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Abstract

In developing an observation made by the author concerning
a class of expansions of the sine function, M. Xinrong has re-
cently analysed the question of a generalised form through a
succinct use of linear operator theory. This paper constitutes
an extension of his work, in which the current problem is solved
completely by examining that generating function of a finite
sequence central to the formulation.

Introduction

In 1988 the scientific historian Luo published a paper [1]—the first of a
group of related works—accrediting Chinese scholar Antu Ming with the
discovery of the Catalan numbers through some expansions of the trigono-
metric function sin(ma) in odd powers of sin(a) (m integer). For m odd the
resulting expressions are finite, whilst m even gives rise to an infinite series
representation wherein the Catalan numbers appear in a prescribed manner
that is both surprising and interesting. This subject was discussed in an ar-
ticle [2] by the author, who gave proofs of the non-terminating series when
m = 2,4 and further deduced those for m = 6, 8, 10. Denoting the (n+1)th
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term of the Catalan sequence {cp, ¢1,c2,¢c3,¢4,...} ={1,1,2,5,14,...} as

1 2n
c,,_n+1( n ), n=0,12,..., (1)

it was evident in [2] that the result

sin(2a) = 2 {sin(a) -3 ;;;_11] sin2"+l(a)} )

n=1

is the critical one, for it serves as the foundation for all others; on the
basis of this, expansions for sin(4a), sin(6a), sin(8a), ..., can be developed
sequentially using the simple recursion

sin[(m + 2)a] = 2 {[1 — 2sin®(a)]sin(me) — (1/2)sin[(m — 2)e]}  (3)

applied respectively for m = 2,4,6, etc., and the embedding of Catalan
numbers in each is dictated by their initial occurrence in (2) as shown
(such is the significance of this that the realisation of (2), via the theory
of hypergeometric functions, has been dealt with in [3] as a separate topic!).

Those cases treated in [2] allowed the following generalised statement to
be written down by Larcombe for integer p > 1:

P
sin(2pa) = 2{2 aPsin®*~(a)

n=1

+ Z fr(n)gplen—n,. .., Cn+p—2)Sin2(n+p)_l(0‘)} » (4)
n=1

where off) is a constant and fp,gp are functions. Note that the r.h.s. is

convergent for |a| < 5. More importantly, from the methodology in [2]
it became apparent that g, is always a linear sum of the given p Catalan
elements—a fact that has since provided motivation for a subsequent arti-
cle by Xinrong [4] where the author’s analysis of [2] is extended. We shall
summarise briefly some of the work in [4] directly related to (4), to which
addition will be made. Specifically, the general coefficient in the abovemen-
tioned sum is found, and then simplified to a final closed form by appeal to
hypergeometric function theory. Computational aspects of its calculation
are also discussed, and to finish the complete (p-variable) function g, is
determined as a reduced univariate one. All of this is done in the context
of a slightly re-cast problem, as will now be explained.

1For clarity we emphasise, as done in [3, see Footnote 1], that in [2] c,.=% 2(::1”)

is the nth Catalan number with {1,1,2,5,14,...} = {c1,¢2,¢3,¢4,¢s,...}; this should
prevent any confusion on the part of the reader.
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The Analysis of Xinrong

Upon close inspection, the systematic build up of results in [2] is seen to
rapidly become less and less algebraically tractable with increasing p (it is
worth mentioning that neither, if at all even possible, can the manipulations
involved be easily automated symbolically), and the procedure taken, whilst
quite natural, does not yield any further insight into the structure of g,
other than suggesting its general linearity for any chosen p. Very recently,
Xinrong [4] has adopted the modified version

n=1

P
sin(2pa) = 2{2 aPsin?"~(a)

2\ hp(en—1 c 2)
+> n222n+p;—g+p_ Sinz("ﬂ)-l(a)} (%)
n=1

of (4) and derived analytically a means to obtain h, computationally,
terming (4) Ming’s Theorem and the question of finding f,, g, in closed
form Ming’s Problem; in effect Xinrong standardises (4) to (5), leaving
Ming’s Problem as the formulation of h,.2 Writing the linear function h,
as

hp((:n_l, ey Cn+p—2) = (()p)cn—l + B{p)cﬂ +---+ ﬁ’()‘)_)l cﬂ+p—2: (6)
a degree p — 1 polynomial (with matching coefficients)
Hy(z) = B0 + B2 + -+ 02"~ (7)
is associated with h, so that (in standard combinatorics notation)
AP = [2'{Hy()}, i=0,...,p— 1L (8)

Moreover, underpinned by operator theory (taken from the authoritative
paper on umbral calculus by Roman and Rota [5), and applied to the as-
sumed form (5) of sin(2pa)) Hp(z) is identified as

VEI=z)? - 24+ Vi-z)%
8vd—=z ’

Hy(z) = (-1yp+1 &= p>1,  (9)

acting as the (ordinary) generating function for the finite sequence of co-
efficients {,B((,p ),...,ﬂ(p_)l} (the multiplier (—1)?*! is omitted in error in

2This appellation is perhaps a little curious. Ming produced but eight expansions of
sin(ma)—six for m even, two for m odd (see [2])—and as far as the author is aware
made no conjecture of an extrapolated representation such as (4).



Theorem 1.2 of [4]). Comparing (4) and (5) we observe that if, for p fixed,
fo(n) = 23-2(n+p) then g, and h, clearly coincide. Noting that (2) gives
hi(cn—1) = —cn-1, by way of further example we list the other explicit se-
ries detailed in (2] for p = 2,3, 4,5, from which the corresponding function
h, is equally immediate in each instance. We have

sin(4a) = 2 {2sm(a) 5sin3(a) + Z [Sc,._ll——c,,] sin2"+3(a)} , (10)

n=1
o
ha(cn-1,¢n) = 2(8cn-1 — ¢,), (11)
together with

sin(6a) = 2 {3sin(a) — (35/2)sin® () + (189/8)sin®(a)

had 25607; 1— 64cn + 3cn+l 2n+5
- Z 92n+3 (a) ’

sin(8a) = 2{4sin(a)—42sin3(a)+(231/2)sin5(a)—(429/4)sin7(a)

©0
1024c, 1 — 384cn + 40cn 41 — ¢
+ Z [ n Sas n+ n+2] 51n2"+7(a)} ’

sin(10a) = 2 {5sin(a) — (165/2)sin®(a) + (3003/8)sin®(a)

~ (10725/16)sin’ (@) + (60775/128)sin® (a)

9\€n—1,CnyCn+1,Cn+2,n+3
N e

n=1

(with linear function g(cp—1, - - -, ¢ny3) = 65536¢,_1—32768¢, +5376¢n 41—
320cn 42 + 5eny3), whence

ha(cn-1,¢n,cn41) = —(256¢a-1 — 64cn + 3cn4),
h4(cn..1, Cny Cnil, c,.+2) = 4(10246,,_1 — 384c¢,, + 40cn 41 — c,,+2),

hs(cn—1;Cn,Cnt1,Cnt2,Cnts) =
— (655361 — 32768 + 537641 — 320cn42 + Senya). (13

With reference to (6) (and (7)), the coefficients in hy, . . ., hs above are read-
ily checked by calculating the polynomial H,(x) (9) (for the appropriate
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value of p, in which case it is found that Hy(z) = —1, Ha(z) = 16 — 2z,
H3(z) = —256+64z—3z2, and so on). In general, the latter is accomplished
realistically using any one of the several mainstream computer algebra pack-
ages currently available commercially.

Further Results

This section constitutes the part of the paper in which, based on Xinrong’s
standardised format for sin(2pa) as described, new results of interest are
presented and an analytic representation of the function h, established
which is dependent only on one Catalan number.

We first state, and prove, an explicit form for the general coefficient of
the polynomial H,(z) (7) (and of the sum h, (6)) using (9).

Lemmal Forp>1,0<n<p-—1,

B = (_1)n+p22(p—n)—3§ : 2p
n n 2i+1 /°

i=n

Proof Rather than expand Hp(x) (9) as a power series in 4 — z, it is re-
written more conveniently as

1- T=5)% — (14 /T=-%)*
Hp(z) = (_1)p+l4p~2( 4 \/1T(£' a p> 1.
4

Denoting /1 — £ as f(z), consider

(1—\/1—_2)2p— (1+1-3 e

SO0 -1 (%)@

i=0

Because the summand is non-zero only for odd values ¢ = 1, 3,5,...,2p—-1,
we have

2p 2p P
z d - _ 2p 2i—1
(1— 1-7 —(1+ 1- 7 = 22 l:(21._1)1“ (=)

— 2p §
= -2 (2i+1)f2+1(”)’

1=0

N .
|
-
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with a small shift in the summing index. Hence,

p-1
i) = Creey (L)) e

e 2i+1
-1 .
2 T\?
—  (_1)p92p-3 P 2
= (=172 Z(2i+l)(1 1)
i=0

and since [z"]{(1- 2)'} = (-3)"(}) (0<n < i), thenfor0<n<p-—1,
by definition (8)

B9 = [2"){Hy(2)} = (—1)“*"22""""32( . ) ( it )'D

Extensive computations have verified this result.®

Remark 1 The integrality of ﬂ,(,p ) is easily deduced as a corollary to Lemma
1. Noting that the sum of binomial coefficient products therein is always a
whole number, it suffices to show that the exponent e(p; n) = 2(p—n)-3 > 0
(0<n<p-—1). When 0 < n < p— 2 then e(p;n) > 1 (and odd).

However, e(p; p — 1) = —1 so for this case we consider the full coefficient
ﬂ,(,p_)l = —-;— 232 1) = —p, which is integer (and, as required, concurs with
that of the relevant term of those functions hy,..., ks given earlier).

We are now in a position to simplify ﬂ,(,p ) to a better (i.e., single bino-
mial coefficient) closed form without too much difficulty. Consider, from
Lemma 1, the sum

Slpin) = pz-:l(ri)<2i2-ﬁl)

i=n

() ()

=0

( 2 )2F1(—(p—n—1),—(p—n—%)

n+%

1. a9

having first modified the summation range so as to start at zero and then
converted S(p;n) to hypergeometric form (with standard notation em-
ployed) by means of undergraduate level theory (see, for example, either of

3Thanks are due to Dr. Kate Woodham for performing these calculations, check-
ing that (9) produces coefficients of this general form using the Symbolic Toolbox of
MATLAB; results also show agreement with those given at the end of {4] in Table 3.2.
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the classic texts [6,7]); briefly, the hypergeometric delineation of an infinite
series

3 (aeloa)e - (ande 2 (15)
= (b1)e(b2)s -~ (be)x K
is
a,az,...,a,
’F‘<bl,b2,...,bt Z)’ (16)
with a;,as,...,a, and b, bo,...,b; its respective upper and lower param-

eters, and z the argument—all possibly complex variables—and where we

write
(W = u(u+1)(u+2)(+3)--(ut+k-1) (17)

to denote the rising factorial function which is defined for integer k¥ > 0
((u)o = 1). Since it applies here, we mention that a negative integer up-
per parameter reflects the series represented hypergeometrically as being a
finite one. Gauss’ Theorem—a long established result—gives that a hyper-

geometric series
a,a
2F1 ( lbl 2 Z) (18)

with unity argument and real ai,az2,b; (b; also non-integer or a positive
integer) evaluates to

F(bl)r(b1 —a; — ag)

P(bl - al)I‘(bl - a2)
iff by — (@1 + a2) > 0. The corresponding condition to be satisfied by F' in
(14) is 2p — n > 0, which clearly holds sincen < p—-1<p<2pforp> 1.
Thus, in terms of the Gamma function,

P (—(p—n—l),—(p—n—%)
n+5

(19)

(20)

1) _I(n+ §)T(2p—n)
T(p+3)T(p+1)

Replacing I'(n + 2) with (n+ §)I'(n + ) and using another known result,

namely,
1\ _ V7 (2s)!

F(s+§)_4_’ o s>0, (21)
it is found after some algebraic manipulation that S(p;n) (14) can be sim-
plified to

S(p; Tl) - 22(p—n)—1 ( 2P - (17: + 1) ) , (22)
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yielding the desired representation (below) of ﬂ,(,p ) from Lemma 1.

Lemma 2 Forp>1,0<n<p-—1,

—(n 2p—-(n+1
BP) = (—1)n+p16P~( +1)( p (n ) )

Remark 2 The type of identity (22) (for the sum of binomial coefficient
terms of which S(p; n) consists) does not appear in Gould’s listing of the
1970s [8] which is still consulted today as a useful resource for such results.

The Lemma 2 form of ﬂ,(,p ) is quite obviously more computationally effi-
cient than that of Lemma 1. Improvement can still be made in this regard,
however, by applying Zeilberger’s algorithm by computer (its algebraic im-
plementation here is due to Prof. Dr. Wolfram Koepf [9], to whom thanks
are expressed by the author) which offers up a recursive formula for the
coefficient. Writing

—(p—n-1),—-(p—n-3) — Pl
2Fl ( n+% 2 1) - F(p) n)’ (23)
then by (14)
S(p;n) = u(p;n)F(p;n) (24)
where 0
u(pin) = ( omo ) : (25)
and symbolic output gives a relation
(2n+3)F(p;n) — 2[2p— (n+ 1)]F(p;n+1) = 0. (26)

In other words,
[p— (n+ DI2(p—n) - 1]S(p;n) = 2(n+ 1)[2p— (n + 1)]S(p;n + 1), (27)

using (24),(25). In view of Lemma 1, we thus arrive at an equation linking
successive coefficients of interest—we state this as Lemma 3.

Lemma 3
» _ _g n(2p — n) J >9
oo = R -mr 0 P2
For fixed p > 2 (when p = 1, ,3((,1) = —1 trivially from either Lemma 1 or
Lemma 2) the result can be used for descending valuesof n =p—1,...,1,
given that ﬂ,(,p_)l = —p (see Remark 1), or equally for ascending values of n
4Lemma 2 gives ﬁi(,p_)l =- pfl) = —p as an easy check.
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with initial value (by Lemma 2) ((,p) = (—1)P16P~!. Note that the reason
for the alternating sign in neighbouring coefficients is self-evident here, as
indeed it is from Lemmas 1,2.

Remark 3 Zeilberger’s algorithm has been executed for illustrative pur-
poses, (26) demonstrating the power of modern combinatorial software that
deals with hypergeometric functions in this way. The reader may, of course,
care to derive Lemma 3 directly from Lemma 2. We have not considered
the counterpart recursion satisfied by F(p;n) w.r.t. p; this is, for complete-
ness, 2(2p—n)(2p—n+1)F(p;n)—(p+1)(2p+1)F(p+1; n) = 0 (generated
similarly by computer), which would relate ﬂ,(,p ) and ,B,(,” +1)

We now determine the entire function hy(cn_1,...,¢n4p-2) (6) in com-
pact form as the main result of the article. A routine hand calculation
yields, from Lemma 3 and (1),

p~1
hp = Z: ﬁ;gp)cnh'-l
i=0

3Fs (—(p—l),—(p— %)’n_

-(2p-1),n+1
—(P— 1)1_(17_ l)’n_ 3
ik ( -1+l 1)
_ T+ 1)(p+ 1)T(p+ )T(n +2p— 1)
T'(E)C(n+p)T(2p)I(n+p+ 1)

) ﬂ(p)cn—l, (28)

with, further,

(29)

from simultaneous application of the identity

a,b,—t _ (C—a)t(c-b)t
3F2(c,a+b—c—t+l’1)—m (30)

of Pfaff-Saalschiitz (witha = —(p— 1), b=n—4,c=n+landt=p-1)
and conversion of all rising factorials to Gamma function terms using the
general result (s), = I'(s +t)/T'(s).> Employing only (21) eventually leads
to a final form for &, (28) as follows.

SPotential terms of the form g— in the series (29) (caused by the appearance of the
parameters —(p— 1), ~(2p — 1) which, for p > 1, are either zero or a negative integer) are
avoided by a simple limiting argument that Justlﬁes the use of (30). Replacing —(2p—1)
with —(2p — 1) + ¢ in (29), and likewise n — — with n — — + ¢ (Je] € 1), Pfafl-Saalschiitz
still applies. Both sides of the resulting equatlon are ratlonal functions of €, which can
then be set to zero as a limit.
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Theorem For p,n > 1,

[2(n + 2p — 1)]!n!
+2p- DRm+pl "

The result, as it arises naturally, expresses h, as a (functional) multiple of
but the nth Catalan number ¢,_;. The possibility of such a representation
is anticipated because successive Catalan numbers are related through the

recursion

(2n+1)
(n+2)
(valid for n > 0, given ¢ = 1) established originally by Euler; this could, in
principle, be applied repeatedly in a ‘cascading’ manner to transform the
linear function hp(ca—1,...,Cn4p-2) to that above. The correctness of the
Theorem is readily demonstrated by a few (algebraically) low level cases.
Firstly, for p = 1 we have

hp(en-1) = (-17p(n+7)

Cny1 = 2 Cn (31)

[2(n + 1)]in! _
m+ D2e+ D)t

as noted in the previous section. When p = 2 the Theorem reads

[2(n + 3)]'n! _ (2n+5)

hi(en-1) =—=(n+1)

—Cn-1 (32)

ha(cn-1) = 2(n +2) (n+3)2(n + 2)]!%-1 = mcn—l’ (33)
whilst (11) gives, in agreement,
hg(c,,_l) = hz(Cn—l,Cn(cn—l))
= 2[86,,_1 - c,,(c,,_l)]
_ (2n—1)
= 2 [8cn_1 - 2mcn_1]
ot e, (34

having used (31). We emphasise the point by considering the case p = 3,
for which, by (31) again, (13) gives this time

ha(cn—1) = ha(cn-1,¢n(cn-1),cnt1(cn-1))
—[2566,,_1 - 640,,(0,,_1) + 3c,,+1(c,,_1)]
(2n-1)
(n+1)
2n+1) _(2n-1)
oy e
2n+T7)(2n+9)
m+1)(n+2) "V

Cn-1

= - [256cn-1 —64-2

+3-2

= —12(
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once more consistent with the Theorem (confirmation being left as a short
reader exercise). Further examples are dealt with in a similar fashion.

Remark 4 The function h, formulated as the Theorem assumes a more
pleasing form to the eye than Xinrong’s multiple product of Theorem 2.1
in [4], and is a considerable improvement on it. In contrast to our result,
that of Xinrong is an easy deduction made by equating (5) with an expan-
sion of the sine function that was known to Euler and has been referred to
in some detail elsewhere [2,3].

Remark 5 As an aside, we remark that the asymptotic behaviour of hp
is inferred directly from the Theorem. Consider the factorial function

[2(n + 2p — 1)]!n!
(n+2p— 1)![2(n + p))!
(2n+2p+1)(2n+2p+2)---(2n+4p—2)
r+1)(n+2)---(n+2p-1) ’

By (n)

(36)

For large n 3> p > 1 By(n) ~ (2n)?~2/n?~! = 471/, from which it is
straightforward to write down that

hp(ca-1) ~ (=1)?47"'pc,_;

= (—1)"4”“11% ( 2(:__11) )
_ n+p—2

using Stirling’s approximation (where K = /2m)

nl~ Kn"tie—n, (38)

For prescribed p, at large powers of sin(a) in the expansion of sin(2pa) (5),
the full coefficient ~ h, /4" ~ (=1)P4*~2p/(n\/n7) = O(1/n/n).

Remark 6 It is interesting to relate the multi-variate function h, to a cor-
responding entity of Luo, to whom reference was made at the beginning
of the Introduction; we do so formally here. In [2] it was noted that Luo,
in his appreciation of the work of Antu Ming (published as a textbook in
1998), assumed a generic expansion

sin(ma) = msin(a) + Y s (@) (39)
n=1
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for integer m (even) > 2 (he then went on to develop a recurrence w.r.t. n
in As.m)). Putting m = 2p (p > 1), this becomes

1S AP
dnlipe) = 2{pnte) 3 3 G (o)
n=1
o A(ZP)
= 2{psin(@) + ) s5—ysin®*!(a)
n=1

Pl 4(2p)
-9 psin(a)+222:_lsin2"“(a)
n=1

o A(2P)
+Z2T::Tsin2"+l(a) , (40)

n=p
comparison of which with (5) gives by inspection that
o A(2p

=)
h . _ .

Z 22(n+';)—35m2(n+p) o) = Z 22:-15'“2n+1(a)

n=1 n=p

0o A(z_ll_’) .

n - . n -
222-(n—+’;)_—3sm2( *)"Ya);  (41)
n=1

that is to say,

ho(cn1,- -, Cabpoz) = ASD) |, p,n> 1. (42)

A glance at the Appendix of [2] shows that (42) is correct for p=1,2, 3.

Remark 7 Not surprisingly, the identity evaluating h, = Zf;ol ﬂ,(p )c,,.,.,-_ 1
to the closed form of the Theorem cannot be located in [8]. It is typical of
the sort of result available from hypergeometric function theory, and in this
instance has been achieved with no need for any of the computer algebra
tools designed over the past decade or so to support (and go well beyond)
manual analysis of this nature (see [9,10] for more information on the recent
provision of software routines/suites in existence).

Summary
The structure to certain series forms of the sine function—examined in [2,3]

and studied subsequently in [4] also—has been re-visited in this paper and
progress made. In particular, the problem of explicitly determining those
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linear combinations of Catalan numbers indigenous to such expansions is
solved in the general case through the identification of associated coeffi-
cients. The complete linear function thus described may then be condensed
to a form dependent only on a single Catalan number. Work continues on
this topic.
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