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Abstract

For graphs G and H, the Ramsey number R(G, H) is the least
integer n such that every 2-coloring of the edges of K, contains a sub-
graph isomorphic to G in the first color or a subgraph isomorphic to H
in the second color. Graph G is a (Cy, K, )-graph if G doesn’t contain
a cycle C, and G has no independent set of order n. Jayawardene and
Rousseau showed that 21 < R(C,, K7) < 22. In this work we determine
R(C,,K;) = 22 and R(C,, Kg) = 26, and enumerate various families
of (C4, K,,)-graphs. In particular, we construct all (Cy, K,,)-graphs for
n < 7, and all (C,, K;)-graphs on at least 19 vertices. Most of the results

are based on computer algorithms.
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1. Introduction

We shall only consider graphs without multiple edges or loops, on a nonempty set
of vertices. For graphs G and H, a (G, H)-graph is a graph F without a subgraph
isomorphic to G, and such that the complement F has no subgraph isomorphic to
H. A (G,H;n)-graph is a (G, H)-graph of order n. Similarly, a (G, H;n, e)-graph is
a (G, H;n)-graph with e edges. Let R(G,H), R(G,H;n) and R(G, H; n,e) denote
the set of all (G, H)-graphs, (G, H;n)-graphs and (G, H;n,e)-graphs, respectively.
The Ramsey number R(G, H) is defined to be the least n > 0 such that there is no
(G, H;n)-graph. Instead of a graph F of order n, one often considers an equivalent
concept of a 2-coloring of edges of the complete graph K, where we identify F with
the edges in the first color, and the complement F with the edges in the second color.
Thus, for example, the Ramsey number R(G, H) can be defined equivalently as the
minimal n such that in any 2-coloring of the edges of K|, there is a monochromatic G
in the first color or 2 monochromatic H in the second color.

A regularly updated survey by the first author [13] includes the most recent results
on Ramsey numbers R(G, H), for different graphs G and H. This paper considers a
special case when G is a cycle C, (quadrilateral) and H is a complete graph K, . The
cycle-complete pair of graphs forms perhaps the second most studied case in Ramsey
theory after the classical case, in which both G and H are complete.

In Section 2, we overview known results for cycle-complete Ramsey numbers. Sec-
tion 3 presents the results of our computations: full enumeration of all (C,, K,,)-graphs
for n < 7, and of all (C,, K,; m)-graphs for m > 19. Based on these enumerations
and further computations, we conclude that R(Cy, K;) = 22 and R(C,, Kg) = 26. In
Section 4 we describe the algorithms and computations performed. For each task, two
separate implementations of each algorithm were prepared by the two authors, the
results compared, and no discrepancies were found.

2. Bigger Picture

Known asymptotic upper bounds on cycle-complete Ramsey numbers for fixed
cycle are shown in (1) through (5) below, where ¢;’s are some positive constants.

R(C3,K,)=© (—'i) 1)

logn
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R(Co K.) < cq (lo:n)z @

n3/2.
R(CS’KH) .<.. Cs \/log_n (3)
n \ "1
R(C2m’Kn) < Com (m) (4)
R(CZm-vin) < Com-1 n#_l-r (5)

Notice that, in the general case, we have different expressions for the best known
bounds for even and odd fixed cycle. For m = 2, (4) is the same as (2), but for
m = 3, (5) is weaker than (3). The exact asymptotics in (1) is the 1995 breakthrough
result obtained by Kim [9] for the classical Ramsey numbers; i.e., for C3 = Kj. Caro,
Li, Rousseau and Zhang [3] in a recent paper established (3) and (4), and they give
credit for (2) to an unpublished result by Erdés and Szemerédi [5]. The bound (5) was
derived in an earlier work by Erdds, Faudree, Rousseau and Schelp [4].

Spencer [16] using probabilistic method obtained a lower bound

m=1

: ()" <r(C,.K,)
Cm logn = mrinn

which holds even if all cycles of lengths up to m are forbidden (instead of only Cp,}).
An explicit general construction for the lower bound still remains to be seen.

The situation for a fixed complete graph and a growing cycle length seems to be
somewhat easier. The following amazingly simple conjecture was posed in 1974, and
to date its various parts (for different ranges of n and m) have been confirmed by
several authors.
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Conjecture (Erdés, Faudree, Rousseau and Schelp [4]).

For alln > m > 3, ezcept (3,3),

R(Canm) = (m - 1)("' - 1) +1 (6)

Equation (6) was initially known to be true for all n > m2 — 2 [2). In addition, it
has been proved for all n > m, for m < 6; namely for m = 3 [6], m = 4 [17), m =5 [1],
m = 6 [15), and recently also for all m > 7 with n > m? — 2m ({15). An exception for
(n,m) = (3,3) must be made since R(C3, K;3) = R(K3, K3) = 6. In Table I below, we
have collected known and conjectured (marked with a c) small values of R(C,,, K,,,).
Further detailed references to papers establishing specific values are listed in [13].

Three recent papers by Jayawardene and Rousseau contain results involving a
quadrilateral C,: the exact values of R(C,,G) for G = K [14], and later for all graphs
G on at most 6 vertices 8], and the bounds 21 < R(C,, K;) < 22 [7]. The main contri-
bution of our paper is the computation of two more exact values of R(C,, K,,,), shown
in Table I in boldface. We hope that the latter and the knowledge of some families
of graphs R(C,, K,,), for small m, can provide foundation for a general construction
establishing a good lower bound for R(C,, K,,).

C3 C4 Cs C¢ C?; Cs ... Cn
K3 6 7 9 11 13 15 2n-1
Ky 9 10 13 16 19 22 3n-2
Kg 14 14 17 21 25 29 4n~3
K¢ 18 18 21 26 31 36 Sn—4
Ky; 23 22 25 ? 37¢ 43¢ 6n — 5¢
Kg 28 26 ? ? ? 50¢ n — 6°

Table I. Known and conjectured small values of R(C,, K,,,).
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e total
0 11 2
1 11 2
2 11 2
3 1 2 3
4 11 2
5 2 2
6 11 2
7 1 1
total 1 2 3 4 4 2 16

Table II. Statistics for (Cy, K3; n, €)-graphs.
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e total
0 111 3
1 111 3
2 1 2 1 4
3 13 3 1 8
4 1 4 2 7
5 4 6 1 11
6 1 9 4 14
7 4 9 1 14
8 1 3 14
9 5§ 6 1 12
10 9 1 10
11 3 2 5
12 3 3
13 - 1 1
total 1 2 4 7 13 22 30 22 8 109

Table III. Statistics for (C,, K,; n, e)-graphs.

3. Enumerations and Results

We present here statistics from enumeration of various families R(Cy, K,,) ob-
tained by algorithms and computations outlined in Section 4. The Tables II, III, IV
and V give the number of nonisomorphic (C,, K,,; n, e)-graphs for m = 3, 4, 5 and 6,
respectively. for all possible values of n and e (the columns for n < 6 in Table V are
omitted, since they are the same as the corresponding ones in Table IV, except that
the empty graph on 5 vertices is a (C,, K¢:5,0)-graph). This detailed data may be
useful in future work towards deriving bounds on the minimum and maximum number
of edges in general (C,, K,,;n)-graphs, which in turn may lead to better bounds for
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e total
0 111 1 4
1 1 1 1 1 4
2 12 2 1 6
3 1 3 4 4 1 13
4 1 &5 7 3 1 17
5 4 11 10 2 27
6 1 11 22 9 1 44
7 4 21 271 4 62
8 17 53 16 1 87
9 5 62 50 5 122
10 31 108 18 1 158
11 5 130 55 3 193
12 66 138 10 1 215
13 10 200 32 1 243
14 126 75 3 204
15 29 129 9 167
16 2 139 15 156
17 59 22 81
18 9 33 42
19 25 25
20 14 14
21 3 3
22 0
23 0
24 1 1

total 1 2 4 8 17 38 8 190 385 574 457 126 1 1888

Table IV. Statistics for (C,, K5; n, e)-graphs.

general Ramsey numbers of the form R(C,.K,,). We note that a similar approach
worked for the classical Ramsey numbers R(K3, K,,) and R(K,, K,,) (12]; cf. [13].

We found an agreement between the results of our computations and all data
presented in [7], with an exception of the number of graphs in R(C,, K¢;17); there are
only 5 such graphs, not 6. The authors of [7] missed that the two bottom graphs in
their Lemma 2 on page 17 are isomorphic.

It was computationally infeasible to generate all of R(C,, K7). but starting from
the full enumeration of R(C,, K) we managed to enumerate all (C,. K,;n)-graphs for
n 2 19, and their statistics is presented in Table VI. These are the graphs which were
used for further computation of the exact value of R(C,. Kg) = 26.
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n 6 7 8 9 10 1 12 13 14 15 16 17
e
1 1
2 2 1
3 5 4 1
4 8 8 4 1
5 12 17 13 3 1
6 11 28 33 13 2
7 4 30 63 45 9 1
8 17 8 117 37 4
9 5 72 222 135 19 1
10 31 274 380 82 5
11 5 197 757 316 25 1
12 74 944 1005 115 5
13 10 649 2299 483 22 1
14 221 3237 1753 97 3
15 34 2484 4859 425 11 1
16 2 931 8783 1624 47 1
17 146 8847 5166 188 3
18 11 4402 12436 703 11
19 946 19102 2280 36
20 82 15468 6151 112
21 3 5618 13091 330
22 785 19290 823
23 38 15181 1815
24 2 4933 3522
25 5656 5487
26 24 5294 1
27 1 2276 12
28 338 68
29 20 166
30 2 204
31 97
32 11
33 2
34 1
35 4

43 110 307 956 3171 10535 30304 60789 62469 20070 561 S

Table V. Statistics for (C,, Kg; », €)-graphs, |R(C,, K¢)| = 189353.

Theorem 1. R(C,, K;) = 22.

Proof. Jayawardene and Rousseau [7] proved that R(Cy, K;) < 22. Independently,
our computations described in Section 4 showed the nonexistence of (C,.K;:22)-
graphs, and thus confirmed this upper bound. Figure 1 presents an adjacency matrix
of a (Cy4, K;;21,45)-graph G establishing the lower bound. Actually, we claim that
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n 19 20 21

29 1

30 18

31 233

32 2399

33 17474

34 83786

35 261093

36 520551

37 605219 1

38 328849 12

39 64919 126

40 4132 999

41 107 3611

42 4 3762

43 897

44 53

45 2 1
46 2

total 1888785 9463 3

Table VI. Statistics for (C;, Ky; n, e)-graphs, for n > 19.

there are exactly 3 nonisomorphic (C,, K;; 21)-graphs (see Table VI). &

Graph G, presented in Figure 1, has four orbits of vertices. For a reference we give
its automorphism group. Define

9:=(12345678910111213 14151617 18 19 20 21),
g2 = (1 2)(3 6)(4 5)(7 8)(9 12)(10 11)(13)(14)(15 18)(16 17)(19)(20 21),
93 =(136245)(710118912)(13 16 18 14 15 17)(19 20 21).

Then the full automorphism group of the graph G is defined by Aut(G) = (g,.9,,95), a
group of order 12. The full automorphism groups of the other two (C,, K; 21)-graphs
have orders 2 and 4, respectively.

Theorem 2. R(C,. Kg) = 26.

Proof. Figure 2 presents an adjacency matrix of a (C,, Kg; 25,60)-graph H estab-
lishing the lower bound. The nonexistence of (C,. Kg: 26)-graphs, implying the upper
bound, follows from the computations described in Section 4. §
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1 001010100000000101000
2 000101010000001010000
3 100001000100010001000
4 010010001000100010000
6 100100000001100100000
6 011000000010011000000
7 100000001010000000100
8 010000000101000000100
9 000100100010000000010
10 001000010001000000010
1 000001101000000000001
12 000010010100000000001
13 000110000000010000100
14 001001000000100000100
15 010001000000000100010
16 100010000000001000010
17 010100000000000001001
18 101000000000000010001
19 000000110000110000000
20 000000001100001100000
21 000000000011000011000

Figure 1. Adjacency matrix of a (Cy, K7;21,45)-graph G.

The graph H, presented in Figure 2, has two orbits of vertices. The first 10 vertices
are of degree 6, they induce the Petersen graph, and let us denote by H), the subgraph
induced by them. The other 15 vertices are of degree 4, and they induce 5Kj, i.e., five
vertex-disjoint triangles. The graph H has a large automorphism group, isomorphic to
that of the Petersen graph, since each automorphism of H,q (out of 120 automorphisms
of the Petersen graph) extends uniquely to an automorphism of H.

We have found 36 (C,, Kg; 25)-graphs, with the number of edges ranging from 58 to
61, and having automorphism group orders not exceeding 10, except for the graph H,
for which JAut(H)| = 120. We don’t claim that we have obtained a full enumeration
of R(C,, Kg; 25), but it is likely that no other (Cj, Kg; 25)-graphs exist.

Our computations led also to the construction of several (Cj, Kg; 29)-graphs and
(Cy, K 1o; 33)-graphs, which establish the lower bounds listed in the next theorem. We
don’t present these graphs, since they were not very difficult to find, and it is quite
possible that larger graphs for the same parameters can be constructed.

Theorem 3. R(C,, K) > 30 and R(Cy, Kyo) > 34.
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1 0100001001100100100000000
2 1000000110100011000000000
3 0001000101010000010010000
4 0010001010010000001100000
[ 0000010011002000000001001
6 0000101100001000000000110
7 1001010000000100000100010
8 0110010000000010010000400
9 0101100000000001001001000
10 1010100000000000100010001
11 1100000000011000000000000
12 0011000000101000000000000
13 0000110000110000000000000
14 1000001000000000010001000
15 0100000100000000000100001
16 0100000010000000000010010
17 1000000001000000001000100
18 0010000100000100000001000
19 0001000010000000100000100
20 00010010000000120000000001
21 0010000001000001000000010
22 0000100020000100010000000
23 0000010100000000101000000
24 0000011000000001000010000
25 00002100001000010000100000
Figure 2. Adjacency matrix of a (C,, Kg; 25, 60)-graph H.

4. Algorithms and Computations

We will find it convenient to adopt the following notational conventions. If G is
a graph, then VG and EG are its vertex set and edge set, respectively. If v € VG,
then Ng(v) = {w € VG |vw € EG}, and let degg(v) = |[Ng(v)|- The subgraph of
G induced by W will be denoted by G{W]. Also, for v € VG, define the induced
subgraphs G} = G[Ng(v)] and G; = G[VG — Ng(v) — {v}].

Note that if G € R(C,,K;n) and v € VG, then G} € R(P;, K,,;d), where
d = degg(v), and G € R(C,, K,,,_1;n —d —1). Hence, G} must be simply a disjoint
union of isolated edges and vertices, and G is of the same type as G, but for m ~ 1.
These properties formed the basis for one of our algorithms to enumerate graphs in
R(Cy, Kmi ).
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Lemma. If a C,-free graph G with n vertices has minimum degree d, then

-d+1<n )

Proof. Let v be a vertex of minimum degree d, so | VG}| = d. No two distinct vertices
in VG} may have a common neighbor in VG, and thus their neighborhoods cover
disjoint subsets of VG, . G is P;-free, so for each z € VG at least d — 2 edges join
zto VG, . Hence d(d—2) < n-d-1=|VG|, and the lemma follows. &

Suppose we have a particular X € R(P3, K,,;s) and Y € R(Cy, K,,_; t), and we
wish to build them into a graph G € R(Cy, Ky s+t + 1), by adding a new vertex v
of degree s, so that X = G} and Y = G;. We need to choose the edges between X
and Y. A feasible cone is a subset of VY that does not cover both endpoints of any
P, in Y. To avoid C,, the neighborhood in Y of each vertex in X must be a feasible

cone.
Two algorithms were implemented to generate various subfamilies of R(Cy, K5 n).

Algorithm 1: Given graph G € R(Cy, K,,;n) generate all one-vertex extensions
of G which are in R(C,, K,;;n + 1).

Algorithm 2: Given X € R(P;,K,;s) and Y € R(Cy, K,,,_1;t) generate all
graphs G € R(Cy, K,,;s+t+1) such that X = G} and Y = Gj.

Algorithm 1 is a standard procedure in graph theoretical computations, here with
the performance enhanced by the degree restriction of (7), and by other obvious con-
ditions to avoid C, and X, containing the new vertex. This algorithm was sufficient
to generate all (Cy, K,,)-graphs for m < 6, and the results are reported in Tables II
through V. There are too many (C,, K; < 18)-graphs to generate them all by any
reasonable approach.

Algorithm 2, significantly more sophisticated than Algonthm 1, assigns in all pos-
sible ways feasible cones to vertices in G}, so that C; and K, are avoided in G. In
particular, no two cones assigned to distinct vertices in G§ may have nonempty inter-
section. The method by which this and other rules were built into a search procedure

was very similar to that of [11) and [12], so we will not repeat its details.

Algorithm 2 was first tested by using it to generate several subfamilies of (Cy, K., )-
graphs for m < 6, and it agreed with Algorithm 1. Next, (C,, Ko;n)-graphs for
all n > 19 were generated, and the results are reported in Table V1. For example,
all (C,, Ky;21)-graphs were obtained as follows. By (7) and R(Cy, Kg) = 18 the
minimum degree d must be 3, 4 or 5. Applying Algorithm 2 to X € R(F;, K+;3)
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(there are two P;-free graphs on 3 vertices) and Y € R(C,, K¢; 17) produced no graphs,
and applying Algorithm 2 to X € R(P;, K;;4) (there are three P;-free graphs on 4
vertices) and Y € R(C,, Kg;16) produced three (C,, K7;21)-graphs with minimum
degree 4. Similarly, Algorithm 2 was used to show that no such graph may have
minimum degree 5.

By the Lemma above and R(C,, K;) = 22, any (C,, Kg;26)-graph must have
minimum degree 4 or 5. To compute all such graphs, Algorithm 2 was used again with
Y € R(C,,K7;21) and Y € R(C,, Ky; 20), respectively. No such graphs were found,
and thus R(C,, Kg) < 26. Note that, using (7) and R(C,, K;) = 26, one can conclude
easy upper bounds R(C,, K,) < 33 and R(C,, K,;) < 40 without any computations.

The computational effort of this project was moderate — all computations could
now be repeated overnight on a local departmental network. A general utility pro-
gram for graph isomorph rejection, nauty [10), written by Brendan McKay, was used
extensively. The graphs themselves are available from the first author.
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