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Abstract A new graph labeling problem on simple graphs called edge-
balanced labeling is introduced by Kong and Lee [11]. They conjectured that
all trees except K,, where n odd and all connected regular graphs except K,
are edge-balanced. In this paper we extend the concept of edge-balanced
labeling to multigraphs and completely characterize the edge-balanced
multigraphs. Thus we proved that the above two conjectures are true. A
byproduct of this result is proof that the problem of decision a graph is edge-
balanced does not belong to N P-hard.

1. The concept of edge-balanced graphs.

In a bi-racial country, it is desired that the numbers of government ministers
from the two races should differ by at most one. Moreover, the numbers of
pairs of ministries which interact directly with each other and both headed by
ministers of one race should differ by at most one from that of the other race.

We can naturally model this situation by graph. Each vertex represents a
ministry. Two vertices are joined by an edge if and only if the ministries they
represent interact directly with each other. We seek a partition of the vertices
into two sets satisfies certain conditions of balance.
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Let G = (V,E) be a simple graph. A mapping f from V(G) to {0,1}will
induce an edge labeling " E(G) > {0,1} as follows: f'({x,y}) = [f(x) - f(y)!.
In 1987, Cahit [2] called a graph cordial if Ivi(0) — v(1)] < 1, Je0) — e(1)] <
l.where v((i) = the number of nodes with label i, and eq(i) = the number of
edges with label i. Thus a graph on n vertices is said to be cordial if there exists
a labelling f of the vertex set using as equal as possible a number of zeros and
ones, so that the the numbers of induced edge labellings that are zero and one
differ by at most one. The edge labeling induced by vertices i, j is defined by

(-G

In 1988, a dual concept of cordial graphs which is called “edge-cordial”
was introduced by the third author and Ng [14]. Intuitively speaking, a graph
G is said to be edge-cordial if its edges can be labelled either 0 or 1 so that
half of the edges are labelled 0; half are labelled 1; and half of the vertices
meet an even number of edges labelled 1, while the other half meet an odd
number of edges labelled 1. Ng and Lee conjectured that all trees not of order
n=2 (mod 4) are edge-cordial. The problem was solved by Collin and Hovey
[6] in 1993.They showed that most graphs are edge-cordial.

In 1989, Lee, Liu and Tan [13] introduced another type of graph labeling.
Given a graph G with vertex set V(G) and edge set E(G). Any binary labeling
f: V(G) —{0,1} induces a partial binary labeling f+: E(G) —{0,1} as follows.
If f(x)=f(y), then f+({x,y}) is assigned their common value. If not, then '
f+({x,y}) is undefined. Similarly to Cahit's definition of cordial graph, a graph
G is called balanced if [v(0) — v(1)] < 1, le(0) — e (1 ) < 1. The concept of
balanced labelings is dual analogy to cordial labelings.

A similar graph labeling, although not related to the concept of cordial
labeling, was introduced by Kong and Lee [13]. For a given binary edge
labeling g : E(G) —{0,1}, the edge labeling g induces a partial vertex labeling
g*: V(G) —{0,1} such that g*(v)= 1 (0) iff the number of 1-edges (0-edges) is
strictly greater than the number of 0-edges ( 1-edges) incident to v, otherwise
g*(v) is undefined. The mapping g is an edge-balanced labeling of G if and
only if [vgs(0) — ve(1)| < 1, eg(0) — eg(1)] < 1.Furthermore, g is strongly edge-
balanced iff [Vg+(0) — vgs(1)] =0, |e5(0) — eg(1)] =0.

Although these concepts superficially resemble each other, they are
apparently not related. Figure 1 illustrates the difference between them. For
example, K, s is cordial, but neither balanced nor edge-balanced and Cq is not
cordial, but balanced and edge-balanced.

Cahit [2] showed that all trees are cordial. But deciding cordiality of a graph
is NP-complete has been proved to be true very recently by N. Cairnie,
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and E. Keith [4]. Liu Shih-San proved all trees except star K,,;,.1, are edge-
balanced. In this paper we show that decide edge-balanced of graph is belong
to P, i.e. we have a polynomial time algorithm to decide whether a graph is
edge-balanced or not.
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Figure 1.
The following two conjectures are proposed at the end of the article [11].
Conjecture 1: All trees except star K,,5,+1 are edge-balanced.
Conjecture 2: All connected regular graphs except K are edge-balanced.

The readers are refered to [1, 4, 9, 10, 12] for cordial graphs and their
generalization [3, 15, 16].

In this paper we extend the concept of edge-balanced labeling to

multigraphs and completely characterize the edge-balanced multigraphs. Thus
we proved that the above two conjectures are true.
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2.Basic properties.

In this paper, we define edge-balanced in a little different way from [11].
We will label the edges by {+1, -1} instead of {0,1}. In this paper the word
graph will mean an undirected (multi)graph without loop. Given G = (V, E)
and an edge labeling f from E (G) to {1, -1} and for each vertex v, define o(v)
to be the sum of f (e) which e is incident to v.

LetVi={ve Via(v)>0},V.={ve Vio(v)<0},Vo={ve Vio(v)=
0}, E,=f' (1), and E. = f'(-1). Assume fy = V.| - [V, fz = [E.| - |E) and D(G)
= {(m,n) € Zx Z: fis an edge labeling of G with f = m and fy, = n}.

Definitionl. A graph G is an edge-balanced graph if |fy| < 1 and |fg| < 1. Itis
called strongly-edge-balanced if fy = 0 and Fe = 0.

Thus, G is edge-balanced if (man) eD(G) where |m| < land |n| < 1 and
strongly edge-balanced if (m,n) € D(G). For simplicity, we will denote the
class of all edge-balanced graphs by EB and the class of all strongly edge-
balanced graphs by SEB. Then SEB c EB.

Example 1. We observe that for
(1) K, Ifedge is labeled by +1, then fy =2 and fg = 1. If the edge is labeled
by-l,thenfy=-2andfg=-1. Thus,K, ¢ EB
(2) K3 The graph is edge-balanced, for we have an edge-balanced labeling f
with fy = 1 and fz = 1. However, it can not be strongly edge-balanced.

Thus, K; € EB\SEB.

Remark 1. In the literature, there exists another notion of balance in signed
graph which was first introduced by Harary [7], based on a method of
analyzing social interactions due to Heider [8]. A signed graph G is a graph in
which every edge has been assigned either a + or -. G is said to be balanced (in
the sense of Harary) if the product of the signs around each cycle in G is
positive.

However, this concept is independent with the above concept which we just
considered.

Proposition 2. Let P, be a path with order n. Then
(@ f,=2ifn=2,
(b) f,=00r3ifn=3.
() f,=1,20r4ifn=4,
(d) The value f,canbe 0, 1 or2 if n> 5.

Proof. It is not difficuit to see that (a),(b) and (c) are all true.
(d) We consider two cases.
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Case 1. n=2k >5.
f,=0:+-+-... +-
f,=1:4+--+-...+-+

=2i++t-t- -

oh

Case 2. n=2k+1 25.
f,=0:-+++-+-... +-
f,=1i++-+-..+-+
fi=2i+-++-. +-+

Theorem 3. Let G be a connected multigraph. Then G € SEB if and only if
|[E(G)] is even.

Proof. By definition, if G is in SEB then G has an even number of edges.
Conversely, suppose G has an even number of edges. It is well-known that G
has an even number of odd vertices, say Vi, Va, ..., Va1, Vo (K 2 0). We add k
new vertices uy, U, ..., U, and each y; joining to v;_;, and v5;. The new graph
H is obviously eulerian with even size. Let C be an eulerian tour of H. Label
the edges of C by — and + alternatively. Deleting the vertices u, uy, ..., Uy, it is
easy to see G is in SEB by using this labeling. Q.E.
D.

Lemma 4. If G is a connected simple graph with an odd number of edges
except K op+1, then G € EB.

Proof. If|V(G)| < 3 then G is K3 which is in EB. We may assume |[V(G)| 2 4.

Case 1. G contains an even vertex, say Vo. Using the method in Theorem 3, we
have an eulerian tour C with origin and terminus v,. At the beginning of the
edge joined to vo, we label the edges of C by + and — alternatively. It is a
routine matter to check that G is in EB with (1,1) € D(G).

Case 2. G contains no even vertices. Then |[V(G)| is even. Since G is not
isomorphic to K| 2n+1, G contains a path with length 3, say P = v,v,v3v,. Let
G(1) = G\{V,v3, v3v4}. Using the method in Theorem 3, we may add |V(G)|/2 -
1 vertices into G(1) and form an eulerian graph H (the vertex v, may be an
isolated vertex of H). Let C = X;X,...XyX; be an eulerian tour of H, where x, =
v; and X, = v,. Consider the new eulerian tour C’ = v,VV3V4uX,. .. XpX;, Where

u is a new vertex. Label the edges of C’ at the beginning of v,v, by +, +, -, +, -
,..., and so on. Now, deleting all the vertices which are not in G. Again, G is
in EB with (fg,f,) = (1,0) by using this labeling. Q.E.D.

Remark 5. If we replace the sign-labeling of c by +, -, +, +, -, +, -, ... in the
case 2, then (1,2) € D(G).
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3.Main Results
Combine the Theorem 3 and Lemma 4, we have the following.

Theorem 6. If G is simple and connected except K, 2p,+) Where m 2 0, then G
is in EB.

The above theorem proved the two conjectures in [11].

In the following we want to extend the above result to the edge-balanced
multigraphs.

Lemma 7. If G is a connected multigraph with an odd number of edges, then
G is in EB if and only if G is neither K, o+ nor K;(2n+1), where K,(2n+1) is a
multigraph with 2 vertices joined by 2n+1 parallel edges.

Proof. It is easy to see that G is not in EB if it is either K; 55+ or Ky(2n+1).
Conversely, assume G is neither K; n+; or Ky(2n+1).

If[V(G)| = 3, then G has an even vertex. By the same argument in Theorem
3, there is a sign-labeling f such that (f,f,) = (1,1).

Assume {V(G)| 2 4. If G contains a path with length 3, then G is in EB by
the same argument in Lemma 4.

If G does not contain a path with 3, then the underline graph must be K, ; for
some s > 3. Let {e, e, ..., &} be the edge set of K, ;. Consider the
multiplicity of e;. First, assume that there is an even vertex. Then there is an
edge with even multiplicity, say e,. Label the multiple edges of e,, e,,..., € in
order by +, +, -, +, -,..., -. Then G is in EB with (fg,f,) = (1,1) by using this
sign-labeling. Secondly, assume that there is no even vertex. Then s must be
an odd number and at least 3, and each multiplicity of ¢; is odd. Since G is not
Ki2m+ for some m 2 1, there is an edge e; with multiplicity at least 3, say e,.
Label the multiple edges of e, e,,...,e; in order by the following: label the
multiple edges of e, and e, by -, +, -,...,~. Then G is in EB with (fz.f,) = (1,0)
by using this sign-labeling, Q.E.D.

Corollary 8. Let G be a connected graph. Then there is a sign-labeling f such
that
(a) (fe.f)) = (0,0) if [E(G)| is even,
(b) (fe,f) = (1,1) if |E(G)| is odd with an even vertex,
(c) (fefy) = (1,0) if |[E(G)| is odd without even vertex and neither
isomorphic to K, 5+ nor K;(2n+1),
(d) (fe.fy) =(1,2) if G isomorphic to K; ;41 or K5(2n+1).

Lemma 9. If G is a connected multigraph with even size, then D(G) n {(2,1),
(2,2), (2,3)} is nonempty.
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Proof. By Theorem 3, we have a sign-labeling of G such that (fg,f,) = (0,0)
and |o(v)| < 1 for any vertex v. Assume that the V, is nonempty. Then there is
a vertex v belongs to V, and the edge e incident to v with f(e) = -1. Changing
the sign-labeling of e by +, we have (f..f,) € {(2,1), (2,2), (2,3)}. If the set of
Vo is empty, then V=V, U V.. If f(e)=+1, then change the sign-labeling for all
edges except e. If f(e)=-1, then change the sign-labeling of e. Again, we have
(fe.f.) = (2,2) by using the new sign-labeling. Q.E.D.

Lemma 10.
If (i,j) € D(G), then (-i,-j) € D(G).
If (ij) € D(G) and (i’,j’) € D(H), then (i+i’, j+j*) € D(G v H).

Proof. If (i,j) € D(H), then there is a sign-labeling h of G such that (hg, hy) =
(ij). Let f(e) = -h(e) for all e € E(G). Then f is a sign-labeling of G with
(hg,h,) = (-i,-j) € D(G).

If (ij) € D(G) and (i’,j’) € D(H), then there are two sign-labelings g of G
and h of H such that (gg,gv)=(i,j) and (hg,hy)=(@i",j’). Let f(e) = g(e) foralle
E(G) and f(e) = h(e) for all e € E(H). Then f is a sign-labeling of G w H with
(fe, £,) = (i+i’j*+j*) € D(G U H). Q.E.D.

Theorem 11. If G is a multigraph, then G is in EB if and only if G is neither
2t+1

Kiz2m+ nor U Ky(2n;+1), where n; > 0 and t >0.
i=1

Proof. It is not difficult to see that G is not in EB if G is either K, q.1 oOF
2t+1

U K;(2n;+1)
i=1 2t+1
Conversely, suppose G is neither K 5 nor - U Ky(2n;+1)
i=1
Let G, U ... U G, where G; is a connected component of G for all 1 <i <
r+t and G;j is isomorphic to K s+ or Ko(2nj+1) for all r+1 < j < r+t.

Assume that t is even. By Corollary 8 and Lemma 10, we have (0,0) €
D(Gre1 U ... U Gryy). By Corollary 8 we have D(G;) n {(0,0), (1,1), (1,0)} is
nonempty forall 1 <i<r. Again, by Lemma 7, we have G is EB.

Assume that t is odd and there is a component G, (1 < s < r) with an even

vertex and |E(G;)| is odd. Since (1,1) € D(G;), we have (0,1) € D(Gs v Gy U
... U Gry). By Lemma 10, we have G is in EB.
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Assume that t is odd and there is a component G, (1 < s < r) with no even
vertex and |E(G;)| is odd. By Remark 5, we have a sign-labeling f of G such
that (fg,f,) = (1,2) € D(G;). Then we have (0,0) € D(Gs U Gy U ... U Gpuy).
By Lemma 10, we have G is in EB.

Assume that t is odd and each component G; with an even size forall | <i
<r. By Lemma 9, we have D(G;) N {(2,1), (2,2), (2,3)} is nonempty. Then we
have G, U G U ... U G,y is in EB. Again, by Lemma 10, we have G is in
EB.

Assume that t is odd and r = 0. In this case, t > 3. Since G is not a disjoint
union of an odd number of Kj(2n;+1), there is a component which is
isomorphic to K, 2m+1, where m 2 1. Label the edges of K, js; by +, +, +, +, -,
+, =... . Then (3,4) € D(K|, sm+1) and by Lemma 10, we have (1,0) € D(G).
Q.E.D.

The above results completely characterize edge-balanced multigraphs.

Using Theorem 11 one can show that contrary to the case of cordial graphs
the problem to decide a graph is edge-balanced is not belong to NP-hard.
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