Note

On Forest Isomorphic Decomposition of Cayley Digraphs

A. Gutiérrez* and A. S. Lladó†
Dept Matematica Aplicada i Telematica
Universitat Politecnica de Catalunya
Jordi Girona, 1
E-08034 Barcelona, Spain
e-mail: allado@mat.upc.es

Abstract

We prove that if S is a quasiminimal generating set of a group Γ and F is an oriented forest with |S| > 2 arcs, then the Cayley graph $Cay(\Gamma, S)$ can be decomposed into $|\Gamma|$ arc-disjoint subdigraphs, each of which is isomorphic to F.

1 Introduction

A decomposition of a directed graph G is a set $P = \{H_1, \ldots, H_k\}$ of pairwise arc disjoint subdigraphs of G whose sets of arcs partition the set of arcs of G. When all digraphs in P are isomorphic to a digraph H, then G is said to be H-decomposable and P an H-decomposition of G.

The subject of decompositions of graphs and digraphs has been widely studied in the literature. When H is a tree and G is a complete graph, the study of such decompositions is related to some well-known conjectures, particularly the *Graceful* tree conjecture. This conjecture asks for a particular labeling f of the vertices of a tree T of m edges with the set of integers modulo (2m+1) such that the differences |f(x)-f(y)| for each edge xy of the tree are pairwise different. Such a labeling leads to a T-decomposition of K_{2n+1} (see,

^{*}Departamento de Matemáticas, Universidad Central de Las Villas, Cuba.

[†]Supported by the Spanish Research Council CYCIT under project TIC97-0963

for instance, the survey of Gallian [1] and the references therein). The problem can be stated in terms of H-decompositions of Cayley graphs.

Recall that, given a group Γ (written multiplicatively) and a set $S \subset G \setminus \{1\}$ of generators of Γ , the Cayley digraph $Cay(\Gamma, S)$ has the elements of Γ as vertices and (x, xg) is an arc of $Cay(\Gamma, S)$ for each $x \in \Gamma$ and each $g \in S$. It is understood that the digraph comes with a coloring of the arcs by the elements in S so that the arc (x, xg) has color g. The undirected Cayley color graph of Γ with respect to S is obtained from $Cay(G, S \cup S^{-1})$ by replacing each pair of arcs (x, xg), (xg, x) by an undirected edge $\{x, xg\}$.

The Ringel-Kotzig conjecture can be stated as saying that each tree T with m edges admits a coloring of its edges with elements of the cyclic group C_{2m+1} such that the Cayley digraph $Cay(C_{2m+1}, C_{2m+1}\setminus\{1\})$ has a colored T-decomposition. Even if the known results for decompositions of Cayley graphs are far from what is required by the conjecture, Ruiz [5] proved that $Cay(C_{2m}, C_{2m}\setminus\{1\})$ has a colored F-decomposition for each linear forest F, that is, a forest whose connected components are paths. Fink [2] and Ramras [4] prove that the n-cube, a Cayley graph, can be decomposed into an arbitrary tree of n edges. Fink [3] generalizes the result to arbitrary Cayley digraphs when the generating set S is minimal, that is, $S\setminus\{g\}$ generates a proper subgroup of Γ for each $g\in S$, and T is an oriented tree.

In this note we show that the condition of minimality can be relaxed to quasiminimal generating sets. A generating set S of a group Γ is quasiminimal if there is an ordering $S = \{g_1, \ldots, g_s\}$ of the elements in $\Gamma \setminus \{1\}$ such that the group generated by the first k elements in S is a proper subgroup of the one generated by the first (k+1) for each k < s. On the other hand, we show that the result can be extended to oriented forests with |S| > 2 edges (and no isolated vertices). We prove the following result.

Theorem 1 Let Γ be a group and S a quasiminimal generating set of Γ and let F be an oriented forest with |S| edges and no isolated vertex. Then the graph $Cay(\Gamma, S)$ is F-decomposable, unless |S| = 2 and $|V(F)| = |\Gamma| = 4$.

2 Decomposing Cayley Digraphs

Lemma 2 Let Γ be a group and S a quasiminimal generating set of Γ . For each forest F with |S| edges and no isolated vertices, there exists a one-to-one labeling $f: V(F) \to \Gamma$, such that

$$\{[f(u)]^{-1}f(v):(u,v)\in E(F)\}=S,$$
 unless $|S|=2$ and $|V(F)|=|\Gamma|=4.$

Proof: We use induction on the cardinality of $S = \{g_1, \dots, g_s\}$. Note that, by the quasiminimality of S, the subgroup Γ_k generated by the first k < s generators is a proper subgroup of Γ_{k+1} , the one generated by the first k + 1. Therefore, we have $|\Gamma| \geq 2^s$.

The result clearly holds when s=1. When s=2 we have $3 \le |V(F)| \le 4$. Figure 2 (a), (b) and (c) show the labelings of the three oriented forests with 3 vertices. Suppose that |V(F)| = 4. If $|\Gamma| = 4$ then, we have a situation equivalent to either $\Gamma = \mathbb{Z}_4$ and $S = \{2,1\}$ or $\Gamma = \mathbb{Z}_2 \times \mathbb{Z}_2$ and $S = \{(0,1),(1,0)\}$. In either case, it is immediate to see that the labeling f does not exist. If $|\Gamma| > 4$ then either $|\Gamma_1| \ge 3$ or $|\Gamma: \Gamma_1| \ge 3$. Let $x = g_1$ in the first case and $x \notin \Gamma_1 \cup g_2\Gamma_1$ in the second one. Then, the set $\{1, g_2, x, xg_1\}$ has cardinality 4. A labeling for the oriented forest with four vertices is illustrated in Figure 2 (d).

Figure 1: Labelings of oriented forests with s = 2, 3.

Let F be a forest of $s \geq 3$ edges. Let Γ_{s-1} the subgroup of Γ generated by the elements of $S \setminus \{g_s\}$. We consider two cases,

Case 1. F has an isolated arc $(a,b) \in E(F)$. Let $F^* = F - \{a,b\}$, which has $s-1 \geq 2$ edges and at most 2(s-1) vertices. Suppose first that $|V(F^*)| < |\Gamma_{s-1}|$. By the induction hypothesis, there is a one-to-one labeling $f^*: V(F^*) \to \Gamma_{s-1}$, such that

$$\{[f^*(u)]^{-1}f^*(v): (u,v)\in E(F^*)\}=S\setminus \{g_s\}.$$

Since $|Im(f^*)| < |\Gamma_{s-1}|$, there is an element $z \in \Gamma^*$ such that $z \notin Im(f^*)$. We define the following labeling, $f: V(F) \to \Gamma$,

on the vertices of F

$$f(u) = \left\{ egin{array}{ll} f^*(u), & u \in V(F) \setminus \{a,b\} \\ \\ z, & u = a \\ \\ zg_s, & u = b. \end{array}
ight.$$

It is straightforward to check that f is well defined and satisfies the conditions of the Lemma.

Since $2^{2-1} \leq |\Gamma_{s-1}| = |V(F^*)| = |\Gamma_{s-1}| \leq 2s - 2$, it follows that s = 3 and $|V(F^*)| = 4$. Consequently, |V(F)| = 6 and F consists of 3 isolated arcs. The labeling shown in Figure 2 (d) satisfies then the requirements of the Lemma.

Case 2. F has no isolated arcs. Let $u_0, v_0 \in V(F)$ be adjacent vertices such that v_0 is a pendant vertex of F. Consider the forest $F^* = F - v_0$, which has $s - 1 \ge 2$ arcs and at most $\frac{3s}{2} - 1$ vertices. Since $|V(F^*)| \le \frac{3s}{2} - 1 < 2^{s-1} \le |\Gamma_{s-1}|$ for all $s \ge 3$, it follows from the induction hypothesis that there is a one-to-one labeling $f^*: V(F^*) \to \Gamma_{s-1}$, such that

$$\{[f^*(u)]^{-1}f^*(v):(u,v)\in E(F^*)\}=S\setminus\{g_s\}.$$

Define the labeling, $f: V(F) \to \Gamma$, on the vertices of F as follows,

$$f(u) = \begin{cases} f^*(u), & u \in V(F) \setminus v_0 \\ f^*(u_0)g_s, & u = v_0 \text{ and } (u_0, v_0) \in E(F) \\ f^*(u_0)g_s^{-1}, & u = v_0 \text{ and } (v_0, u_0) \in E(F). \end{cases}$$

Then f is injective and $\{(f(u))^{-1}f(v), (u,v) \in E(F)\} = S$. \square

Proof of Theorem 1 By the above Lemma, there exists a one-to-one labeling $f:V(F)\to \Gamma$, such that

$${[f(u)]^{-1}f(v):(u,v)\in E(F)}=S.$$

Consider the coloring of the arcs of F with the elements in S given by the labeling f, that is, the arc (x,y) has the color $(f(x))^{-1}f(y)$. Then f can be regarded as a color-preserving map from the arccolored digraph F into the Cayley color digraph $G = Cay(\Gamma, S)$. Clearly, $F \simeq f(F)$. Denote by F_1 the subdigraph f(F). For each $h \in \Gamma$, the map $\varphi_h(x) = hx$ is a digraph automorphism of $Cay(\Gamma, S)$ which preserves the colors. Suppose that (x, xg), (y, yg') are two arcs of F_1 and $(\varphi_h(x), \varphi_h(xg)) = (\varphi_k(y), \varphi_k(yg'))$ for some $h, k \in \Gamma$. Then we have g = g' and, since there is an only arc in F_1 colored g, we also

have x=y and thus h=k. Hence, when $h\neq k$, the subdigraphs $\varphi_h(F_1)$ and $\varphi_k(F_1)$ are arc-disjoint. Moreover, for each arc (x,xg) of G there is an arc (y,yg) in F_1 and $(x,xg)\in E(\varphi_{xy^{-1}}(F_1))$. Hence, the set

$$\{\varphi_h(F_1):h\in\Gamma\}$$

is an F-decomposition of G.

As a final remark, we note that Theorem 1 extends to decompositions of Cayley color graphs into (unoriented) forests when S is antisymmetric $(S \cap S^{-1} = \emptyset)$. In this case we can apply Theorem 1 to any orientation of F.

References

- [1] J. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 5 (1998).
- [2] J.F. Fink, On the decomposition of n-cubes into isomorphic trees, Journal of Graph Theory 14 No.4 (1990), 405-411.
- [3] J. F. Fink, On the decomposition of Cayley color graphs into isomorphic oriented trees. J. Combin. Theory Ser. B 61 (1994), 71-82.
- [4] M. Ramras, Symmetric edge-decompositions of hypercubes, Graphs Combin. 7 No.1 (1991) 65-87.
- [5] S. Ruiz, Isomorphic Decompositions of Complete Graphs into Linear Forests, *Journal of Graph Theory* Vol. 9 No.1 (1985) 189-193.