= 14 (mod 20) be a positive integer. Then 0(v,5,9) =
0(v,5,9).

Proof For v = 14,34,54,74,94 the blocks of a (v,5,9) minimal covering design
are the blocks of a (v,5,3) minimal covering design, each block taken three times
[6]. For v > 114, v # 134, simple calculation shows that v can be written in
the form v = 20m+4u+h+s, where m, u, h, and s are chosen as in Lemma 6.2
with the difference that 4u + h + s = 14,34,54,74,94, and h = 2.
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Now apply Theorem 5.2 with A =9 to get the result.

For v = 134 apply Theorem 2.6 withn =7, h =2, u =3, and A = 9 and see
Lemma 2.3 for a (6,9)-GDD of type 57.

6.6 v =18 (mod 20)

Lemma 6.9 Let v= 18 (mod 20) be a positive integer. Then 0(v,5,9) =
$(v,5,9).

Proof The blocks of a (v,5,9) minimal covering design are the blocks of a
(v,5,8) minimal covering design [7] together with the blocks of a (v,5,1)

minimal covering design [29].

Theorem 6.1 Let v > 5 be a positive integer. Then 0(v,5,9) = $(v,5,9) with
the possible exception of v = 28,56.

Proof The result follows from corollary 2.1 and Lemmas 6.1 - 6.9.

7. Covering With Index 10

Lemma 7.1 Let v= 4 (mod 20) be a positive integer greater than 4. Then
ouv,5,10) = d(v,5,10).

Proof The construction of a (v,5,10) minimal covering design, for all positive
integers v = 4 (mod 20), v 2 24, is as follows:
1) Take a (v,5,4) minimal covering design [7] [15]. In this design, each pair

appears in exactly four blocks except one triple, say, {v-3,v-2,v-1}, the pairs of
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Now apply Theorem 5.2 with A = 9 to get the result.

For v = 134 apply Theorem 2.6 with n =7, h=2,u=3, and A =9 and see
Lemma 2.3 for a (6,9)-GDD of type 57.

6.6 v =18 (mod 20)

Lemma 6.9 Let v= 18 (mod 20) be a positive integer. Then C(v,5,9) =
0(v.5,9).

Proof The blocks of a (v,5,9) minimal covering design are the blocks of a
(v,5,8) minimal covering design [7] together with the blocks of a (v,5,1)

minimal covering design [29].

Theorem 6.1 Let v > 5 be a positive integer. Then 0\(v,5,9) = $(v,5,9) with
the possible exception of v = 28,56.

Proof The result follows from corollary 2.1 and Lemmas 6.1 - 6.9.

7.  Covering With Index 10

Lemma 7.1 Let v =4 (mod 20) be a positive integer greater than 4. Then
ol(v,5,10) = $(v,5,10).

Proof The construction of a (v,5,10) minimal covering design, for all positive
integers v = 4 (mod 20), v 2 24, is as follows:
1) Take a (v,5,4) minimal covering design [7] [15]. In this design, each pair

appears in exactly four blocks except one triple, say, {v-3,v-2,v-1}, the pairs of
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which appear in 6 blocks. Furthermore, assume we have the following two
blocks <123 79> <abc 8 10> where {1, 2, 3, 7, ..., 10} are arbitrary
numbers and {1,2,3}, {a,b,c} are not necessarily disjoint, a, b, c # v-1. In the
first block change 9 to v and in the second change 10 to v.

2) Take a (v,5,2) minimal covering design [40] and assume that each of the
pairs {7,9} and {8,10} appears at least three times in the blocks of this design.

3) Take a (v-1,5,2) optimal packing design [14]. In this design each pair
appears in precisely two blocks except a triple, say, {v-3,v-2,v-1}, the pairs of
which appear in zero blocks.

4) Take two copies of a B[v+1,5,1] and assume we have the two blocks <1 23 v
v+1>,<a b c v v+1>. In the first block, change v+1 to 9 and in the second
block change v+1 to 10. In all other blocks change v+1 to v. Now it is readily
checked that the above four steps yield the blocks of a (v,5,10) minimal covering
design for all v= 4 (mod 20), v 2 24.

Lemma 7.2 Let v= 8 (mod 20) be a positive integer. Then 0((v,5,10) =
$(v,5,10).

Proof Let v =8 (mod 20) be a positive integer. Then a (v,5,10) minimal
covering design can be constructed as follows:

1) Take a (v,5,8) minimal covering design [7]. In this design each pair appears
in eight blocks, except a triple, say, {v-2,v-1,v}, the pairs of which appear in 10
blocks.

2) Take a (v,5,2) minimal covering design with a hole of size 2. We may
assume the hole to be {v-1,v}.

To complete the proof of this lemma we need to show that there exists a (v,5,2)
minimal covering design with a hole of size 2 for all v= 8 (mod 20), v > 8.
For v = 8,28,48,68,88 see next table. For v 2 108, v # 128, write v =
20m+4u+h+s where m, u, h and s are chosen the same as in Lemma 6.2 with
the difference that 4u + h + s = 8,28,48,68,88 and h = 0. Now apply Theorem
5.2 with A = 2 to get the result.
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For v = 128 apply Theorem 2.6 withn=7,u=2,h=0,and A =2 and see
Lemma 2.3 for a (6,2)-GDD of type 57,

v Point Set Base Blocks

8 ZgWH, <013 4> U {hy,hy}

28 Z,xZ13\VH, <(0,0)(0,1)(0,4)(0,7)(1,0)><(0,0)(1,0)(1,1)(1,2)(1,4)>
<(0,0)(0,2)(0,4)(1,7)(1,12)>
<(0,0)(0,5)(1,2)(1,8)(1,11)>
<(0,0)(0,1)(1,5)(1,10) h><(0,0)(0,3)(1,1)(1,7) hy>

48 Z46\VH, <013817> <04102235> <013823>
<04 132032> <06 1727>U{hy,hy}

68 Zge\JH, <013721> <05154049> <08243647>
<013728><05132335> <09203349>
<0 519 34>U{h} ,hy}

88 Zgc\JH, <013715> <05213863> <0927 40 66>

<010325162> <05113648> <0131624>
<04 18 44 51> <05 27 37 57>
<0 9 28 45>U{hy,hy)

Lemma 7.3 Let v= 12 (mod 20) be a positive integer. Then Ol(v,5,10) =
0(v,5,10).

Proof For v =12,52,72 see the next table.

For all other values of v the construction is as follows:
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1) Take a B[v-1,5,4]

2) Take a (v+1,5,2) minimal covering design [37]. This design exists for all
v+1 = 13 (mod 20), v+1 # 13, with the possible exception of v = 53,73.
Furthermore, in this design there is one pair, say, {v-1,v} that appears in six
blocks. Assume in this design we have the two blocks: <123 vv+l><abc
v v+1> where {1,2,3} and {a,b,c} are not necessarily disjoint a, b, c # v-1. In
the first block change v+1 to 10 and in the second block change v+1 to 11. In
all other blocks change v+1 to v.

3) Take a (v+1,5,2) optimal packing design which exists for all v+1 = 13 (mod
20), v+1 # 13, [9]. Furthermore, in this design, there is a triple, say, {v-
1,v,v+1}, the pairs of which appear in zero blocks. So change v+1 to v. Also
assume we have the two blocks: <1238 10> <abc9 11>, where 8 and 9 are
arbitrary numbers. In the first block, change 10 to v and in the second change
11tov.

4) Take a (v,5,2) minimal covering design [40] and assume each of the pairs
{8,10} and {9,11} appear at least three times in the blocks of this design. Itis
readily checked that the above four steps yield the blocks of a (v,5,10) minimal
covering design for all v= 12 (mod 20), v # 12,52,72.

v Point Set Base Blocks
12 ZyxZ5UH, <(0,0)(0,1)(0,2)(0,3)(0,4)> twice (orbit length 1)

<(1,0)(1,1)(1,2)(1,3)(1,4)> (orbit length 1)
<(0,0)(0,1)(0,2) hy hy5<(1,0)(1,1)(1,3) hy hy)>
<(0,0)(0,2)(1,4) hy hy><(0,0)(1,2)(1,3) hj hy)>
<(0,0)(0,1)(1,0)(1,2) h;><(0,0)(0,2)(1,0)(1,3) h>
<(0,0)(0,2)(1,0)(1,4) hy><(0,0)(0,2)(1,3)(1,4) hy>
<(0,0)(0,1)(1,0)(1,1)(1,2)><(0,0)(0, 1)(0,2)(1,0)(1,1)>
<(0,0)(0,2)(1,0)(1,1)(1,3)>
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52

72

Z4o\VH,

Zgo\WH|;

On Z4y\UH/ construct a B[51,5,4] with a hole of
size 11, say, Hy;. Such design can be constructed by
taking a T[5,4,10]. Add a point to the groups and
on the first four groups construct a B[11,5,4] and take
this point with the last group to be the hole.
Furthermore, take the following blocks:
<0 1 522>U{hy,hy} <03 14 235U {h3,hy}
<0 6 13 255U {hsg,hg} <0 1 522> {h7,hg}
<0 3 14 23>U{hg,h o} <0 6 13 25> {h};,h5}
<0137h;><02 1424 hy><02 1523 h3>
<0514 25hy><013 13 hs> <04 10 32 hg>
<0 51529 hy><07 16 29 hg> <0 1 2 4 hg>
<02533hjp><041034hy;><051322hj>
<07 15 20 hyo>

On Zgo\WH; construct a B[71,5,8] with a hole of
size 11, say, Hy . Such design can be constructed by
taking a T[6,8,12]. Delete 3 points from last group
and replace the blocks of the resultant design by

the blocks of B[5,5,8] and B[6,5,8]. Add two points
to the groups and on the first five groups take two
copies of (14,5,4) minimal covering design with a
hole of size 2, and take these two points with the last
group to be the hole. Further, take the following
blocks:

<0 12 24 36 48>+i,i € Z1p <016 19 35>

<0 3 17 26>U{h,hy} <0 1 3 8>U (h3,hy)

<0 4 15 33>U{hg,hg} <0 6 23 39.0{h7,hg}

<0 7 20 455U {hg,hjo} <0 9 19 30.0 {h;,h;5}
<02 1024 hjp> <04 20 32 hy>
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Lemma 7.4 (a) 0(v,5,10) = ¢(v,5,10) for all v § 2 or 14 (mod 20), v 2 14.
(b) There exists a (22,5,10) minimal covering design with a hole of size 2, and

a (26,5,10) minimal covering design with a hole of size 6.

Proof (a) For a (v,5,10) minimal covering design, v [2 or 14 (mod 20), v =

14, take a (v,5,4) minimal covering design [7], [15] and a (v,5,6) minimal
covering design [5].

(b) A (22,5,10) minimal covering design with a hole of size 2 can be
constructed as follows:

1) Take two copies of (22,5,4) minimal covering design with a hole of size 2,
say, {21,22} [17];

2) Take a B[21,5,1];

3) Take a (23,5,1) minimal covering design with a hole of size 3, say,
{21,22,23}, [38], then change 23 to 22.

For a (26,5,10) minimal covering design with a hole of size 6 proceed as
follows:

1) Take a (26,5,8) minimal covering design with a hole of size 6. Such design
can be constructed by taking a T[5,8,5]. Add a point to the groups and on the
first four groups construct a B[6,5,8] and take the last group with the point to be
the hole.

2) Take the blocks of a (26,5,2) minimal covering design with a hole of size 6
onX =79 xZ1o\V Hg.

<(a,0) (a,2) (a,4) (a,6) (a,.8)> + (-, i),1 € Zy,a=0, 1

<(0,0) (0,1) (1,0) (1,7) hy> mod (-, 10)

<(0,0) (0,2) (1,5) (1,9) hy> mod (-, 10)

<(0,0) (0,3) (1,1) (1,6) h3>mod (-, 10)

<(0,0) (0,3) (1,4) (1,5) hy>mod (-, 10)

<(0,0) (0,1) (0,5) (1,9)> € {hs,hg} mod (-, 10)

<(0,0) (1,0) (1,2) (1,3)> € {hg,hg} mod (-, 10)
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Lemma 7.5 Ci(v,5,10) = ¢(v,5,10) for v = 18,38,58,78,98.

Proof. The proof of this lemma is the same as Lemma 7.2: The blocks of a

(v,5,10) minimal covering design are the blocks of a (v,5,8) minimal covering

[7] together with the blocks of a (v,5,2) minimal covering design with a hole of

size 2. For a (v,5,2) minimal covering design with a hole of size 2, v=
18,38,58,78, see next table. For v = 98, take a T[6,1,8] and inflate this design
by a factor of 2. Replace the blocks of this design by the blocks of a (5,2) -

GDD of type 28 [26]. Finally, adjoin two points to the groups and on each

group construct an (18,5,2) minimal covering design with a hole of size 2.

v Point Set Base Blocks
18 Z,xZg LU H,y <(0,0) (0,1) (1,4 (1,7) hy> <(0,0) (0,3) (1,0) (1,4) hy>
~ <(0,0)(0,2) (0.3) (0,6) (10>

<(0,0) (1,1) (1,2) (1,3) (1,7)>

38 Z36\J Hy <0141119> <013921> <0261326>
<0514 19>U{h],h2}

58 ZsqUHy <013931> <04153136> <07 1730 44>
<013735> <05114149>
<0 4 13 23>U{hy,hy}

78 Zq6\U Hy <0131639> <04124766> <0627 3452>

<09294053> <013749> <05 1459 64>
<0 8 18 33 44> <0 16 35 55>U{hy,hy)
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Lemma 7.6 Let v= 18 (mod 20) be a positive integer. Then 0l(v,5,10) =
$(v.5,10).

Proof For v = 18,38,58,78,98 the result follows from Lemma 7.5. For v 2
118, v # 138 write v = 20m+4u+h+s where m, u, h, and s are chosen the same
as in Lemma 6.2 with the difference that 4u+h+s = 18,38,58,78,98 and h=2 or
6. Now apply Theorem 5.2 with A = 10 to get the result.

For v = 138 apply Theorem 2.6 withn=7,h=2, u=4, and A = 10 and see
Lemma 2.3 for a (6,10)-GDD of type S7.

To summarize this section and corrollary 2.1, we have shown:
Theorem 7.1 Let v 2 5 be a positive integer. Then 0L(v,5,10) = ¢(v,5,10).

We like to remind the reader that from now on we only treat the cases v= 2,14

or 18 (mod 20), see Theorem 1.3 and Corrolary 2.1.
8. Covering with Index 11

Lemma 8.1(a) OUv,5,11) = §(v,5,11) for v = 22, 42, 62, 82.
(b) There exists a (22,5,11) and a (26,5,11) minimal covering

design with a hole of size 2 and 6 respectively.

Proof Forv=22let X =2Zog U {a, b}. Then take the following base blocks
under the action of the group Z2g.

<019ab> <01239> <0151014> <0261215>
<0271013> <01237> <016911> <0271013>
<0124a> <02714a> <04915b> <03610b>

<0481216>+1i,i € Zg, 4 times
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For v = 42,62,82 the construction is as follows:

1) Take two copies of a (v,5,4) minimal covering design [15]. In this design
there is a triple, say, {v-2,v-1,v} the pairs of which appear in 6 blocks.

2) TakeaB[v-1,5,1].

3) Take a (v,5,1) optimal packing design [2]. The missing pairs form a |-
factor, Lemma 3.2, Assume that {v-1,v} is an edge of the 1-factor.

4) Take a (v+1,5,1) minimal covering design with a hole of size 3, say,
{v-1,v,v+1}. The repeated pairs of this design form a two 1-factor [36] or [38].
In this design change v+1 to v. Now apply Theorem 3.1 to get a (v,5,11)
minimal covering design for v = 42,62,82.

(b) Fora(22,5,11) and a (26,5,11) minimal covering design with a hole of size
2, 6 respectively, take a (22,5,4), (26,5,4), (22,5,7), and a (26,5,7) minimal
covering designs with a hole of size 2, 6 respectively [17] [6]. Notice that a
(26,5,4) minimal covering design with a hole of size 6 can be constructed by
taking a T[5,4,5]. Add a new point to the groups and on the first 4 groups,
construct a B[6,5,4] and take this point with the last group to be the hole.

Lemma 8.2 Let v =2 (mod 20), v 2 22, be a positive integer. Then 0l(v,5,11)
= O(v,5,11).

Proof. For v =22,42,62,82 the result follows from the previous lemma.

For v 2 122, v # 142,182 write v = 20m+4u+h+s where m, u, h, and s are
chosen as in Lemma 6.2 with the difference that 4u+h+s = 22,42,62,82 and

h =2 or 6. Now apply Theorem 5.2 with A =11 to get the result.

For v = 102 apply Theorem 2.14 withm=5,h=2,and A = 11.

For v = 142 apply Theorem 2.7 with n =7, h =2, and A = 11 and see Lemma
2.3 fora (6, 11)-GDD of type 5.

For v = 182 apply Theorem 2.12 withm=s=8,h=6,and A = 11.
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Lemma 8.3 Let v= 14 (mod 20) be a positive integer. Then 0l(v,5,11) =
O(v,5,11).

Proof For v = 14,34,54,74,94 the construction is as follows:

1) Take a (v,5,4) minimal covering design [15]. This design has a triple, say,
{v-2,v-1,v} the pairs of which appear in six blocks. Furthermore, assume in
this design we have the blocks <abc v-1 v-2>, <d e f v v-2 > where {a,b,c},
{d,e,f} are arbitrary numbers, not necessarily disjoint. In the first block change
v-2 to v and in the second change v-2 to 5.

2) Take a (v,5,3) minimal covering design [6] and assume that the pairs
{v-1,v} and {5,9} appear four times.

3) Take a(v,5,4) optimal packing design and assume that {v-1,v} appears in
zero blocks. Furthermore, assume we have the blocks <abc5v >
<def95>.

In the first block change v to v-2 and in the second block change 5 to v-2.

For v 2 114, v # 134, write v = 20m-+4u+h+s where m, u, h, and s are chosen
as in the previous lemma with the difference that 4u+h+s = 14,34,54,74,94.
Now apply Theorem 5.2 with A = 11 to get the result.

For v = 134 apply Theorem 2.6 withn=7,h=6, u=2, and A = 11 and see
Lemma 2.3 for a (6, 11)-GDD of type 57.

Lemma 8.4. Let v= 18 (mod 20) be a positive integer. Then Ql(v,5,11) =
O(v,5,11).

Proof Forv=18letX=2Z17 U {°°} On Z1 5 construct a B[17,5,5].
Further, take the following blocks under the action of the group Z1 7.
<01234> <015811> <0151012> <038 110> <026 10 00>

<027 11 o>

For all other values under 100 the blocks of a (v,5,11) minimal covering design
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are those of (v,5,3) and (v,5,8) minimal covering design [6], [7].

For v 2 118, v # 138, write v = 20m+4u+h+s where m, u, h, and s are chosen
as in Lemma 8.2 with the difference that 4u+h+s = 18,38,58,78,98. Now apply
Theorem 2.10 with A = 11 to get the result.

For v = 138 apply Theorem 2.6 withn=7,h=6, u=3, and A = 11.

9. Covering With Index 13

Lemma 9.1 Letv=2, 14 or 18 (mod 20) v = 14 be a positive integer. Then
0L(v,5,13) = ¢(v,5,13).

Proof For v =2 (mod 20) the blocks of a (v,5,13) minimal covering design are
the blocks of a (v,5,1) minimal covering design with a hole of size 2, say, {v-
1,v} [29], together with the blocks of a (v,5,12) minimal covering design [7].
Assume in this design that the pair {v-1,v} appears at least 13 times.

For v = 14 (mod 20) the blocks of a (v,5,13) minimal covering design are the
blocks of a (v,5,9) and (v,5,4) minimal covering design [15].

For v = 18 (mod 20) the blocks of a (v,5,13) minimal covering design are the
blocks of a (v,5,12) and (v,5,1) minimal covering designs [7], [29].

10. Covering With Index 14

Lemma 10.1. Let v =2 (mod 20) v 222 be a positive integer. Then 0l(v,5,14)

={(v,5,14).
(b) There exists a (26,5,14) minimal covering design with a hole of size 6.

Proof We first construct a (v,5,2) minimal covering design with a hole of size 2
by taking the blocks of a B[v-1,5,1] together with the blocks of a (v+1,5,1)
minimal covering design with a hole of size 3, say, {v-1,v,v+1} [36]. Further,

in this design we replace v+1 by v.
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We now construct a (v,5,14) minimal covering design as follows:
1) Take a (v,5,4) optimal packing design [17). This design has a pair, say, {v-
1,v) that appears in zero blocks while each other pair appears in 4 blocks.
2) Take two copies of a (v,5,4) minimal covering design [7, 10]. In this
design there is a triple the pairs of which appear in 6 blocks. Assume in both
copies the triple is {v-2,v-1,v}.
3) Take a (v,5,2) minimal covering design with a hole of size 2, say, {v-2,v-
1}.

(b) For a (26,5,14) minimal covering design with a hole of size 6 take a
(26,5,10) minimal covering design with a hole of size 6 and a (26,5,4) minimal

covering design with a hole of size 6, Lemma 8.1.

Lemma 10.2 Let v= 14 (mod 20) be a positive integer. Then 0l(v,5,14) =
¢(v,5,14).

Proof For v = 14 the construction is as follows:

1) Take a (14,5,4) minimal covering design [13]. This design has a triple, say
{12,13,14} the pairs of which appear in six blocks.

2) Take two copies of a (14,5,4) optimal packing design and assume in both
copies that the pair { 13,14} appears in zero blocks.

3) Take the (14,5,2) minimal covering design in [40]. Close observation of
this design shows that there is a pair, say, { 13,14} that appears in eight blocks
(38].

For v = 34,54 the construction is as follows:

1) Take a (v,5,4) minimal covering design and assume that the pairs of the
triple {1,2,3} appear in six blocks.

2) Take two copies of a (v,5,4) optimal packing design [17]. Assume that in
the first copy the pair {1,2} appears in zero blocks and in second copy the pair is
{1,3}.

3) Take a (v,5,2) minimal covering design with a hole of size 6, say,
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{1,2,...,6}. Replace the hole by the blocks <12345> <12346>
<12356> <12456>,

The above three steps give a design such that every pair appears in at least 14
blocks except the pair {1,3} which appear in exactly 13 blocks. To fix this,
assume in the design in (1) we have the block < 1 8 9 10 6> and in the design in
(2) we have the block <2 8 9 10 3 >. In the first block change 6 to 3 and in the
second block change 3 to 6.

To complete the construction of v = 34, 54 we need to show that there exists a
(v,5,2) minimal covering design with a hole of size 6.

For v = 34 see [40].

Forv=54letX =248V {ooi}i6= 1 then take the following blocks under the
action of the group Zg.
<0371529><01111731><0131343><022125>U {oo0q, o0}
<051421 > U {oog, o4} < 092033 > U {oos, g}

For v = 74, 94 the construction consists of the following three steps:

1) Take a (v,5,4) minimal covering design and assume that the pairs of {1,2,3}
appears in six blocks, [15].

2) Take two copies of a (v,5,4) optimal packing design [17] and assume in
both copies that the pair {1,2} appears in zero blocks.

3) Take the (v,5,2) minimal covering design in [40]. Close observation of
these two designs shows that in each design there is one pair, say, {1,2} that
appears in eight blocks.

For v 2 114, the proof is the same as Lemma 8.3 with h = 6.

Lemma 10.3 Let v = 18 (mod 20) be a positive integer. Then 0l(v,5,14) =
O(v,5,14).

Proof For v = 18,38,58,78,98 the required construction are given in the

following table.

For v 2 118 the proof is the same as Lemma 8.4 with h = 6.
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Point Set

Base Blocks

18

38

58

78

Zig

Z3g

Zsg

Take two copies of an (18,5,6) optimal packing design [10].
In these two copies each pair appears exactly 12 times except
the pairs {i,i+9} i=0,8, which appear 8 times. Further, take
the following blocks: <012710> <025914>

Take two copies of a (38,5,6) optimal packing design [10].
In these tcopies each pair appears exactly 12 times except the
pairs {i,i+17} i =0, . . .,38 which appear 10 times, so adjoin
the following blocks: <012417><0381928>
<0492128><06122027>

Take seven copies of the (58,5,1) minimal covering design in
[29]. This means that the pairs {i,i+1}i=0,...,57 and
{(J,j+29} j =0, . . ..28 already appear 14 times. Furthermore,
take the following blocks:

<0251828>3times <04 123443> 3 times
<0617 3138>3times <029 1447 > twice
<03162237>twice <04 1422 39> twice
<024754> <03121841>
<05153547> <07162434>

Take seven copies of the (78,5,1) minimal covering design in
[29]. This means that the pairs {i,i+2} i=0,...,77 and
{j.j+39} j=0.. . .,38 appear 14 times. Furthermore, take the
following blocks:

<014942> 3 times < 062027 50 > 3 times

< 0102247 62> 3 times <0 11 24 43 60 > 3 times
<014 1258 > twice <0522 48 55 > twice



98

11.

<06 1631 65> twice,<014926> <07183057>
<09193351> <013274762> <014919>
<06203350> <06222960> <09213546>

Zeou H 1€ On Zgo U H 17 construct a (97,5,10) minimal

covering design with a hole of size 17. Such design can be
constructed by taking a T[6,1,8]. Delete 2 points from last
group and inflate the design by a factor of 2 and index 10. Add
five points to the groups and on the first five groups construct a
B[21,5,10] such that these 5 points are one block which we
delete and take these five points with last group to be the hole
of size 17. Furthermore on Zgg U H 13 construct a (93,5,1)
minimal covering design with a hole of size 13, [25] and take
the following blocks:

<0163248 64> +1i, i€Z1g, 3 times
<0204060h13>+i,ieZog <02202842>
<0136h1s> <04814h45> <071931hyg>
<092752h47><0113456 h1g><0133060hqg>
<0153159h1g> <0149>U {hy, ha}
<061325>U {hg, hg} <073445>U {hs, hg}
<0103357>uU {h7, hg} <0113750>uU {hg, hio}
<0143153>V {h11, h12}

<0153651>U {hy3, hig}

<011039>U {hi}iz1 <0219375U {hi}ts
<052651>U {hi}i1=29

Covering with Index 15

Lemma 11.1 Let v =2 (mod 20), v 2 22, be a positive integer. Then
0U(v,5,15) = §(v,5,15).
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Proof We first construct a (22,5,15) and a (26,5,15) minimal covering design
with a hole of size 2 and 6 by taking two copies of a (22,5,4) and a (26,5,4)
minimal covering design with a hole of size 2, 6, Lemma 8.1, and one copy of a
(22,5,7) and a (26,5,7) minimal covering design with a hole of size 2 and 6
respectively [6].

For a (22,5,15) minimal covering design let X = Zog U {a, b}. On X take
two copies of a (22,5,4) optimal packing design such that {a,b} appears in zero

blocks. Furthermore, take the following blocks under the action of the group

Zop.

<0481216>+i,i€ Z4 <0110ab> <013713>
<014915> <01237> <0141012>
<02711 14> <0357a> <03813b>

For v = 42,62,82 the construction is as follows:

1) Take two copies of a (v,5,4) minimal covering design and assume that in
both copies the pairs of the triple {v-2,v-1,v} appear in six blocks.

2) Take a(v,5,4) optimal packing design and assume that the pair {v-2,v-1}
appears in zero blocks [17].

3) TakeaB[v-1,5,1].

4) Take a (v,5,1) optimal packing design [2]. The complement graph of this
design is a 1-factor. Assume that {v-1,v} is an edge of the complement graph.
5) Take a (v+1,5,1) minimal covering design with a hole of size 3, say, {v-1,
v, v+1}, [38]. In this design we replace v+1 by v. Furthermore, close
observation of these designs shows that the complement graph contains a
subgraph that is 1-factor on v-2 vertices.

Now apply Theorem 3.1 to get the constructions for v = 42,62,82.

For all other values of v the proof is the same as Lemma 8.2,

Lemma 11.2 Let v= 14 or 18 (mod 20) be a positive integer. Then 0(v,5,15)
= (I)(V,S, 15).

Proof For v = 18 (mod 20) take the blocks of a (v,5,7) and a (v,5,8) minimal
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covering design [6], [7].

For v = 14,34,54,74,94 the construction is as follows:

1) Take two copies of a (v,5,4) minimal covering design and assume that in
both copies the pairs of {a,b,c} appear in six blocks [15].

2) Take a(v,5,4) optimal packing design and assume that the pair {a,b} appears
in zero blocks [17].

3) Take a (v,5,3) minimal covering design [6).

For v 2 114 the proof is the same as Lemma 8.3.
12. Covering With Index 17

Lemma 12.1 (a) There exists a (22,5,17) and a (26,5,17) minmal covering
design with a hole of size 2 and 6 respectively. (b) Let v =2 (mod 20), v =
22, be a positive integer. Then 0l(v,5,17) = §(v,5,17).

Proof (a) We first construct a (22,5,17) minimal covering design with a hole of
size two by taking six copies of a B[21,5,1], three copies of a (23,5,2) minimal
covering design with a hole of size three then change 23 to 22, [14] together
with a (22,5,5) minimal covering design with a hole of size 2 [4].

For a (26,5,17) minimal covering design with a hole of size 6 let X =

Zop U Hg. On X take three copies of a (26,5,4) minimal covering design
with a hole of size 6, say, Hg, Lemma 8.1. Further, take the following blocks
under the action of the group Zag.

<0481216>+i,i€ Z4, twice <031013 h5> half orbit

<0136>U{hi}y <0123h1> <02795U {hshghehe)
<01812ha> <03814hg> <03913hy> <04914hg>.

(b) For a (v,5,17) minimal covering design, v = 22,42,62,82 see next table.

For all other values of v the proof is the same as Lemma 8.2.
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\'2

Point Set

Base Blocks

22

42

62

82

Zo

Zs

Zeo

Zgo

<012510> 4times, <0269 16> 4 times

<013411>3times <02611 17> 3 times

<0131015> <0381216> <0131317>
<0181014>.

Take 13 copies of a (42,5,1) optimal packing design [2].
The complement graph of this design is a 1-factor, so add
the following blocks:
<0152226><02142129><03102331>
<0392132><0131324> <03102331>
<0382428> <05112633><0261827>
<012710>

Take 13 copies of a (62,5,1) optimal packing design [2].
The complement graph of this design is a 1-factor, so add
the following blocks:

<0132131><0494055> <06193746>
<06143749> <0131034><05133646>
<04173543> <05163045><04153242>
<0133742> <06173048><013715>
<07193140>

Take 13 copies of a (82,5,1) optimal packing design [2].
The complement graph of this design is a 1-factor, so add
the following blocks:
<0193041><013735><09224768 >
<05174157><08223763><08183749>
<010234361><0131044><05163348>
<0492671><06254155><013727>

88



<011235169><025937><010234153>
<06214862><08244665><010234153>

Lemma 12.2 Let v = 14 (mod 20) be a positive integer. Then 0((v,5,17) =
O(v,5,17).

Proof For v = 14,34,54,74,94 the construction is as follows:

1) Take a (v,5,4) minimal covering design and assume that the pairs of {a,b,c}
appear in six blocks [15).

2) Take a (v,5,4) optimal packing design [17] and assume that {b,c} appears in
zero blocks.

3) Take three copies of a (v,5,3) minimal covering design and assume in each
copy the pair {b,c} appears four times [6].

It is readily checked that the above three steps yield a (v,5,17) minimal covering
design for v = 14,34,54,74,94.

For v 2 114 the proof is the same as Lemma 8.3.

Lemma 12.3 Let v = 18 (mod 20) be a positive integer. Then 0(v,5,17) =
O(v,5,17).

Proof For all v = 18 (mod 20) the construction is as follows:

1) Take a (v-1,5,4) minimal covering design, [7, 15] and assume that the pairs
of {a,b,c} appears in six blocks where {a,b,c} are arbitrary numbers.

2) Take two copies of (v+1,5,4) optimal packing design [17] and in both
copics we assume that the pair {v,v+1} appears in zero blocks, so change v+1 to
v.

3) Take a(v-1,5,4) optimal packing design and assume that the pair {a,b}
appears in zero blocks {17].

4) Take a (v,5,1) minimal covering design [29]. This design has 3v/2 repeated

pairs, so if there is a pair, say, {a,b} that appears in three blocks then we are
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done. Otherwise, we may assume that {a,b} and {5,b} appear in two blocks.
Furthermore, assume in design (2) we have the two blocks <12 3 ac > and
<123 50b> where {1,2,3,5} are arbitrary numbers. In the first block change ¢
to b and in the second block change b to c.

It is readily checked that the above construction yields a (v,5,17) minimal
covering design for all v= 18 (mod 20), v 2 18.

13. Covering With Index 18

Lemma 13.1 Let v = 2 (mod 20), v 2 22 be a positive integer. Then
0l(v,5,18) = ¢(v,5,18).

Proof We first construct a (22,5,18) and a (26,5,18) minimal covering design
with a hole of size 2 and 6 respectively.

For a (22,5,18), (26,5,18) minimal covering design with a hole of size 2 or 6
respectively take two copies of a (22,5,4), (26,5,4) minimal covering design
with a hole of size 2, 6 [17] and Lemma 8.1 together with a (22,5,10), (26,5,10)
minimal covering design with a hole of size 2, 6 respectively, Lemma 7.4.

For a (22,5,18) minimal covering design let X = Zoo, then take the following
blocks under the action of the group Z22:

<01238>3times <0251115> 3 times

<0371117>3times <0124 13> twice

<0161316>twice <02510 18 > twice <0371215>
<012410> <0171115> <0271116>

For v = 42,62,82 take a (v,5,17) minimal covering design together with a
(v,5,1) optimal packing design, [2] and notice that the complement graph of the
(v,5,1) optimal packing design is a 1-factor while the excess graph of the
(v,5,17) minimal covering design has a subgraph that is 1-factor.

For v 2 102 the proof is the same as Lemma 8.2.
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Lemma 13.2 Let v = 14 or 18 (mod 20) be a positive integer. Then 0l(v,5,18)
=(v,5,18).

Proof For v = 18 (mod 20) the blocks of a (v,5,18) minimal covering design
are those of a (v,5.4) and (v,5,14) minimal covering design [15], [16], [7].
For v = 14 (mod 20) the construction consists of the following three steps:

1) Take two copies of a (v,5,4) minimal covering design, and assume that in
both copies the pairs of the triple {a,b,c} appear in six blocks.

2) Take a(v,5,4) optimal packing design [17] and assume that the pair {a,b}
appears in zero blocks.

3) Take a (v,5,6) minimal covering design [5].
14. Covering With Index 19

Lemma 14.1 (a) There exists a (22,5,19) and a (26,5,19) minimal covering
design with a hole of size 2 and 6 respectively.

(b) Let v =2 (mod 20), v 2 22, be a positive integer Then 0/(v,5,19) =
0(v,5,19).

Proof (a) For a (22,5,19) minmal covering design with a hole of size 2 take 3
copies of a (22,5,4) minimal covering design with a hole of size 2 [17] together
with a (22,5,7) minimal covering design with a hole of size 2 [6].

For a (26,5,19) minimal covering design with a hole of size 6 take 3 copies of a
(26,5,4) minimal covering design with a hole of size 6, Lemma 8.1, together
with a (26,5,7) minimal covering design with a hole of size 6 [6]

(b) Forv=221let X = Zog U H 5 then the blocks are the following under the
action of the group Zog.

<013712>5times <013913>5 times

<013616>3times <01315h>twice :
<02615hy>twice <0125ho> <01510ho>
<01813ha> <02613ha> <0410h1ha>
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For v = 42,62,82 take the blocks of a (v,5,1) optimal packing design [2]
together with the blocks of a (v,5,18) minimal covering design, Lemma 13.1,
and notice that the complement graph of the packing design is a 1-factor while
the excess graph of the covering design is a two 1-factor.

For all other values of v the proof is the same as Lemma 8.3

Lemma 14.2 Let v = 14 or 18 (mod 20) be a positive integer. Then 0L(v,5,19)
={(v,5,19).

Proof For v = 18 (mod 20) the blocks of a (v,5,19) minimal covering design
are those of a (v,5,7) and a (v,5,12) minimal covering design [6] [7].

For v = 14,34,54,74,94 the construction is as follows:

1) Take two copies of a (v,5,4) minimal covering design [7, 15], and assume
in both copies the pairs of the triple {a,b,c} appear in six blocks.

2) Take two copies of a (v,5,4) optimal packing design, [17]. Assume that in
the first copy the pair {a,b} appears in zero blocks, and in the second copy the
pair is {a,c}.

3) Take a(v,5,3) minimal covering design [6].

For v 2 114, the proof is the same as lemma 8.3.

Conclusijon: In this paper we have shown that 0L(v,5,7\.) = ¢(v,5,7s.)+e, where e
is as before, for the values of v stated in Theorem 1.4. Furthermore, if the
possible exceptions of Theorem 1.3 and Theorem 1.4 are removed then OL(v,5,\)
=Q(v,5\)+e forallA>1and v25.
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