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Abstract

Let T be a finite group and let X be a subset of I' such that
X~!'=X and 1 ¢ X. The conjugacy graph Con(I'; X) has vertex
set I" and two vertices g, b € I are adjacent in Con(T'; X) if and only if
there exists # € X with g = zhz~!. The components of a conjugacy
graph partition the vertices into conjugacy classes (with respect to
X) of the group. Sufficient conditions for a conjugacy graph to have
either vertex-transitive or arc-transitive components are provided.
It is also shown that every Cayley graph is the component of some
conjugacy graph.

1 Introduction

The most studied graph associated with a given group is the Cayley graph.
For a finite group I' and generating set A for ' (having A~! = A and
1 ¢ A), the Cayley graph Cay(T'; A) is the graph whose vertex set isT
and where g,h € T are adjacent if and only if h = gé for some § € A. If
adjacency is defined by h = dg for some § € A, then the graph is called
the left Cayley graph. The left Cayley graph is isomorphic to the Cayley
graph.

In this paper, a new graph, which is called the conjugacy graph, as-
sociated with a given group is defined. The graph models conjugation by
specific elements in the group. Our investigation focuses on Cayley graph
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constructions as components of conjugacy graphs. We were primarily mo-
tivated by the problem of determining which Cayley graphs can be realized
as conjugacy graphs. For basic graph theory and group theory used in this
paper, we refer the reader to [1] and [2], respectively.

Let T' be a finite group and let X be a subset of I' such that X~! =
X. Then the conjugacy digraph Con(T; X) is the directed graph whose
vertices are the elements of ' and there is a directed edge from g to h if
h = zgz=! for some element & € X. If X generates I', then the components
of Con(T; X) partition the vertices into the conjugacy classes of I, while
in general, the components partition the vertices into conjugacy classes of
(X). We denote the conjugacy class of an element g in T by clr(g), or more
simply, by cl(g) when the group is understood.

Recall that the center of T consists of those elements that commute
with every element of I'. If ¢ € T is in the center of T', then g is an
isolated vertex of Con(I'; X) with |X| incident directed loops. In general,
the number of directed loops at a vertex g € T is equal to the number of
elements in X that commute with g. The centralizer of an element g€er
is the set of all elements of I' that commute with g and is denoted by
Cr(g) or, again, C(g) if the group is understood. Hence when X = T, the
number of loops at g is |C(g)|. For a subgroup Q of I' and g € T, we define
Ca(g) = 2N Cr(g) (here g need not be an element of Q).

Since there is a natural bijection between the conjugacy class cl(g) of
g and the left cosets of C(g), we may view the components of a conjugacy
digraph as “coset digraphs”. For a group I', let X be a generating set such
that X=! = X and let Q be a subgroup of T. (It is possible that X contains
the identity element of I'.) The (left) Schreier coset digraph S(T/Q; X) is
the directed graph whose vertices are the left cosets of Q and there is a
directed edge from g€ to hQ if hQ = zgQ for some element z € X.

Proposition 1 Let T be a finite group and let X be a subseth I’ such that
X! =X. Let G be a component of the conjugacy digraph Con(T; X) and
let g be a fixed vertez of G. Then G is isomorphic to S({(X)/Cixy(9); X).

Proof Since g € V(G), we have V(G) = {zgz~! : z € (X)}. Let
C = C(x)(g) and define ¥ : V(G) = V(S({(X)/C; X)) by ¥(zgz~}) = zC.
Then ¥ is well-defined and one-to-one since z192;! = zagz5' if and only
if 21C = 2,C. To see that ¥ preserves directed edges, consider z;gz] !
adjacent to 229z;' in G. Then there exists ¢ € X such that 229271 =
zz1927 2!, Hence (27 ¢ 12;)g = g(z7 'z~ 125) so that 2727z, € Cor
23C = zz,C. Therefore z,C is adjacent to zC in S((X)/C; X). Since
these steps are reversible, the result follows. O

The underlying graph of the conjugacy digraph is the conjugacy graph
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for I' and X and is denoted by Con(I'; X). Similarly, the Schreier coset
graph is the underlying graph of the Schreier coset digraph and is denoted
by S(I'/Q; X). By underlying graph, we mean multiple arcs are replaced
by a single edge and loops are omitted. Of course, when X = T, the
components of Con(T'; X') partition the vertices into the conjugacy classes
of I, and furthermore, if ji, ja,. .., jn are the orders of the conjugacy classes
in T', then Con(T’; X) is the union of n complete graphs having orders
J1,J2,...,Jn, where the isolated vertices are those elements in the center
of I'. So if T is abelian, then Con(I'; X) consists of |I'| isolated vertices.
If (X) =T, ie., X generates I, then the components are not necessarily
complete but still partition the vertices into the conjugacy classes of T'.
More generally the components partition the vertices into the orbits in T'
under the conjugation action of {X).

Again, a primary focus of this work is on constructing Cayley graphs
as components of conjugacy graphs. For example, a Cayley graph for the
symmetric group S, can be seen as a component of a conjugacy graph for
Snt1-

Proposition 2 Let X be a generating set for the symmetric group Sy,
where n > 3 such that X~! = X. Then the (left) Cayley graph Cay(S,; X)
is isomorphic to the component of Con(Sp4+1; X) whose verter set consists
of the cycles of length n + 1.

Proof Let o= (12...n+1) and let G denote the component of Con(S,41;
X) containing . So V(G) = {20271 : z € S,} consists of the cycles of
length n+1in S;4,. Define ® : V(Cay(S,; X)) = V(G) by ®(z) = zo2~1.
Then @ is one-to-one since ®(y) = ®(z) if and only if y~'z € Cs,,,(¢) =
(o) and every nontrivial power of o moves n + 1 while y~1z € S, and
fixes n 4+ 1. To see that ® preserves adjacencies, let y and z be adjacent in
Cay(Sn; X). So there exists z € X with z = zy. Consider ®(z) = 2027 =
(zy)o(zy)™! = z(yoy ')z~ = z®(y)z~!. Therefore ®(y) is adjacent to
®(z) in G. Since these steps are reversible, ® is an isomorphism. O

Before continuing with other such realizations of Cayley graphs, we
look at some basic properties of conjugacy graphs. The final section of this
paper is concerned with constructions like that of Proposition 2, but where
the order of the group used for the conjugacy graph is minimized.

2 Properties of Conjugacy Graphs

While it is well-known that every Cayley graph is vertex-transitive, such
is not the case for the components of a conjugacy graph. The following
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result provides a sufficient condition for a conjugacy graph to have vertex-
transitive components.

Proposition 3 Let I' be a finite group. If X consists of a union of conju-
gacy classes of (X), then every component of Con(T; X) is vertez-transitive.

Proof Let G be an arbitrary component of Con(I'; X ), and let g,h €
V(G). Since g and h are conjugate elements with respect to (X), there
exists an element z in (X) such that h = zgz=!. We show that the inner
automorphism ¢, : V(G) = V(G) defined by ¢.(a) = zaz~! is a graph
automorphism and maps g to h. Let a and b be adjacent in G. So there
exists £ € X such that b = zaz~!. Since X is a union of conjugacy
classes of (X), it follows that zz2~! € X, say y = zzz~1, and so zz = yz.
Consider ¢.(b) = 2bz~! = z(zaz™!)27! = (zz)a(2z)! = (yz)a(yz)~! =
y(zaz7')y™! = y¢.(a)y~!. Thus ¢,(a) is adjacent to ¢,(b). In a similar
manner ¢ preserves nonadjacencies. O

Next, we provide a sufficient condition for a component of Con(T'; X )
to be arc-transitive.

Proposition 4 Let G be a component of Con(T'; X), where X is a union
of conjugacy classes of (X), and let g be a fized vertez of G. If for every
pair z,y € X, there exists z € Cix)(g) such that yz € zzCx)(g), then G
s arc-transitive.

Proof Since G is vertex-transitive, it suffices to show that for any two
neighbors zgz~! and ygy~! of g, there exists a graph automorphism that
fixes g and maps zgz~! to ygy~'. By the hypothesis, there exists z € (X)
such that yz € 22C(x)(g). We consider ¢, : V(G) = V(G) defined by
¢:(h) = zhz~!. Then ¢, is a graph automorphism. Since z € Cix)(g), we
have ¢.(g) = g and since z7'271yz € C(x)(g), we have

(727 yz)g = g(z 27 yz),

or
yzgz'ly‘1 = za:ya:']z'l,

or

ygy~" = 2(zgz™!)z7! = 4. (xga).

Hence ¢, maps zgz~! to ygy~! as desired. O

For example, consider the symmetric group T' = S, with X the pair of
transpositions (12), (34). Then (X) is the Klein four-group and so X is a
union of conjugacy classes of {X) and Con(Sy; X) = 4K, U2K,U4C4 has
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vertex-transitive components. As another example, Con(S3; {(12),(13)}) =
KUK, U Ps. Here X generates S3 and is not a union of conjugacy classes
since (23) ¢ X. The component Pj3 is not regular. It is straightforward to
determine the degree of a given vertex of Con(T; X).

Proposition 5 Let T be a finite group and let X C T with X~! = X. For
each g € T, the degree of g in Con(T'; X) is given by

deg g = [{zC(g9) : = € X — C(9)}l,

that is, the number of distinct cosets of the centralizer of g having a repre-
sentative in X — C(g).

Proof First note that if z € X N C(g), then z contributes nothing to the
degree of g. Next consider z,y € X — C(g). Then zgz~! = ygy~! if and
only if z=1y € C(g), that is, if and only if zC(g) = yC(g). O

The next result is an immediate consequence of Proposition 5.

Corollary 6 Let I' be a finite group, X C T with X~! = X, and G be a
component of Con(T'; X). If g € V(G), then

V(G) = {zg9z™" : z € (X)} = clx)(9).

Furthermore, G is | X|-regular if and only if for every vertez h € V(G), (i)
X NC(h) =0 and (ii) zC(h) # yC(h) for every z,y € X.

In the proof of Proposition 3, we saw that when X is a union of con-
jugacy classes of (X), every inner automorphism ¢, where z € (X}, is a
graph automorphism on each component of Con(I'; X). We now establish
necessary and sufficient conditions for a group automorphism of I' to induce
an automorphism of a component of Con(I'; X). In the following proof we
use the easily verified fact that in a group T', if b = cac™! and d € T, then
cd € C(b) if and only if c~1d~! € C(a).

Proposition 7 Let o be a group automorphism of a finite group T’ and let
X CT with X~1 = X. Let G be a component of Con(T; X) with g € V(G).
Then a is an automorphism of G if and only if X N a(z)C(a(g)) # 0 for
every z € X — C(g).

Proof Suppose that a is an automorphism of G and let z € X — C(g).
Then g is adjacent to zgz~!. Hence a(g) is adjacent to a(zgz~!) so that
there exists y € X such that ya(g)y™! = a(zgz~!) = a(z)a(g)a(z™?).
Thus (a(z)~'y)a(g) = a(g)(e(z)~'y) and so a(z)"'y € Cla(g)) or y €
a(2)C(alg)). So X Na(z)Clalg) # 0.
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For the converse, let o be a group automorphism of I' and suppose
that X N a(z)C(a(g)) # O for every z € X — C(g). First we show that if
h € V(G), then X Na(z)C(a(h)) # 0 for every z € X — C(h). Since g was
chosen as a fixed but arbitrary vertex of G and G is connected, it suffices
to verify this claim for vertices h that are adjacent to g. Let z € X — C(h),
and consider h = z=!'gz. Because h and g are distinct vertices of G, it
follows that z,z=! € X — C(g) and z,2~! € X — C(h) Since « is an
automorphism of I', we have a(g) = a(z)a(h)a(z)~!. From the hypothesis,
since =1 € X — C(g), there exists y € X such that y € a(z~1)C(a(g)) so
that a(z)y € C(a(g)). From the observation made prior to the proposition,
we have a(z)~!y~! € C(a(h)) so that y~! € a(z)C(a(h)). Further, y~! €
X. Therefore, it now follows that X Na(z)C(a(h)) # @ for every pair h, z,
where h € V(G) and z € X — C(h).

Finally we show that « is a graph automorphism of G. Let a and
b be adjacent vertices of G. Thus there exists z € X — C(b) such that
a = zbz~!. Since b € T and z € X — C(b), it follows that there exists
¥ € X such that a(z)~'y € C(a(b)). Hence a(z) ya(b) = a(b)a(z) 'y
or ya(b)y~! = a(z)a(b)a(z)™! = a(a). So a(a) is adjacent to a(b). O

3 Cayley Graphs and Conjugacy Graphs

In a Cayley graph, a particular generator induces a subgraph that is ei-
ther a 1-factor (when the generator is an involution) or a disjoint union
of cycles having length equal to the order of the generator. The sit-
uation is clearly different for a conjugacy graph. For elements g € T
and ¢ € X, if k is the minimum integer such that =¥ € C(g), then
g, zg9z~ 1, 2%gx=2, .. g¥~1gz=(k-1) g is a k-cycle in Con(T; X). For each
positive integer k, let Cy(z) consist of the elements of I' that commute
with z¥ and with no smaller positive power of z. Thus if o(z) is the
order of z, then C,(;)(z) consists of the elements that commute with
no nontrivial power of z. For each £ € X, the group I' may be parti-
tioned into the disjoint union T' = Ci(z) U C2(z) U --- U Cyz)(z). Let
ni = |Ck(z)| (1 < k < o(z)). Then the subgraph induced by z in Con(T'; X)
is n1 Ky Uny/2 Ko UZY) ny/i C;.

Let Q be a finite group and A be a generating set for Q with A—! = A.
Certainly the (left) Cayley graph Cay(Q;A) is isomorphic to the (left)
Schreier coset graph S(€2/{e}; A). We now consider whether there exists a
group I' and subset X of T' with X~! = X such that Cay(Q; A) is isomor-
phic to some component G of the conjugacy graph Con(T; X). If so, then by
Proposition 1, it follows that G is isomorphic to S((X) /C(xy(9); X), where
g'e V(G) and Cix)(g) = (X) NCr(g). In this case [Q| = |(X)|/|C(x)(g)|-

ince
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and |Cx)(9)|(IT]/|{X)|) is an integer, it follows that |I'| = k|| for some
positive integer k. Actually, since the identity element of T' is always an
isolated vertex of Con(T'; X), when Q # {e}, we have |T'| = k|| for some
integer k& > 2.

First we use Proposition 2 to show by that every Cayley graph is the
component of some conjugacy graph and then we explore constructions that
obtain minimum values for k.

Let Q be a finite group and let L : Q@ — Sq denote the left regu-
lar representation of Q (that is, L is the homomorphism with L(a) = L,
given by Lo(g) = ag for every g € Q). Let X be a generating set for
with X~1 = X. So L(X) is a subset of L(2) in Sp and the Cayley graph
Cay(€2; X) is now seen to be the Cayley graph Cay(L(2); L(X)), which is
a connected component of the “Cayley” graph Cay(Sq; L(X)) (here L(X)
generates L(Q), which is a subgroup of S and so Cay(Sq; L(X)) is discon-
nected, but what is important is that adjacency is defined as in left Cayley
graphs). By Proposition 2, Cay(Sq; L(X)) is isomorphic to the components
of the conjugacy graph for the symmetric group on |Q| + 1 objects whose
vertices are the cycles of length |2| + 1. By restricting to the vertices L({2)
that correspond to the elements of §2, we obtain an isomorphism between
Cay(L(R2); L(X)) or Cay(R2; X) and a conjugacy graph component and the
group that is used for the conjugacy graph has order (|| + 1)!.

Proposition 8 Every Cayley graph is isomorphic to a component of a con-
Jjugacy graph.

In constructing a conjugacy graph Con(I'; X)) that has a component
isomorphic to the Cayley graph Cay(£2;A), we have seen that |['| = k||
for some integer & > 2. For a group Q2 and generating set A, we define
the conjugacy number con(2; A) as the minimum integer k for which there
exists a (necessarily) nonabelian group I' of order k|| and subset X of I'
such that Cay(€2; A) is isomorphic to a component of Con(I'; X). By the
comments preceeding Proposition 8, con(2; A) < (|Q2[+1)(|2|-1)!and from
Proposition 2, con(S,,; A) < n+ 1. Certainly con(2; A) < con(Q; Q2 — {e}),
where e is the identity of Q and A is any generating set.

Next we show that if 2 has an automorphism ¢ that fixes only the
identity, then con(2;A) = 2. We use Z, to denote the additive cyclic
group of order n whose elements are 0,1,2,...,n—1. The conjugacy graph
construction uses the semi-direct product Q2 x Zy of Q by Z, defined as
Q% Zz ={(g,%) : g € Q,i € Z,} with group multiplication given by
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Nop o (gh,i+j5) if i=0
(@.9(h.5) = { (98(h),i+4) if i=1.
For simplification, let § : Z, — Aut Q be defined by 6(0) = 6y = idq,
the identity on 2, and (1) = 8, = ¢. Then (9,9)(h,5) = (98:(h),i + j).

Theorem 9 Let Q be a finite group with generating set A. If Q has an
automorphism that fires only the identity, then con(Q; A) =2,

Proof Let e denote the identity of 2. Define I' =  x Zy and let
X =Ax{0}. So X~!' = X and (X) = Q x {0}. Let G be the component
of Con(£2 » Z3; X) containing (e,1). Notice that C(e,1) = {(e,0), (e, 1)}
and gC(e,1) = {(g,0),(g,1)} for every g € Q so that by Corollary 5, G is
| X |-regular. We show that Cay(Q; A) 2 G. Define ¥ : V(Cay(Q;A)) - G
by ¥(g) = (94(g~1),1). Let g be adjacent to k in Cay(2; A) so that there
exists § € A such that h = §g. Then (6,0) € X and (4,0)¥(g)(d, 0)-! =
[(6,0)(9(g="), 1)](671,0) = (396(g™),1)(671,0) = (69d(9~1)$(d-1), 1) =
(696((69)~"),1) = (hé(h™'),1) = ¥(k). Thus ¥(g) is adjacent to ¥(h) and
since these steps are reversible, Cay(£; A)y=G. 0O

Let D, denote the dihedral group of order 2n with presentation D,, =
(z,9ly* = " = 1 = (zy)2). If Q is a finite abelian group of odd order,
then ¢ : @ — Q defined by ¢(g) = g~! is an automorphism fixing only the
identity and in the case that Q is cyclic, Q x Z, = D,,.

Corollary 10 Let Q be a finite abelian group of odd order and let A be a
generating set for Q. Then con(;A) = 2.

Since there are no nonabelian groups of order 4 or 5, we know that
con(Zz; {1}) > 3 and since Con(S3; {(12)}) has a component isomorphic to
K>, it follows that con(Zs;{1}) = 3. Using straightforward calculations,
one can also determine that con(Z4;{1,2,3}) = 3 and thus con(Zs; A)=3
for every generating set A of Z;. (There are three nonabelian groups of
order 12, namely, the dihedral group D, the alternating group A4, and the
dicyclic group Qs; and A, is the only one that works here. In particular,
the component of Con(Aq4; {(12)(34), (13)(24), (14)(23)}) containing (123)
is the desired component.) Next we show that the conjugacy number of a
cyclic group of even order is at most 4.

Proposition 11 Let n > 6 be an even integer. Then con(Z,; A) < 4 for
every generating set A of Z,.

Proof Let A be a generating set for Z,. We show that Cay(Zn;A) is
isomorphic to a component of a conjugacy graph for Dy,,. Define X = {z* :
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k € A} and let G be the component of Con(Day; X) containing y. Then
V(G) = {2y : 0 < i < n—1}. Define ¥ : V(Cay(Z,;A)) = V(G) by
V(i) = 2*y. Suppose that i is adjacent to j in Cay(Z,;A). So there exists
k € A with j = (i + k)mod n. So 2j = 2(i + k)mod 2n so that 2%y =
22(+K)y in D,,,. Hence z¥y = z*(2%y)z~* and thus it follows that z¥y
is adjacent to 2%y in G. Since these steps are reversible, Cay(Zn;A) = G
and con(Z,;A)<4. O

In general, we have the bound con(©; A) < (|| + 1)(|] — 1)!. Using
the following result, we can obtain much better bounds for the remaining
finite abelian groups of even order. We use x for the direct product of two
groups as well as for the cartesian product of two graphs. The proof is
straightforward and therefore omitted.

Proposition 12 For each i = 1,2, let I'; be a finite group with X; u subset
of T; such that X' = X;, and let e; be the identity of T';. Then

Con(l'y x T2; (X x {e2}) U ({e1} x X2)) = Con(Ty; X;) x Con(T'; Xa).
An immediate consequence follows.

Corollary 13 For each i = 1,2, let Q; be a finite group with generating
set A; and let e; be the identity of Q;. Then

con(Q x Q2; (Ay x {e2}) U ({e1} x A2)) < con(; A1) con(Qa; Az).

Proof Foreachi=1,2,let I; be agroup and X; asubset of T'; with X,.”1 =
X; such that Cay(;; A;) is isomorphic to a component of Con(T;; X;). So
ITi| = con(Q; A;)[Q4]. Now consider Cay(Q x Q2;(A; x {e2}) U ({e1} x
Az)). Since Con(I'y; X1) x Con(I'z; X2) has a component isomorphic to
Cay(Ql;Al) X Cay(Qz;Ag) = Cay(91 X Qg; (Al X {62}) U ({el} X Az)), by
Proposition 12, the proof is complete. O
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