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Abstract

A set of edges D in a graph G is a dominating set of edges if every
"edge not in D is adjacent to at least one edge in D. The minimum
cardinality of an edge dominating set of G is the edge domination
number of G, denoted D (G). A graph G is edge domination critical,
or EDC, if for any vertex v in G we have Dg(G — v) = Dg(G) - 1.
Every graph G must have an induced subgraph F such that F is
EDC and De(G) = Dg(F). In this paper we prove that no tree
with more than 2 vertices is EDC, develop a forbidden subgraph
characterization for the edge domination number of a tree, and we
develop a construction that conserves the EDC property.

1 Preliminaries

We consider only finite, undirected graphs G(V, E) where V is the vertex
set and E is the edge set. All graphs are loopless and have no multiple
edges. A bridge of a graph G is an edge e whose removal increases the
number of connected components of G. A subgraph F of a graph G is a
graph such that every vertex and edge of F is contained in G. We say F
is an induced subgraph G if F is a subgraph of G and two vertices are
adjacent in F if and only if they are adjacent in G. For other terminology
used in this paper please see [1].
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A subset of edges D of E of a graph G(V, E) is called an edge domi-
nating set of G if each edge in £ — D is adjacent to at least one edge in D.
The edge domination number of G, denoted Dg(G), is the cardinality
of a minimum edge dominating set of G. The edge domination number of
a graph was first discussed in [2] and in [3). Yannakakis and Gavril show
that the problem of determining the edge domination number of bipartite
graphs with degree at most three is NP-complete. However, as is shown
by Mitchell and Hedetniemi [4] a minimum edge dominating set can be
found for a tree in linear time. Forcade [5] discusses the edge domination
of the n-cube and this work is generalized by Cutler [6]. Georges et. al.
[7] find formulas for the edge domination number of many classes of graphs
as well as give a forbidden subgraph characterization for graphs with edge
domination number 1. In this paper we continue the study of forbidden
subgraphs with respect to edge domination. We note that if v is vertex of
a graph G then Dg(G) — 1 < Dg(G — v) £ Dg(G). This leads us to our
first definition.

Definition 1 Let G be a graph with edge domination number Dg(G) = k.
G is called a k-edge domination critical graph (k — EDC) if Dg(G -
v) = k—1 for every v € G. We say a graph G is edge domination
critical , or EDC, if it is k-edge domination critical for some k.

It is easy to show that if F is an induced subgraph of G then Dg(F) <
Dg(G). This implies that every graph G has an EDC graph F as an
induced subgraph such that F has the same domination number as G. If we
determine all of the k — EDC graphs then we have essentially characterized
graphs whose edge domination number is less than k. Georges et. al. (7]
find all of the 2 — EDC graphs. Given the NP-completeness of the general
edge domination problem it seems worthwhile to investigate EDC graphs.
We note before we go on, that a graph G is EDC if and only if each
component of G is EDC.

- As a start, consider the complete graph K, on n vertices. The edge
domination number of K, is 2 if n is even and 25! if n is odd. So, K, is
EDC if and only if n is even. Jayram [8] computes the edge domination
numbers for the path P, on n vertices and for the cycle C,, on n vertices.
For completeness we give the numbers here.

n=0(mod3) 2
De(Ps) = { n=1(mod3) =32
n =2(mod3) 2%
n=0(mod3) %
Dg(Cn) = n =1(mod3) =2I2
n =2(mod3) 2!
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Given that when a vertex is removed from C,, the result is P,_; the
following proposition is straightforward.

Proposition 1 C, is EDC if and only if n is either 1 or 2 (mod3).

2 Examples of EDC Graphs

We begin with a proposition that examines the structure of EDC graphs.

Proposition 2 Let G be a connected EDC graph with at least three ver-
tices. If an edge e of G is a bridge of G then any non-trivial component of
G — e can not be a tree.

Proof: Let G be k — EDC and suppose for the sake of contradiction
that e is a bridge and that one non-trivial component of G — e is a tree.
Note that this tree together with e is still a tree which we denote by T'. Let
P be a longest path in T' and let z;, 2, and x5 be the first three vertices
on P. We may assume that the edge e is not incident with ;. This means
that in G the vertex z; has degree 1. Now, G — z3 has edge domination
number k — 1. Let D = {ey,...,ex—1} be a minimum edge dominating set
for G —z3. For D to be a dominating set one of the edges, say e, in D must
either be z1z; or oy for some vertex y. If e; is 21z, then D —e; U {223}
is an edge dominating set for G which is a contradiction. If e; is zoy then
y must be in T and y must have degree 1. Otherwise P would not be a
longest path in T. Thus, D — 2,y U {2223} is an edge dominating set of G
which is a contradiction.

O

Since every tree with at least three vertices has a bridge whose removal
leaves at least one non-trivial component we have the following corollary.

Corollary 1 Any tree with at least three vertices is not EDC.

So, the complete graph on two vertices, Kj, is the only tree which is
EDC. We will denote by nK, the graph which consists of n independent
edges. It is easy to see that nK, is EDC. Using this result, we have the
next corollary.

Corollary 2 If F is a forest then F is EDC if and only if F is isomorphic
to nKy for some n.

Given a tree T', T must have an induced subgraph F (which is a forest)
such that F is EDC and Dg(T) = Dg(F). However, F must be isomorphic
to nK, by the above corollary. This, along with the fact that Dg(nKk2) =n
gives us the following proposition.
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Proposition 3 A tree T has edge domination number n if and only if T
has nKy as an induced subgraph but does not have (n+ 1)K, as an induced
subgraph.

The previous three results first appeared in [9].

Although trees are not EDC graphs it certainly is not the case that all
EDC graphs are two connected. We will now present several families of
examples that show this. In what follows a pendant edge of a graph is
an edge that contains a vertex of degree one. An n-crown, denoted CR,,
is a cycle on n vertices with a pendant edge attached to each vertex on the
cycle. In [7] the following result is proved.

Proposition 4 Dg(CRy,) is & if n is odd and 3 is n is even.

The next definition generalizes the idea of an n-crown.

Definition 2 The partial crown on n-k vertices, denoted PC, \ where
k < n, i3 a cycle with n vertices and k pendant edges incident to adjacent
vertices on the cycle. See Figure 1 for examples of partial crowns.

Figure 1: Two EDC partial crowns

If k is either 0, 1, or 2 then it is easy to see that Dg(PCpr i) = Dg(Cy)

Proposition 5 If k is odd and k > 3 then the edge domination number for
PCly k. is as follows:

n—k = 0(mod3) 2ntk+d
Dg(PCpy) = n—k = 1(mod3) Znth+l
n—k=2(mod3) Intk=l

(-1

Proof: At least L‘-'g—l- edges are needed to edge dominate the & pendant edges
since each dominating edge can at most dominate two pendant edges. Use
the edge incident to the first two pendant edges as the first dominating edge
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and then use every other edge around the cycle until all ¥ pendant edges
are edge dominated by the minimal &' dominating edges. This leaves a
path with n — 2k — 1 edges left to be dominated. Using the domination
numbers for paths given previously, the desired result immediately follows.
0 ,

Proposition 8 If k is even and k > 4 then the edge domination number
for PCy . is as follows:

(n—k)=0(mod3) 2otk
Dg(PCni) = { (n — k) = 1(mod3) 2&1%’;2
(n — k) = 2(mod3) Znth+2

Proof: At least % edges are needed to edge dominate the k¥ pendant edges
since each dominating edge can at most dominate two pendant edges. Use
the edge incident to the first two pendant edges as a dominating edge. By
using every other edge in the cycle as dominating edges, all pendant edges
are edge dominated by the minimal % dominating edges. These k edges
dominate 2k + 1 of the cycle edges leaving a path with n — 2k — 1 edges left
to be dominated. Using the domination numbers for paths given previously,
the desired result immediately follows.

o

Proposition 7 Let k > 3. PCyy s EDC if and only if k is odd and
(n — k) = 0(mod3).

Proof: Suppose that PCy, x is EDC and k is even. By removing a degree one
vertex from PCj,x it is possible to produce PCy x—;. Using Propositions
5 and 6 it is easy to see these two graphs have the same edge domination
number, which is a contradiction. Thus, if k is even, PCy % is not EDC.
Therefore, for PC, x to be EDC, k must be odd.

For k odd, assume k = 3. If (n — k) = 1(mod3) then remove a ver-
tex from PCp3 to produce PCpa. Now, Dg(PCpz) = 2 which by
Proposition 6 is the edge domination of PCy 3. This is a contradiction.
A similar contradiction can be reached if we assume (n — k) = 2(mod3).
So, in the case ¥ = 3 we must have (n — k) = (mod0). Assume k > 3. If
n—k is either 1 or 2 (mod 3) then we can use Propositions 5 and 6 to show
DEg(PCha) = Dg(PCyp k-1) which is a contradiction.

Suppose that k is odd and (n — k) = 0(mod3). Let e, be any pendant
edge. If there are an even number of pendant edges to either side of e,
then we can dominate those pendant edges with 251 edges from the cycle
and none of the edges will be incident with e, but will dominate at least &
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edges on the cycle. Let D; be the set containing these %—1- edges. We can
dominate the remaining n — k edges on the cycle with ";—" edges 80 that
none of the edges are incident with ep. Let D be the set containing these
5=k edges. Let D = Dy U Dy U {ep}. Every edge of PChp other than e,
is incident to an edge of D — ep. This implies that if either vertex of e,
is removed from PCy,; the resulting graph has edge domination number
Intk=3 A similar result can be shown if there is an odd number edges to
either side of ep. Now, let v be a vertex in PCy, x not incident to a pendant
edge. If v is removed from PCy, x the resulting graph can be dominated as
follows: use %tl from the remaining cycle edges to dominate the k pendant
edges and at least k + 1 remaining edges from the cycle. The remaining
n — k — 3 cycle edges can be dominated by 2=5=3 edges. Thus, for every
vertex removed from PCy the edge domination number of the resulting
graph decreases by one.

O

Using Proposition 7 the next corollary immediately follows.
Corollary 3 CR,, is EDC if and only if n is odd.

We next consider what happens when we take a CR,, and add chords
to the cycle by making pairs of vertices that are not adjacent on the cycle
adjacent.

Deflnition 3 A crown with chords on 2n vertices, denoted CRC,, s
a graph with n pendant edges that has CR, as a spanning subgraph.

For example, Figure 2 shows all possible CRCj; graphs.

AR
TR

Figure 2: The eight CRCj5 graphs
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Proposition 8 A CRC,, graph is EDC if and only if n is odd.

Proof: Let G be a CRC,, graph with n odd. Consider the set of edges,
D, that contain 25! disjoint edges from the cycle and the one pendant edge
that is not incident to edges chosen from the cycle. Since any chord in the
graph is incident to only 2 pendant edges, no fewer than I’-gi edges can
dominate G. Thus, Dg(G) = 2. If any vertex is removed from G then
the resulting graph can be dominated by “2;1 disjoint edges from the cycle.
So if n is odd, G is EDC.

If n is even then an argument similar to before shows that De(G) = 2.
Now, if a degree one vertex is removed from G there will be n — 1 pendant
edges left and at least 2 are needed to dominate the pendant edges. Thus
if n is even, G is not EDC.

O

3 A Construction, EDC structure, and Trees

In the previous section, we examined several classes of EDC graphs and
proved that trees are not EDC. In this section, we will take a different
approach to examine EDC graphs. Starting with a general construction
that uses EDC graphs to generate new EDC graphs, we will show how to
use trees to construct new EDC graphs.

The following construction will take two EDC graphs and generate
another EDC graph from them.

Construction 1 Let G be an EDC graph with Dg(G) = n and pendant
edge ep incident to vertez vy, and vertez vp of degree 1. Let G’ be an EDC
graph with vertez vo and Dg(G') = m. Let H be the graph constructed
Jrom G — v, and G' with vertices vy and v, identified. H is an EDC graph
with Dg(H) =n+m - 1.

Proof: Label the identified vertex in H, v,. Since H — v, is the union of
G - vy and G' — vy, Dg(H — vy) = n+ m — 2. Therefore, for G to be
an EDC graph, Dg(H) =n+m—1 and Dg(H —v) =n+m — 2 for all
vertices in H.

The pendant edge e, in G has two vertices v, and vy, where vertex vy
has degree 1. Since graph G is EDC, Dg(G - v,) = n — 1. In addition, for
G to be EDC, every minimum edge dominating set that dominates G — v,
with n — 1 edges cannot have an edge incident to vertex v; otherwise G
would be dominated by n — 1 edges. Identifying vertices v; and v, allows
no additional reduction in edge domination number since no dominating
edge of G — vp is incident to v,. Therefore Dg(H) = n+m — 1. Removing

103



any vertex v other than vy, in H yields either:
IL.G-vpand G'—vor
I.G-v-v,and &

with vertices v, and v, identified. Since Dg(H —v) > n+m — 2, to
prove that H is EDC we must find a minimum dominating edge set that
dominates H — v with n + m — 2 edges for these two cases.

Case I: Since G and G' are EDC Dg(G' ~v) =m—1and Dg(G-v,) =
n — 1 and therefore H can be dominated by n + m — 2 edges.

Case II: Since G’ is EDC, Dg(G' — v2) = m — 1. This means that all of
the edges of G’ can be dominated by m — 1 edges except for edges incident
to vertex va. All of G’ would be dominated if there exists a minimum
dominating edge set with an edge in G incident to vertex v;. Since G is
EDC, G—v can be dominated by n~1 edges. For edge e, to be dominated,
one of the n — 1 dominating edges must be incident to vertex v;. Therefore
subgraph G’ is dominated by the m — 1 edges that dominate G’ — v, plus
the edge in G incident to v;. G is dominated by n — 1 edges. So H — v is
dominated by n + m — 2 edges.

Combining Cases I and II proves that for all vertices in H, Dg(H —v) =
n + m — 2, Therefore H is an EDC graph.

0O

Construction 1 is an extremely powerful and general way to create new
EDC graphs. As an example of the speed and versatility of this approach,
we include 24 EDC graphs with domination number 3 that can be gener-
ated using this construction. To create 3 — EDC graphs out of other EDC
graphs, we need to join two 2 — EDC graphs. The six connected 2 - EDC
graphs found by [7] are shown in Figure 3.

A OO

CR3 K C4 C5 A1 A2

Figure 3: The 6 connected 2 — EDC graphs
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To make new graphs using Construction 1 one of the original EDC
graphs must contain a pendant edge. This only leaves CR3 and A; to be
used as the pendant graphs which can then be joined to other 2 — EDC
graphs. These graphs are shown in Figure 4.

2,0, % 48,2 D
O 5 B 8% g P
P PO

Figure 4: 3 — EDC graphs

This example immediately shows that there are an immense amount of
graphs that the edge domination number can be immediately determined
using Construction 1. Using just these graphs as seed graphs, the number of
graphs that can be generated this way grows explosively as the domination
number increases.

Though no tree with more than three vertices is EDC, we can use trees
and Construction 1 to construct new EDC graphs. For a start, take a path
P, with vertices vy, ...,v,. Each vertex in the path corresponds to a CRg
graph, and each edge in the path corresponds to an identified pendant edge
between two CR3 graphs.

To show that this is indeed EDC, we will start by induction with a path
of length zero, a single vertex. This is associated to CRs which is EDC.
Assume now that a P, has an associated EDC as described above, P,
can be generated from P, using Construction 1 as follows. Let a new CR3
be graph G in Construction 1. By removing one of the pendant edges from
CRg and identifying the degree 2 vertex with a degree 1 vertex on the last
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CRjg associated with P,, a new EDC graph for P}, is formed with the
properties described above.

Examples of the associated EDC graphs for P,, Ps and FP; are shown
in Figure 5.

AA AAA
AAAAAA

Figure 5: EDC graphs associated with P, P3 and Py

The graphs described above are just one possible associated EDC graph
for each P,. A nice stuctural property of these graphs is that although the
edge domination number can be arbitrarily large, each of these graphs have
maximum circumference 3.

Picking the CR3 graph as the seed graph was somewhat arbitrary since
any EDC crown graph can be used to be associated with each of the vertices
in the path. So for example, EDC graphs associated with P3 can also be
any of the graphs shown in Figure 6.

ACIA KA
A YA

Figure 6: additional EDC graphs associated with Ps

The two graphs on the left of Figure 6 also show that the choice of edge
to which the EDC seed graphs are attached is arbitrary as well.
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The same stuctures examined with respect to path graphs can be gener-
alized to apply to any arbitrary tree. To do this we start with a given tree
T. To generate the associated EDC graph, each vertex v in T corresponds
to a crown CR,, such that n is odd and n > degree v. This ensures that
there are enough pendant edges available to join the associated crowns of
adjacent vertices in T'.

Take any vertex in T as a starting point. For each adjacent vertex in
T, use Construction 1 (as we did for paths) to join the crowns associated
with the two vertices in T together. This intermediate graph is EDC.
Continue joining crowns associated with adjacent vertices in T' until all of
the crowns are part of one large connected graph. Since Construction 1 was .
used multiple times creating EDC' graphs at each step, this final graph is
EDC.

Due to this process of construction, there are numerous forms of EDC
graphs associated with each tree, and all of these graphs share similar prop-
erties.

In conclusion, we will examine one consequence of Construction 1 and
end with a prediction about the maximum size of k — EDC graphs. Note
that each crown graph G with Dg(G) = k has 4k—2 vertices. This property
is preserved under Construction 1.

Proposition 9 Let G be a k — EDC graph associated with some tree T.
G has 4k — 2 vertices.

Proof: Using Construction 1, if we start with two graphs with ! and m
vertices respectively, the new graph will contain [ 4+ m — 2 vertices since one
vertex is removed and one vertex is identified. A crown graph with edge
domination number d has 4d — 2 vertices. Joining two crown graphs with
domination numbers n and p, yields a graph with 4n + 4p—6 vertices. This
graph has domination number d' = n + p — 1, so the number of vetices is
4d' — 2. Since the EDC graph associated with the tree is generated us-
ing crowns and Construction 1, at every stage of the construction, the two
graphs that are joined conserve this property.

O

We believe this to be an upper bound on all EDC graphs, and all of the
associated tree graphs presented in this paper achieve this upper bound.
So in conclusion we end with the following Conjecture.

Conjecture 1 Any k — EDC graph has at most 4k — 2 vertices.
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