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Abstract

Given two graphs G and H. The composition of G with H is the
graph with vertex set V(G) x V(H) in which (u1,1) is adjacent to
(u2,v2) if and only if wiuz € E(G) or w1 = u2 and vyv2 € E(H).
In this paper, we prove that the composition of regular supermagic
graph with a null graph is supermagic. With the help of this result
we show that the composition of a cycle with a null graph is always
supermagic.
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1. Introduction

Many combinatorial problems are very difficult to solve, but once a
solution is known, it may seem easy. To prove a graph being supermagic is
one such problem.

Let G = (V, E) be a (p,q)-graph, ie., |V| = p and |E| = q. If there
exists a bijection

f:E—{k k+1, -+, k+(g—-1)}
for some k € Z such that the map f*(u) = Z: f(uv) induces a constant

wveE
map from V to Z,, then G is called k-edge-magic and f is called a k-edge-
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magic labeling of G. If k = 1, then G is simply called edge-magic graph and
f an edge-magic labeling of G. This concept was initiated by Lee, Seah and
Tan [6]. Moreover, if f* is a constant map from V to Z, then G is called
k-supermagic and f is called a k-supermagic labeling. Similarly G is called
supermagic and f a supermagic labeling of G if k = 1 (10, 11]. Clearly, a
supermagic graph is edge-magic. However, there exists lots of edge-magic
graphs which are not supermagic. Hartsfield and Ringel had also studied
supermagic graphs [4]. Only a few graphs were shown to be supermagic
[4, 9, 10, 11]. In this paper, a construction of supermagic graphs is given.

2. Supermagicness of Regular Graphs

If G = (V,E) is an r-regular (p,q)-graph, then 2¢ = pr. Suppose
f:E—-{1, 2, ---, q} is a bijection. For any integer k, we can define a
bijection g: E — {k, k+1, ---, k+(g—1)} by g(e) = f(e) + k-1 for
any e € E. Then g*(u) = f*(u) + r(k — 1). Therefore f* is a constant
mapping if and only if g% is a constant mapping. Thus, from now on we
simply call f is a supermagic or edge-magic labeling if f is a k-supermagic
or k-edge-magic labeling for some k, respectively.

Definition: Let G = (V, E) be a simple graph and S be a set. Suppose
f:E — S is a mapping. A labeling matriz for a labeling f of G is a
matrix whose rows and columns are named by the vertices of G and the
(u,v)-entry is f(uv) if uv € E, and is * otherwise. Sometimes, we call
this matrix to be a labeling matriz of G. In other words, suppose A is an
adjacency matrix of G and f is a labeling of G. Then a labeling matrix for
f is obtained from A = (a.,,) by replacing a.., by f(uw) if a,, =1 and by
* if @, = 0. Moreover, if f is a supermagic (edge-magic) labeling, then a
labeling matrix of f is called a supermagic (edge-magic) labeling matriz of
G.

In the following we shall only consider simple regular graphs, and we

shall label the edges of graphs by numbers 0, 1, ---, ¢g—1.
Thus, a regular (p, ¢)-graph G = (V, E) is supermagic if and only if there
exists a bijection f : E — {0, 1, ---, ¢ — 1} such that the row sums and

the column sums of the labeling matrix for f are the same. For purposes
of these sums, entries labeled with * will be treated as 0.
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3. Main Result

In this section, we shall obtain a useful construction to construct a class
of supermagic graphs.

Given two graphs G and H. The composition of G with H, denoted
by G o H, is the graph with vertex set V(G) x V(H) in which (u;,v) is
adjacent to (ug,v2) if and only if ujus € E(G) or u; = ug and viv, € E(H).
For example, C3 o K3 is shown in the figure below.

VAN

G K, Crk,

Let G = (V, E) be a simple graph and N,, be the null graph of order
n. Suppose A = (@) is an adjacency matrix of G, where u,v € V. Let
Jn be the n x n matrix whose entries are 1. Then under the lexicographic
order the adjacency matrix of Go N, is A® J,,, the Kroneck product of A
and J,.

Example 3.1: A labeling matrix of C,,, o N, is of the form

( * Ao * * AL \
Ag * Al ' ’ T
* AT * , 3.1)
* * * * Am—2

\ Am—l * * . Aﬁ_z * /

where A; is an n X n matrix, 0 <1 < m —1 and * denotes the n x n matrix
whose entries are *,

Theorem 3.1: If G is an r-regular supermagic graph, then G o N,, is an
rn-regqular supermagic graph for n > 3.

Proof: Let G be a (p, q)-graph. By definition, G o N,, is rn-regular with
gn? edges. Let A be an adjacency matrix of G. Since A®J, is an adjacency
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matrix of G o Ny, to find a labeling matrix of G o N,,, we would replace 0’s
by #’s and each J,, by a suitable numeral n x n matrix from the adjacency
matrix of G o N,,.

Let L = (l;;) be a supermagic labeling matrix of G and let k be the
row sum of L. Let & be a matrix obtained from L by replacing * by
the n x n matrix whose entries are *, ; ; by n?l; jJ, + M;; and l;; by
72l jJn + MT; if I j # + and © < j, where M, ; is a magic square of order
non {0, 1, -+, n?—1}. Since for any integer a € {0,1,...,gn%—1} there
exist 0 < b < g—1and 0 < ¢ < n?—1 uniquely such that a = n2b + ¢,
® is a labeling matrix for a bijective labeling. It is easy to see that ® is a
supermagic labeling matrix of G o N,, with row (column) sum kn3 + rm,
where m is the magic sum of the magic squares M; ; for all i < j. 1

Corollary 3.2: If G is an r-regular edge-magic graph, then G o N, is an
rn-regular edge-magic graph for n > 3.

We use the following example to illustrate the proof above. Note that
when m,n > 2, Ky m 0 Ny, = Kpn mn Which is supermagic by the existence
of magic square.

Example 3.2: Consider K33 which is supermagic with the following su-
permagic labeling matrix

* * |3 8 1
* x %2 4 6
¥ % x|7 0 5
3 2 T*x *x =
8 4 0 * =%
1 6 5% * =
3 81
We choose M =M; ;= 2 4 6 | forall1<i<j<3. Then the
7 0 5
matrix
* * * 273+ M T2J3+ M 9Js + M
* * * 18/34+M 36J3+M 5434+ M
* * * 63J3 + M M 45J3 + M
27Js + MT 18J3+ MT 63J3 + MT * * *
7203 + MT  36J3 + MT MT * * *
9J3 + MT 54J3+MT 45J3 + MT * * *

is a supermagic labeling matrix for K3 3o N3, where the upper right corner
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block is
(30 35 28|75 80 7312 17 10\

29 31 33|74 76 7811l 13 15
34 27 32|79 72 77116 9 14
21 26 19|39 44 3757 62 55
20 22 24138 40 42|56 58 60
25 18 23|43 36 41|61 54 59

66 71 64| 3 8 1 |48 53 46
65 67 69| 2 4 6 |47 49 51
70 63 687 O 5 |52 45 50 I

4. Applications

In this section, we shall apply Theorem 3.1 to complete m-partite graphs.
Stewart [11] proved the following theorem.

Theorem 4.1: K,, is supermagic if and only if m > 5 and m # 0 (mod 4).
Applying Theorem 3.1, we have
Theorem 4.2: K,,oN, = Kp n,...,n is supermagic if n > 3, m > 5
ti

and m # 0 (mod 4).

Even though there is no 2 by 2 magic square, by a similar idea of the
proof of Theorem 3.1, we have the following theorem.

Theorem 4.3: K, o N is supermagic if m > 5 and m =1 (mod 4).

Proof: Note that the labeling matrix of K, o N; is of the form

* Al,2 A1,3 e e Al,m
A2,l * A2,3 e v A2'm
, (4.1)
* Am—l,m
Am.l Am,2 Am,3 ot Am,m—l *

where A; ; is a 2 x 2 matrix and A; ; = A}:i. Let

0 2 3
A=(3 1), and B=(0 5

—
N——’

151



Define

+« A B A B A B\
AT « B A B A BT
BT BT x A B A B
AT AT AT & B A AT
wol o1 I
AT AT AT AT AT e x AT
\BT B BT A BT .. - A x)

i.e., according to the notations in (4.1), for ¢ < j,

A if jiseven

B ifjisodd and i # m, or j =m and i is odd
BT ifj=mandi=2 (mod 4)

AT ifj=mandi=0 (mod 4).

Ay =

It is easy to check that the row sums of M are equal to 3(m —1).

Let L be a supermagic labeling matrix of K. Since for each a €
{0,1,--- ,4¢—1} with ¢ = im(m —1) there exist band c with0 < b < ¢—1
and 0 < ¢ < 3 uniquely such that @ = db+¢, @ = 4L ® Jo + M is
a supermagic labeling matrix of K, o N2. Note that for convenience we

* %
define *Jy = . |
* ok

Note that there is a supermagic labeling of K5 o N, shown by Ho and
Lee in [5, Example 3).

Example 4.1: The matrix

+ 18 16 30 6 9 26 23 12
18 « 19 7 29 4 34 2 27
16 19 =+ 15 20 11 24 35 O
30 7 15 % 25 17 31 5 10
L=]6 29 20 25 = 21 3 14 22
9 4 11 17 21 =+ 13 32 33
26 34 24 31 3 13 x 1 8
23 2 35 5 14 32 1 =+ 28
12 27 0 10 22 33 8 28 =« )

152



is a supermagic labeling matrix of Ko by using {0,1,...,35}. The original
labeling was shown in [11]. Let

(* A B A B A B A B)
AT + B A B A B A BT
BT BT « A B A B A B
AT AT AT x B A B A AT
M=|BT BT BT BT x A B A B /|,
AT AT AT AT AT « B A BT
BT BT BT BT BT BT «+ A B
AT AT AT AT AT AT AT 4 AT
\BT B BT A BT B BT A4 =«

where A and B are defined in the proof of Theorem 4.3. Then

( - » 72 74 | 67 65 |123 121124 26| 36 38 [107 105| 92 94 | 51 49
= 75 73 | 64 66 |120124) 27 25 | 39 37 [104 106| 95 93 | 48 50
72 75 »« » 79 77 |28 30 {119117| 16 18 |139137| 8 110|111 108
74 73| = = 76 78 | 31 29 |116 118| 19 17 |136 138 11 9 |109 110
67 64 | 79 76 = =» |60 62} 83 81|44 46 | 99 97 (140142 3 1
65 66 | 77 78 x . 63 61|80 82|47 45| 96 98 {143 141| O 2
123 120| 28 31 | 60 63 » » |103101| 68 70 |127 125( 20 22 | 40 43
121 122| 30 29 | 62 61 = » [100102]| 71 69 |124 126 23 21 | 42 41
Q= 24 27 |119 116| 83 80 |103 100 » =« |84 86| 15 13| 56 58 | 91 89
26 25 (117 118| 81 82 |101 102| » =« |87 85|12 14 | 59 57 | 88 90
36 39|16 19| 44 47 | 68 71 | 84 87| = = 55 53 | 128 130|135 132
38 37| 18 17 | 46 45| 70 69 | 86 85 | » 52 54 | 131 129|133 134
107 104 | 139 136 | 99 96 | 127 124 15 12 | §5 52 * = 4 6 |35 33
105 106 | 137 138 | 97 98 [ 125 126| 13 14 | 53 54 - » 7 5 |32 34
92 95| 8 11 |140143)| 20 23 | 56 59 [128 131| 4 7 » = |112115
94 93|10 9 [(142141) 22 21| 58 57 |130129| 6 § = + |114 113
51 48 [111 109 3 O | 40 42| 91 88 [135133| 35 32 | 112114 = =
\ 49 50 |108 1101 1 2 |43 41 | 89 90 | 132134 33 34 [ 115 113 = = )

is a supermagic labeling matrix of Kg o Ns. |
More about the supermagicness of regular complete m-partite graphs,
the reader is referred to [5].

Theorem 3.1 holds when G is a regular supermagic graph. We shall
show you that G o V,, can be supermagic even though G is not supermagic.

Consider the graph C,, o N,,, m,n > 2. We view Cy as P,. For m > 3,
Cm o N, is an (mn, mn?)-graph; and C2 o N,, is an (2n,n?)-graph. When
m =2, Ca 0o N, = K, ,. We can verify that K 5 is not supermagic. Since
magic square of any order higher than 2 always exists (see [1] or [2]), K, »
is supermagic for n > 3. So we may assume that m > 3 and n > 2.

Thus f: E — {0, 1,---, mn? —1} is a supermagic labeling of C,, o N,,
if and only if row sums and column sums of the labeling matrix for f are
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the same. The problem is reduced to determining whether we can assign
{0, 1,---, mn2 —1} to the entries of m matrices A; in (3.1) such that row
sums and column sums of the matrix are the same.

To reach the purpose, we introduce some concept defined in [8] first.
Let S be a set of mn integers, where m, n > 2. If there is a partition of S
containing m classes such that each class has n elements and whose sum in
each class is the same, then we call S has an (m, n)-balance partition.

Lemma 4.4 [8): If n is even, or both n and m are odd, then
{0, 1,---, mn — 1} has an (m,n)-balance partition.

Suppose there is a partition of S into m classes with n elements in each
class. If the sums of elements in % of the classes are all equal to one value,
and the sums of elements in the remaining classes are all equal to another
value, then we call S has an (m, n)-semi-balance partition (8.

Lemma 4.5 [8]: Ifn is odd and m is even, then {0, 1, ---, mn —1} has
an (m,n)-semi-balance partition.

Recently, the authors [8] proved that for m > 2, n > 2 but (m,n) #
(2,2), Cy, o N, is edge-magic. Now, we are going to prove that Cp, o N, is
supermagic for those m and n. To do that, we have to make use of Latin
squares.

A Latin square is a square matrix in which each row and each column
consists of the same set of entries without repetition. Two Latin squares
A = (a;;) and B = (b; ;) of order n are orthogonal if the n? pairs (a; ;, b ;)
are all distinct. It is easy to see that there is no pair of orthogonal Latin
squares of order 2. In 1900, G. Tarry examined all cases and proved that
there is no pair of orthogonal Latin squares of order 6. In 1960, R.C. Bose,
S.S. Shrikhande and E.T. Parker proved the following theorem in [3].

Theorem 4.6: There exist pairs of orthogonal Latin squares of order n if
n>3 andn #6.

There is a proof written in the book by van Lint and Wilson ([7], 251-
260). The nonexistence proof for the case n = 6 is long. In 1984, D.R.
Stinson [12] gave a short proof. Because of Theorem 4.6, we have the
following theorem.
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Theorem 4.7: Coo N, is supermagic if n > 3, and Cp, 0 Ny, is supermagic
ifm>3,n>3 andn#6.

Proof: It was shown earlier that Cs o N,, & K, ,, is supermagic if n > 3.
So we only have to consider m > 3, n > 3 and n # 6. Let X and Y be a
pair of orthogonal Latin squares of order n.

Case 1: Suppose n is odd and m is even. By Lemma 4.5, we have an (m, n)-
semi-balance partition of @ = {0, 1, --- ,mn—1}. Let {Po, P, ---, P}
be this partition such that the sum of elements of P;, where 4 is odd, is
equal to one value and the sum of elements of P;, where 7 is even, is equal
to another value.

Using the format of X we obtain a Latin square A; with entries consist-
ing of elements of P;, 0 < j < m — 1, and substitute these A’s into (3.1)
to obtain a labeling matrix of Cy, o Ny, denoted by .

Case 2: Suppose n is even or both n and m are odd. By Lemma 4.4, we
have an (m,n)-balance partition of Q. As in Case 1, we obtain a labeling
matrix Q of C,,, o N,,.

Note that the matrix §2, obtained from each of the above cases, is an
edge-magic labeling matrix of Cy, o Ny, (see [8]).

In the same way, we may use the format of Y to obtain a Latin square B
with entries 0, mn, 2mn, ---, (n —1)mn. Substituting B for A; of (3.1),
0 < j < m —1, we have a matrix, say ¥. Because of the orthogonality of
A;’s (obtained from case 1 or case 2) and B, 2+ is a supermagic labeling
matrix of C,,, o N,,. 1

Example 4.2: Consider C4 o N3. A (4,3)-semi-balance partition of
{0, 1, ---, 11} is P, = {0,7,11}, P, = {1,5,9}, P» = {2,6,10}, and

P; = {3,4,8}. Choose
x- ( ) wnd ¥ = ( ) ,

[ JES S
20 o
o0 0

B
a
Y

2 R
o R
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0 12 24

which are orthogonal Latin squares. Then B=| 12 24 0 and
24 0 12
( * % * |0 7 11| = * * | 3 8 4 \
* *x % |11 0 7|+ *x x4 3 8
* * * | 7 11 0| = * *x | 8 4 3
0 11 7% * «]1 5 9| x
7 0 11]*x x* {9 1 5% x =
Q= 11 7 0| * |5 9 1% =* =
- * * x= |1 9 5[« *x x|2 6 10
* * * 5 1 9 * * * |10 2 6
* * *x |9 5 1jix *x *x[|6 10 2
3 4 8[|« x |2 10 6| * x
8 3 4|+ *+ 16 2 10|x*x * *
\ 4 8 3| x x x 10 6 2| %« x x /
We have
( * % x| 0 19 35| % x x|3 20 28 \
*x x x| 23 24 7|+ x x]16 27 8
* x % |31 11 12|« * |32 4 15
0 23 31|« *x |1 17 33| % =* *
19 24 11| = * % [21 25 5 | % * %
35 7 12| x x x[29 9 13| * x x
D+ ¥=——— 17 21 B[+ » *|2 18 34 |
* x *x |17 25 9 | x % x |22 26 6
* * * |33 5 13| * * = |30 10 14
3 16 32| x =« 2 22 30 x x
20 27 4 | x = 18 26 10| * * %
\ 28 8 15| x  =* 34 6 14| x x %
which is a supermagic labeling matrix of C4 o N3. 1

Theorem 4.8: If m > 4 and is even, then C,, o N,, is supermagic.

Proof: Let 2 be an edge-magic labeling matrix of Cp, o N, constructed
in the proof of Theorem 4.7. Let iT be the transpose of 1 = (1,1,---,1).
Let A be the n x n matrix whose i-th column is (i — 1)mn17 and B be the
n x n matrix whose i-th row is (n — i)ymnI. Then A and B are orthogonal
to each numeral block matrix of 2, which are Latin squares. Substituting
A and B for A; of (3.1) if j is even and odd, respectively, we have a matrix
¥. Then each row of ¥ contains two copies of {0, mn, ---, (n — 1)mn}
and (m —2)n ’s or n copies of {imn, (n—i)mn} and (m — 2)n *’s for some
i, 0 €1 < n —1. Thus the row sums and the column sums are the same,
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namely it is equal to mn2. Then Q + ¥ is a required supermagic labeling
matrix of C,, o N,,. 1

Example 4.3: Consider C, 0 N3 again. Let Q be that of Example 4.1, and

/ « % x| 0 12 24| % x % |24 12 0
* % x| 0 12 24 * x[24 12 O
*x % x| 0 12 24| x x % [24 12 O
0 0 O] % * = |24 24 24| x * %
12 12 12} %« * = |12 12 12| x * %
U= 24 24 24| x x x| 0 0 O] % =x %
- * * * |24 12 0| * x x |0 12 24
* % %124 12 0t *x *x [0 12 24
¥ % x|24 12 0| x *x x| 0 12 24
24 24 24|« x x| 0 0 O =*x * %
12 12 12|« * * |12 12 12| * *  *
\ 0 0 0|+ » *|24 24 24| % x )
Then
( * 4« x| 0 19 35| * x % |27 20 4 \
* % x |11 12 31 *x =« [28 15 8
* x* x| 7 23 24 x % x [32 16 3
0 11 7|+ *x =*x[25 29 33| % x =
19 12 23| x * % |21 13 17| x % =
35 31 24| %« x % |5 9 1| =*x = =%
Q¥ =79 21 5|+ = *|2 18 34|’
* * *x |29 13 9| x x x [10 14 30
*+ % *x |33 17 1)1 % = =*x |6 22 26
27 28 32| %« * x |2 10 6| * * =«
20 15 16| * *x * }18 14 22| * x %
\ 4 8 3|x x =|343 26|x * *
which is a supermagic labeling matrix of Cy o N3. |

Now we shall prove the remaining cases, i.e., Cy, oc N and C,, o Ng are
supermagic for m is odd and m > 3.

By applying Theorem 3.1, we have
Corollary 4.9: If C,, o N; is supermagic, then so is Cy, 0 N, forn > 3.

Proof: The conclusion follows from (Cr, © Ni) o Np 2 Cpp © Ny, i
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Theorem 4.10: C,, o Ny is supermagic if m > 3 and is odd.

Proof: The following is a supermagic labeling matrix of C3 o Nj:

* %[0 10| 4 8
* *x |11 1|3 7
0 11|+« =« [ 6 5
10 1|« *=]9 2
4 3|6 9| =% *
8 715 2| =

When m > 5, we let
Ao = 0 4m -2 A { 2m~2 2m-3
07\ 4m -1 1 VoAM=l T o9m 42 2m41 )

A _ 2m  2m -1
m=2=\ 2m+3 2m—4

andfor1<j<m-3,

27 +1 4m —25 -2 e
(4m—2j——1 2 ) if 7 is odd.

2 4m —2j -2 if j is even
dm-2j—-1 2 +1 J :

There is a one-to-one correspondence between entries of 4;,0 < j <m-—1,
and {0, 1, --., 4m —1}. Substituting these matrices into (3.1), we obtain
a labeling matrix L of C3 o N;. We shall show that the row sums of this
labeling matrix are the same.

The first two row sums of L are contributed by the matrices Ag and
AT _ . These two row sums are both 8m — 2. Similarly, the last two row
sums of L are contributed by the matrices A,,—; and AL _,. These two
row sums are also both 8m — 2. Sum of the (25 + 1)-th and the (25 + 2)-th
rows, where 1 < j < m — 2, are contributed by the matrices A; and AJT_I,
which are also both 8m — 2. Therefore L is a supermagic labeling matrix
of 03 o Ng. I

Corollary 4.11: C,, o Ng is supermagic if m > 3 and is odd.
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Example 4.4: The following is a supermagic labeling matrix of Cs o Ny.

[ * * 0 18 * ok x % 8 12 \
* ok 19 1 * X * % 7 11
0 19 * % 3 16 x % * ok
18 1 * % 17 2 * % * %
* % 3 17 * % 4 14 * ok
* % 16 2 EE 15 5 x Ok
* ok * % 4 15 * % 10 9
* % * 14 5 * ok 13 6
8 7 * % * ¥ 10 13 * %
\ 12 11 * % ¥ % 9 6 *  k /

According to the proof of Theorem 3.1, suppose we choose the magic square

3 81
M= 2 4 6 =Mi,j, 1<i<ji<10.
7 0 5

If we replace each numeral r above the diagonal, y below the diagonal and

% in the labeling matrix of Cs o N by the 3 x 3 matrix 32zJ3 + M, the 3x 3
matrix 32yJs + M7 and the 3 x 3 matrix with * as entries respectively, then
we obtain a supermagic labeling matrix of Cj5 o Ng. |
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