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Abstract

In this paper we derive a necessary existence condition involving
the parameters of a balanced array (B-array) with two symbols and
of strength ¢{ = 8. Consequently, we demonstrate that the existence
condition derived here can provide us with useful information on the
maximum number of constraints for B-arrays with a given number
of columns.

1. Introduction and Preliminaries.

For ease of reference, we state here the definition of a balanced array
(B-array) of strength eight and with two symbols (say, 0 and 1).

Definition 1.1. A balanced array (B-array) T with m rows (constraints),
N columns (runs, treatment-combinations), two symbols (say, 0 and 1), and
of strength ¢ = 8 with index set p'=(pg pt; 15 ..., pig) is merely a matrix T of
size (m x N) with elements 0 and 1 (also called levels) such that in every
(8 x N,m > 8) submatrix T of T, every (8 x 1) vector o of weight i
(0 <% < 8; the weight of a vector with elements 0 and 1 is the number of
1’s in it) appears the same number of times (say) u;. The vector

1'=(o 1 Mo, -, Hg) is called the index set of the array, and the B-array
is sometimes denoted by BA(m,N,s =2,t =8; ).

8
Clearly N = (%), is known once we know the p; ’s.
1=0
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Remark: The above definition can be easily extended to B-arrays of
strength ¢ and with s symbols.

Definition 1.2. If we set p; = p for each %, then the B-array is called
an orthogonal array (O-array), and here N = 28 = 256p. Thus, O-arrays
are special cases of the B-arrays.

O-arrays and B-arrays have been extensively used in the construction
of symmetrical as well as asymmetrical factorial designs. These arrays
for different values of the strength t give rise to fractional factorial designs
of various resolutions. For example, B-arrays with £ = 8, under certain
conditions, give rise to factorial designs of resolution nine which allow us to
estimate all the effects up to, and including, four factor interactions under
the assumption that the higher order interactions are negligible. The
rows of T correspond to factors, and columns to treatment-combinations.
Furthermore, other combinatorial structures closely related to B-arrays are
balanced incomplete block designs, doubly balanced designs, etc. To gain
further insight into the importance of O-arrays and B-arrays, the interested
reader is referred to the list of references at the end (by no means an
exhaustive list) of this paper, and also further references listed therein.

From the above discussion it is quite obvious that the total number of
treatment-combinations (runs) N has to be a multiple of 2¢ , for a given ¢,
for an O-array to exist. This restricts the options available to a researcher
in design of experiments. This has led to replacing the combinatorial
structure on O-arrays by a weaker combinatorial condition giving rise to
B-arrays—providing the experimenter, in general, more than one B-array for
agiven N. Also, it is evident that for a given y'() and m, one may not be
able to construct a B-array (O-array). The problem of constructing such
arrays, for a given p/, with the maximum possible number of constraints
m is very important-both in statistical design of experiments and combi-
natorics. This problem for O-arrays has been studied, among others, by
Bose and Bush (1], Rao [11, 12], Seiden and Zemach [15], Yamamoto et
al [17], etc.; while the corresponding problem for B-arrays has been inves-
tigated, among others, by Chopra [5, 7], Chopra and Dios [8], Saha et al
[14], Yamamoto et al [18], etc. In this paper we consider B-arrays with
strength ¢ = 8, and obtain a necessary existence condition in the form of an
inequality involving the parameters pg 1, ..., g and m. As a consequence
of this inequality we obtain, for a given vector g', the maximum value of
m (the number of constraints) for which the B-array may possibly exist.

2. Main Results

First of all, in this section, we state some results which we use later to
obtain the necessary existence condition for B-arrays with ¢ = 8, and pro-
vide some illustrative examples indicating the importance of the existence
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condition.

Lemma 2.1. A B-array with m =t = 8 always exists.

Lemma 2.2. A B-array T with index set p'=(ug py Y ..., pg) is also
of strength t' where t' satisfies 0 < t' < 8, with its new index set p'(t') =
(Aje; = 0,1,2,...,t'), each A;y being a linear function of the ;s (i =

8-t/

0,1,2,...,8) given by A;y = z% (37 Wiy, §=0,1,2,...,t".
=
Remark: It is not difficult to see that ¢’ = O corresponds to the total
number of columns N of T,and ¢' = 8 corresponds to the index set y'.
Lemma 2.3. Let z;(0 < j < m) be the number of columns of weight j
in a B-array T with m constraints and with index set p'=(g py Hy -, Hg)-
Then the following results are true:

Ry=Y z;=N (2.1)
j=0

R] = Zjil«'] = ml,Am and
m k-1

R, = ija:,- = Z(—I)Hk—lal,kR( + mkAk,k 2<k<8
j=0 =1

Remark: Clearly there are 9 equalities in (2.1) where m; stands for
m(m—1)(m—2)...(m—1+1), and thea; x appear in the process of deriving

(2.1) and are known constants. It is not difficult to observe that (2.1)
represents moments of order k of the weights of the column vectors of T" in
terms of the parameters of the array T
Next we note the following result from Lakshmanamurti [10].
n n
Result: Let z;(i = 1,2,...n) be reals satisfying " 2; = 0 and 2 =n.
1

i=1 i=
Set o = 2 3 27*. Then we have

ag > a? +o? (2.2)
We use (2.1) and (2.2) in order to obtain the necessary existence condi-
tion for a B-array.

Theorem 2.1. Consider a B-array T' with m constraints and with index
set (tto, .., #g)- Then the following inequality is true:

LoLg > LoL% + L2 2.3)
5
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where L;’s (i = 2,4,5, and 8) are given by

2
Lo = Z (—l)kaka"leRf_k(al = az = 1 here),

Ly= z:( 1)%bxN*~1 R R~ (here by = +3,br = (}),2 < k < 4),
k_

Ls = 2 (—1)*~ 1, N* 1R, R5* (here ¢; = 4,¢, = (}),2 <k < 5),
k=1

8
= Y (~1)*dpN*"1R RS~ (here d; = 7,dx = (§),2 < k < 8),

k=1
where Ry’s are defined in Lemma (2.3).
Proof outline: Here z;'s are the frequencies of the welghts j of the col-

umn vectors of T. Weset Z—-’- = M (the mean weight), and s> = & Y _(j—
2V
M)3z;. It is quite clear that Z( - )$j = 0 and E( = ) z; = N.

Next we set o = % 3 -7'8—M ;. Substituting the values of a4, a5, and
og in (2 2), and after some mmphﬁcatlon, we obtain

Ns* Y (i- M)Sx, > 52 [ — M)*z;]” [z( — My5z;]°. Substi-
tuting the value of s2 and expanding 3 (j — M)*z;(k = 4,5, and 8), we
obtain the desired result (2.3) after some simplification.

Remark: In order to check (2.3), a computer program is prepared. If
(2.3) is contradicted for a given g’ and m(> t), then the B-array does not
exist for these parameters. On the other hand if (2.3) is satisfied, then the
B-array may (or may not) exist. In this sense (2.3) can aptly be described
as a "non-existence condition” for B-arrays Obviously (2.3) provides us
with an upper bound on m for a given p’, i.e., starting with m = 9, we look
for the first value of m (say, m = k + 1) where (2.3) is contradicted, thus
giving us m = k as an upper bound.

Remark: For computational ease, we list here the values of a;x (for
various values of [ and k) which appear in (2.1). The values of a;; (listed
in order beginning with ! = 1 and ending with | = & — 1) are: (k =
2;a1,2 = 1), (k = 3; values are —2,3), (k = 4;6,11,6), (k = 5;24, 50,35, and
10), (k = 6; values are given by 120, 274, 225, 85, 15),(k = 7; here we have
the values as 720, 1764, 1624, 735, 175, 21), and (k = 8; values are 5040,
13068, 13132, 6769, 1960, 322, and 28).

Next we give some illustrative examples. A computer program was
prepared to obtain results here.

Example 1. Take a B-array T with ' =(1, 8, 6, 4, 1, 7, §, 1, 2).
Applying condition (2.3) and starting with m = 8, we find a contradiction
for the first time when m = 12 since, for this case, RHS = 1.815041F + 16
and LHS = —1.220586 E 4+ 18. Thus for the above array T, we find T does
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not exist for m > 12, and may exist for 8 <m < 11.

Example 2. Take a B-array T with u’' =(1, 8, 2, 2, 1, 5, 5, 2, 2).
Here (2.3) is contradicted when m = 11(RHS = 1.320199E + 16, LHS =
1.712767E + 14, because LHS } RHS. Thus the maximum m for this
array is 10. o

Example 3. Consider T with u'=(1, 4, 3, 3, 2, 8, 4, 1, 1). Using (2.3)
with m = 10, we find LHS = 4.26325E + 16, RHS = 1.017709E + 17.
Thus LHS is less than RHS, hence a contradiction. Therefore m for this
array is < 9.
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