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Abstract

We prove that if S is a quasiminimal generating set of a group I
and F is an oriented forest with |S| > 2 arcs, then the Cayley graph
Cay(T', S) can be decomposed into |T'| arc-disjoint subdigraphs, each
of which is isomorphic to F.

1 Introduction

A decomposition of a directed graph G is a set P = {H,,..., H.} of
pairwise arc disjoint subdigraphs of G whose sets of arcs partition the
set of arcs of G. When all digraphs in P are isomorphic to a digraph
H, then G is said to be H-decomposable and P an H-decomposition
of G.

The subject of decompositions of graphs and digraphs has been
widely studied in the literature. When H is a tree and G is a complete
graph, the study of such decompositions is related to some well-
known conjectures, particularly the Graceful tree conjecture. This
conjecture asks for a particular labeling f of the vertices of a tree
T of m edges with the set of integers modulo (2m. + 1) such that
the differences | f(z) — f(y)| for each edge zy of the tree are pairwise
different. Such a labeling leads to a T-decomposition of Kan41 (see,
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for instance, the survey of Gallian {1] and the references therein).
The problem can be stated in terms of H-decompositions of Cayley
graphs.

Recall that, given a group I' (written multiplicatively) and a set
S C G\ {1} of generators of T, the Cayley digraph Cay(T, S) has the
elements of T as vertices and (z,zg) is an arc of Cay(T', S) for each
xz € I" and each g € S. It is understood that the digraph comes with
a coloring of the arcs by the elements in S so that the arc (z,zg)
has color g. The undirected Cayley color graph of I' with respect to
S is obtained from Cay(G,S U S™!) by replacing each pair of arcs
(z, zg), (zg, ) by an undirected edge {z,zg}.

The Ringel-Kotzig conjecture can be stated as saying that each
tree T with m edges admits a coloring of its edges with elements of the
cyclic group Cam+1 such that the Cayley digraph Cay(Com+1, Com+1\
{1}) has a colored T-decomposition. Even if the known results for
decompositions of Cayley graphs are far from what is required by the
conjecture, Ruiz [5] proved that Cay(C2m,Cam \ {1}) has a colored
F-decomposition for each linear forest F', that is, a forest whose con-
nected components are paths. Fink [2] and Ramras [4] prove that the
n-cube, a Cayley graph, can be decomposed into an arbitrary tree of
n edges. Fink [3] generalizes the result to arbitrary Cayley digraphs
when the generating set S is minimal, that is, S\ {g} generates a
proper subgroup of I" for each g € S, and T is an oriented tree.

In this note we show that the condition of minimality can be
relaxed to quasiminimal generating sets. A generating set S of a
group I is quasiminimal if there is an ordering S = {g1,...,9,} of
the elements in I' \ {1} such that the group generated by the first
k elements in S is a proper subgroup of the one generated by the
first (k + 1) for each £ < s. On the other hand, we show that the
result can be extended to oriented forests with |S| > 2 edges (and no
isolated vertices). We prove the following result.

Theorem 1 Let T be a group and S a quasiminimal generating set
of ' and let F' be an oriented forest with |S| edges and no isolated
vertex. Then the graph Cay(T, S) is F-decomposable, unless |S| = 2
and |V(F)| = || = 4. o

2 Decomposing Cayley Digraphs

Lemma 2 Let T be a group and S a quasiminimal generating set of
I'. For each forest F with |S| edges and no isolated vertices, there
ezists a one-to-one labeling f : V(F) — T, such that

{f)) 7 f(v) : (u,v) € E(F)} =5,
unless |S| =2 and |V(F)| = |I'| = 4.
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Proof: We use induction on the cardinality of S = {g,,---,g,}.
Note that, by the quasiminimality of S, the subgroup I';. generated
by the first & < s generators is a proper subgroup of '+, the one
generated by the first k + 1. Therefore, we have |I'| > 2°.

The result clearly holds when s = 1. When s = 2 we have 3 <
IV(F)| £ 4. Figure 2 (a), (b) and (c) show the labelings of the
three oriented forests with 3 vertices. Suppose that |V(F)| = 4. If
ITl = 4 then, we have a situation equivalent to either I' = Z4 and
S ={2,1} or T = Z2 x Z2 and S = {(0,1),(1,0)}. In either case,
it is immediate to see that the labeling f does not exist. If [} > 4
then either |I"y| > 3 or |I': T';| > 3. Let £ = g; in the first case and
z & 't U g2y in the second one. Then, the set {1,g2,7,z¢:} has
cardinality 4. A labeling for the oriented forest with four vertices is
illustrated in Figure 2 (d).
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Figure 1: Labelings of oriented forests with s = 2, 3.

Let F be a forest of 5 > 3 edges. Let I's_; the subgroup of I'
generated by the elements of S\ {gs}. We consider two cases,

Case 1. F has an isolated arc (a,b) € E(F). Let F* = F — {a,b},
which has s —1 > 2 edges and at most 2(s—1) vertices. Suppose
first that |V(F*)| < |Ts-1|. By the induction hypothesis, there
is a one-to-one labeling f* : V(F*) — I';_;, such that

{IFF @) (v) : (w,0) € E(F)} = $\ {g}.

Since [Im(f*)] < |T's—1|, there is an element 2z € I** such that
z & Im(f"). We define the following labeling, f : V(F) — T,
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on the vertices of F
f*(u), uveV(F)\/{a,b}
flu)=4q =, L=a

2gs, u=hb.

It is straightforward to check that f is well defined and satisfies
the conditions of the Lemma.

Since 227! < |Ty-1] = |V(F*)| = |Do-1| < 25 — 2, it follows
that s = 3 and |V(F")| = 4. Consequently, |V(F)| = 6 and F
consists of 3 isolated arcs. The labeling shown in Figure 2 (d)
satisfies then the requirements of the Lemma.

Case 2. F has no isolated arcs. Let ug,vo € V(F) be adjacent ver-
tices such that vp is a pendant vertex of F'. Consider the forest
F* = F — v, which has s — 1 > 2 arcs and at most % —1 ver-
tices. Since [V(F*)| < 32 —1<2°7! < |Tyoy forall s > 3, it
follows from the induction hypothesis that there is a one-to-one
labeling f* : V(F*) — I's_;, such that

{7/ @) f*(v) : (w,) € E(F)} = S\ {g.}.
Define the labeling, f : V(F) — T, on the vertices of F as
follows,
@, weV(R)\u
flw) =< f*(uo)gs, u=wo and (uo,v0) € E(F)
f*(u0)gs?, w=wvo and (vo,uo) € E(F).

Then f is injective and {(f(u))~'f(v), (u,v) € E(F)} =S. O

Proof of Theorem 1 By the above Lemma, there exists a one-
to-one labeling f : V(F) — I', such that

{[f()] ' f(v) : (w,v) € E(F)} = 8.

Consider the coloring of the arcs of F with the elements in S given
by the labeling f, that is, the arc (z,y) has the color (f(z))™! f(y).
Then f can be regarded as a color-preserving map from the arc-
colored digraph F' into the Cayley color digraph G = Cay(T, S).
Clearly, F' ~ f(F). Denote by Fy the subdigraph f(F). For each
h €T, the map pn(z) = hz is a digraph automorphism of Cay(I’, S)
which preserves the colors. Suppose that (z, zg), (y, yg’) are two arcs
of F1 and (n(z), on(zg)) = (¢r(y), px(yg’)) for some h, k € T'. Then
we have g = ¢’ and, since there is an only arc in F colored g, we also

120



have z = y and thus h = k. Hence, when h # k, the subdigraphs
wn(F1) and @i (F}) are arc-disjoint. Moreover, for each arc (z, zg) of
G there is an arc (y,y9) in F1 and (z,29) € E(p,,-1(F1)). Hence,
the set

{on(F1): h €T}

is an F-decomposition of G. o

As a final remark, we note that Theorem 1 extends to decom-
positions of Cayley color graphs into (unoriented) forests when S is
antisymmetric (S NS~ = @). In this case we can apply Theorem 1
to any orientation of F.
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