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Abstract

A set of n+1 orthogonal squares of order n is known to be equiv-
alent to a complete set of » — 1 mutually orthogonal latin squares
of order n together with canonical row and column squares. In this
note we show that this equivalence does not extend to orthogonal
hypercubes of dimensions d > 2 by providing examples of affine de-
signs that can be represented by complete sets of type 0 orthogonal
hypercubes but not by complete sets of orthogonal latin hypercubes
together with canonical hypercubes that generalize the row and col-
umn squares in the case where d = 2. These examples also clarify
the relationship between affine designs and orthogonal hypercubes
that generalize the classical equivalence between affine planes and
complete sets of MOLS.

We conclude with the statement of a number of conjectures re-
garding some open questions.
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1 Introduction

In developing a hierarchy of complete sets of orthogonal structures linearly
ordered by inclusion that began with affine planes and ended with (t,m, s)-
nets, Laywine and Mullen [4] left unanswered the open question:

Is the existence of every set of (n® — 1)/(n — 1) type 0 hypercubes of
dimension d and order n equivalent to the existence of d canonical and
(nd —1)/(n — 1) — d latin hypercubes of dimension d and order n?

Essentially the same question had been posed earlier by these authors
in the last sentence of Section 9.2 in [6, page 161]. In addition to the
formulation above, based on the relationship between types of hypercubes,
the question has other origins which are mentioned below.

Kishen [2] was among the first to study latin hypercubes. Among other
things he showed that a complete set of orthogonal latin hypercubes of
dimension d and prime power order n, constructed using linear polynomials
with d variables over F,,, the field of n elements, had (n? — 1)/(n —1) —d
members. In a paper that examined a variety of generalizations of Bose’s
equivalence between complete sets of MOLS and affine planes, Laywine and
Mullen [5, Corollary 4.2] extended Kishen’s results to state an equivalence
between complete sets of orthogonal latin hypercubes and affine designs.
The designs presented in this paper demonstrate that that result should
have been restricted to type 0 hypercubes as given by Theorem 1 below.

Later Laywine, Mullen and Whittle [7] showed that the size of a com-
plete set of hypercubes given by Kishen’s construction was not dependent
on that method of construction. In addition they classified the strength of
the latin property in orthogonal hypercubes by describing a hypercube of
dimension d and order n to be of type j with 0 < j < d — 1 if each of the

n symbols occurs n%~7=1 times in any subarray determined by fixing j of
the coordinates.

According to this definition all hypercubes of type j are also hypercubes
of type k < j and Kishen’s latin hypercubes correspond to those hypercubes
of type j 2 1. Consequently latin squares are latin hypercubes of type 1 and
dimension 2, and a complete set of order n consists of (n?—1)/(n—1)-2 =
n — 1 latin members and 2 canonical squares.

The concept of hypercube type led to the following theorem which ap-
peared as Theorem 9.11 in [6].

Theorem 1 A set of (n®—1)/(n—1), d-dimensional orthogonal hypercubes
of order n and type 0 is equivalent to an AD(n%',n), that is an affine
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resolvable design of order n with blocksize n4~1.

By this equivalence each class of the design is equivalent to a one hy-
percube so that the terms class and hypercube are used interchangably. For
Corollary 4.2 of [5] to be consistent with Theorem 1 above, would require
that (n¢ — 1)/(n — 1), d-dimensional orthogonal hypercubes of order n and
type O be equivalent to (n® — 1)/(n — 1) — d d-dimensional orthogonal hy-
percubes of order n and type 1 together with d canonical hypercubes.

Niederreiter [10, Lemma 5.5] showed exactly this result for d = 2 by
demonstrating that any set of n+ 1 orthogonal squares of order n could be
transformed into n — 1 MOLS together with a canonical row and column

square.

The design that follows in Section 3 shows that Niederreiter's result
can not be extended to all d > 2, and that Corollary 4.2 of [5] should have
referred to complete sets of type 0 hypercubes rather than latin hypercubes.
The existence of this design implies the following.

Theorem 2 The class of complete sets of (n—1)/(n—1) type 0 hypercubes
of dimension d and order n contains a member that is not equivalent to a
set of d canonical and (n® — 1)/(n — 1) —d latin hypercubes of dimension d
and order n.

Theorem 6 of [4] states that if d members of a set of (n® —1)/(n —~ 1),
d-dimensional orthogonal hypercubes of order n and type 0 are canonical,
in the sense of the row and column squares when d = 2, then the remaining
(n%—1)/(n—1)—d hypercubes are type 1 or latin. In [4] it was shown that
coordinates could be assigned to the points of an affine design of order n
and blocksize n%1! so as to give d canonical classes (i.e. hypercubes) if the
complete set contains a subset of d d-orthogonal hypercubes. This result is
based on the concept of k-orthogonality introduced in a paper by Mullen
and Whittle, [9]. They defined a set of s > k hypercubes of dimension d
to be k-orthogonal if superimposition of any subset of k of the hypercubes
gave each k-tuple exactly once.

From this it follows that:

Corollary 3 Not every complete set of d-dimensional orthogonal hyper-
cubes contains a d-orthogonal subset.

Combining Theorem 1 and Theorem 2 above gives:
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Corollary 4 For d > 2 there ezists an AD(n%"1,n) that can not be repre-
sented by d canonical and (n—1)/(n—1)—d latin hypercubes of dimension
d and order n.

Yet another formulation involves the notion of independent transversals
introduced by Mavron [8]. In this context one is interested in determin-
ing whether there exists an AD(n%1,n) not possessing d parallel classes
such that every point is uniquely given as the intersection of the blocks
constituting an independent transversal. The design dxsplayed in Section 3
demonstrates the following.

Corollary 5 Ford > 2 there erists an AD(n%~1,n) with no set of d classes
all of whose transversals are independent.

2 Special Tuples and Characteristic Number

Following the approach of Bhat and Shrikhande [1} we begin with a sym-
metric (v, k, \) BIBD design with v = 29—1, k =29"1—1 and A = 292 —

and extend it to obtain an AD(29-1,2), ie an affine resolvable BIBD mth
blocksize 2¢~! and order 2. The affine design is obtained by adding one
new point to the symmetric design, adding this new point to each existing
block, and then taking the complement of each of these blocks with respect
to the 2¢ points to give 2¢ — 1 new blocks.

In the symmetric case any set of 29=2 — 1 points common to 3 blocks

is called a special (2¢-2 — 1)-tuple and the number of such sets is known
as the characteristic number of the design. Similarly in the affine case
the characteristic number is given by the number of sets of 292 points
common to 3 nonparallel blocks. A simple argument in [1] shows that if
the characteristic of a (2¢ — 1,291 — 1,292 — 1) symmetric design is a
then the characteristic of the derived AD(2%-1,2) is 4a. We will consider
primarily the affine case since these are the designs that relate directly to
orthogonal hypercubes. While our examples are affine designs of order two
it should be realized that concept of characteristic number is relevant to all
affine designs. In the case of an arbitrary AD(n?"1,n) a special tuple will
be a set of n%2 points that are in the intersection of n + 1 blocks.

Designs with different characteristic numbers are nonisomorphic. (See
agein [1].) In fact in the affine case for any prime power order the char-
acteristic number is a rough measure of the degree to which the structure
of any AD(n%"1,n) resembles that of the affine geometry AG(d,n) since
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the intersection of any 2 nonparallel hyperplanes in the geometry gives a
special n%~2-tuple. Accordingly affine geometries taken as designs always
have a maximum characteristic number for all affine designs with the same
set of parameters. The intersection of a prime block in an AD(n?"!,n)
with any other nonparallel block defines a special n?~2-tuple so that affine
designs containing prime blocks will possess structure that locally resem-
bles a geometry and such designs will have relatively a high characteristic
number.

Moreover these special n%2-tuples are crucial in developing relation-
ships between affine designs and other combinatorial structures. Specifi-
cally Laywine [3] showed that the construction of a complete set of MOFS
from an affine design depended on the existence of certain families of these
special tuples. Also the mutual intersections of the set of d d-orthogonal
classes that Laywine and Mullen [4] used to convert an AD(n%,n), or
alternatively a complete set of (n¢ — 1)/(n — 1) type 0 hypercubes, to a
complete set of (n — 1)/(n — 1) — d latin hypercubes resembled the mu-
tual intersections of independent prime classes. While the useful property
arising from these mutual intersections did not directly involve special tu-
ples it seemed reasonable to anticipate a correlation between the presence
of many special tuples and that of d d-orthogonal classes. Alternatively it
seemed logical to expect that an AD(n?~!,n) that could not be represented
by a complete set of latin hypercubes would possess a small characteristic
number. Indeed this proved to be the case as the two examples that were
found both had characteristic zero.

3 The Designs

Using Bhat and Shrikhande [1] we constructed the 22 non-isomorphic
(31,15, 7) symmetric designs, which they designated as Fy to Fy; in [1].

Using each of these designs we then constructed the corresponding affine
designs with parameters (32,62,31,16,15) ie the corresponding AD(16,2)
designs. We constructed these using the simple construction method of
Bhat and Shrikhande mentioned in Section 2 of this paper. To reduce the
possibility of error we also produced the characteristic number for each F;
and confirmed the results of Bhat and Shrikhande.

Each of the affine designs was exhaustively searched for a set of 5 classes
which would permit each of the 32 points to be uniquely represented by the
intersection of a representative from each of the classes. Equivalently we
checked whether in each affine design there existed 5 classes containing an
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independent transversal. In all cases but one there were an abundance of
such sets of classes with independent transversals. The only design which
contained no such set of 5 classes was the design produced using a difference
set consisting of quadratic residues mod 31 which, as noted previously, has
characteristic 0. That design is displayed at the end of this section. In
this table the 32 points are numbered 1, ..., 31, 00; each row gives the points
constituting one block; and one block from each of the 31 classes is displayed
so that the missing blocks are simply the complements of those that are
listed.

The first block is made up of the 15 quadratic residues mod 31 together
with the 32nd point which we label co. The i + 1st block, i = 1,...,30, is
constructed by adding 1 mod 31 to the points other than oo in block i.

Having noted that the quadratic residue design was the only one to
produce no set of 5 classes with an independent transversal, the next design
considered was based on the (127,63,31) symmetric design constructed using
quadratric residues mod 127. As in the earlier case with quadratic residues
mod 31 this design was found to have characteristic zero. The corresponding
affine design had parameters (128,254,127,64,63), ie it was an AD(64,2).
Again by exhaustively considering all sets of 7 classes we determined that
no such set contained an independent transversal. Alternatively the 127
type 0 hypercubes of dimension 7 and order 2 that correspond to the 127
classes of this AD(64,2) can not be represented as a complete set of 120
latin hypercubes of dimension 7 and order 2 together with 7 canonical
hypercubes.

4 Some Conjectures

The two affine designs with the required properties were both derived from
symmetric designs of characteristic zero. In turn these symmetric designs
were derived using a difference set based on quadratic residues mod2¢ — 1
in the case where d = 5 or 7. In the case where d = 3 quadratic residues
mod 7 give a (7,3,1) symmetric design where every pair of blocks intersect
at a single point, and every point lies in 3 blocks and is a special 1-tuple.
In the corresponding AD(4,2) every pair of points is a special 2-tuple so
that this design has maximum characteristic, and, in fact, is the geometry
AG(3,2). Clearly this phenomenom reflects the small blocksize. In fact
both the (7,3,1) symmetric design, and the AD(4,2) derived from it, are
unique designs with their respective parameters. The cases where d =5 or
7 suggest the following.
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Table 1: The AD(16,2) derived using quadratic residues.
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Conjecture 1 For oll Mersennes primes 2% — 1 with d > 3, quadratic
residues mod (2% — 1) give a symmetric (2¢ — 1,29-1 — 1,24-2 — 1) design
with characteristic zero.

Conjecture 2 No AD(2%-1,2) design with characteristic zero can be rep-
resented by a complete set of (2°—1)/(2—1)—d latin hypercubes of dimension
d and order 2 together with d canonical hypercubes.

Conjecture 3 No AD(n%1,n) design with characteristic zero can be rep-
resented by a complete set of (n® — 1)/(n — 1) — d latin hypercubes of di-
mension d and order n together with d canonical hypercubes.

Conjecture 4 Any AD(2%,2) that can not be represented by a complete
set of (2% — 1)/(2 — 1) — d latin hypercubes of dimension d and order 2
together with d canonical hypercubes has a characteristic number of zero.

Conjecture 5 Any AD(n%"1,n) that can not be represented by a complete
set of (n® —1)/(n — 1) — d latin hypercubes of dimension d and order n
together with d canonical hypercubes has a characteristic number of zero.
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