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Abstract

Let r(a) be the replication number of the vertex a of a path design
P(v,k,1),k > 3. Let #(v, k) = min{maxqev r(a) | (V, B} is a P(v,k,1)}.
A path design P(v,k,1), (W,D), is said to be almost balanced if
F(v,k) =1 < r(y) < 7(v,k) for each y € W. Let v = Oor1
(mod 2(k—1)) (for eachodd k, k > 3)andletv=00r1 (mod k—1)
(for each even k, k > 4). In this note we determine the spectrum
BSABP(v,k, 1) of integers z such that there exists an almost bal-
anced path design P(v,k,1) with a blocking set of cardinality z.

1 Introduction

Let G be a subgraph of K, the complete undirected graph on v vertices. A
G-design of K, is a pair (V, B), where V is the vertex set of K, and B is an
edge-disjoint decomposition of K, into copies of the graph G. Usually we
say that b is a block of the G-design if b € B, and B is called the block-set.
A G-design of K, is also called a G-design of order v.

A balanced G-design [4, 5] is a G-design such that each vertex belongs to
the same number of copies of G. Obviously not every G-design is balanced.
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A (balanced) path design P(v,k,1) [4] is a (balanced) Pi-design of K,
where P, is the simple path with k — 1 edges (k vertices) (a1, @2,...,ax) =
{{a1,02},{az2,a3},...,{ak-1,0x}}.

M. Tarsi [9] proved that the necessary conditions for the existence of
a P(v,k,1), v 2> k (ifv > 1) and v(v — 1) = 0 (mod 2(k — 1)), are also
sufficient.

S. H. Y. Hung and N. S. Mendelsohn [5] proved that a balanced
P(v,2h+1,1) (h > 1) existsif and only if v =1 (mod 4h), and a balanced
P(v,2h,1) (h > 2) exists if and only if v =1 (mod 2h — 1).

Let (V,B) be a P(v,k,1). A subset X of V is called a blocking set of
Bifforeachbe B,bNX #0,and bN(V — X) #0. A P(v,k,1) with
a blocking set X is said to be 2-colorable, and the partition (X,V — X) is
called a 2-coloring.

Numerous articles have been written on the existence of blocking sets
in projective spaces, in t-designs and in G-designs [1, 2, 6, 7].

The spectrum BSH(v,k,1) of integers z such that there exists a bal-
anced P(v, k,1) with a blocking set of cardinality « is determined in [8].

Theorem 1 Let v =1 (mod 2(k — 1)) (for each odd k, k > 3), and let
v=1 (modk —1) (for each even k, k > 4). Then it is
v—1 (k—2v+1
BS’H(v,k,l)—{x|k_1_<_x$ P }

Let v be a positive integer such that v(v — 1) = 0 (mod 2(k — 1)).
When v not verifies the necessary (and sufficient) conditions for the exis-
tence of a balanced P(v,k,1), the following problem is immediate: How
close can we come to constructing a balanced P(v,k,1)? The most sat-
isfying answer seems to be the following. Given a P(v,k,1), £ > 3, say
r(a) be the replication number of a vertex a (i.e. 7(a) is the number
of paths of the decomposition having a as a vertex). Define 7(v,k) =
min{max,ev r(a) | (V,B) is a P(v,k,1)}.

Definition. A path design P(v, k, 1) is said to be almost balanced if 7(v, k)—
1 <r(a) < 7(v, k) for each vertex a.

Example 1. The following is an example of an almost balanced P(8,5,1)
(see Theorem 2). V = Zg, B = {(0,2,6,4,1),(0,7,4,3,2),(0,4,2,7,6),
(5,3,0,1,7),(1,3,7,5,4),(21,5,6,3),(1,6,0,5,2)}.

Let BSABP(v,k,1) be the spectrum of integers = such that there is an
almost balanced P(v,k,1) with a blocking set of cardinality z. For each
v=1 (mod2(k—-1)) (kodd, Kk > 3)orv=1 (modk —1) (k even,
k > 4), a P(v,k,1) is almost balanced if and only if it is balanced. Then it
is BSABP(v,k,1) = BSH(v,k,1).
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The aim of this note is to determine BSABP(v,k,1) for each v = 0
(mod 2(k —1))ifk>3isodd,andv=1 (mod k—1) if k > 4 is even.

The following theorem gives a limitation to 7(v, k).

Theorem 2 Let v = 0 (mod 2(k — 1)) (for each odd k, k > 3) and let
v=0 (mod k —1) (for each even k, k > 4). Then it is 7(v,k) 2 m’:ﬂ—l;

Proof. Let o(a) be the number of paths of a P(v,k,1) having a as an
endpoint. Define (v, k) = min{max,cv o(a) | (V,B) is a P(v,k,1)}. Sup-
pose at first k = 2h and v = (2h — 1)(2t — 1), h > 2 and ¢t > 2. Clearly it
is
v(v—1)
> = .
vggola) > 3 ole) =

Hence max,ey 0(a) > 2t — 1 — 5. The fact that max,ev o(a) is an

even positive integer implies the following inequality max,ev o(a) > 2t =
i + 1. To complete the proof it is sufficient to note that by r(a) =
%"(G) + o(a), it is 7(v,k) = ”;lw The remaining cases can be
treated in a similar way. m]

Theorem 3 (Necessary condition). Let v and k be given by Theorem 2.
Suppose that (v, k) = ﬂ,':f_—l) If x € BSABP(v,k,1), then

v (k-2
<< Pm—7- >
k_l__a:_ 1 forall k>4
v—2 v+2
<zr< = 3.
2 <z< ) for k=3

Proof. Put k = 2h + 1, v = 4ht. Let X be a blocking set in an almost
balanced P(4ht,2h +1,1) (V,B), |X| = z. Then

Zr(a)— z(z — 1) S :r:(:l:—-l).

= 2 ~  4h
By r(a) < t(2h + 1), we obtain
Y r(a) < zt(2h +1).
a€V
Hence,

T_ [2t(2h +1) + 1 — VI6E2hZ + 4¢% — 16ht” + 8th + 12t + 1'|
—_— - 2 .
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tis2t—-2<7<2t-1ifh=1and2t -1 <7< 2tif h > 2. These
inequalities and the fact that V' — X is a blocking set imply the proof when
k is odd.

The proof for even k is left for the reader. ]

Theorem 4 Suppose that {x | 25 <z<|%] } C BSABP(v,k,1) for all
P(v,

k>4, and {z| 52 <z<3%} C BSAB
condition is also sufficient.

3,1). Then the necessary

Proof. Let X be a blocking set of a path design (V,B). Then V — X is
also a blocking set. m]

2 BSABP(v,2h+1,1) for v=0 (mod 4h), h >
1.

In this section we determine the set BSABP(v,2h + 1,1) for v = 0
(mod 4h), h > 1. By Theorem 4, it suffices to show that

{:c|—2——2< < - }CBSABP(v,3 1)

and
{ | _hgx< 2}gBSABP(u,2h+1,1) for h > 2.

Case h = 1 is settled by Theorem 5. For h > 2, we need to construct an
almost balanced P(4h,2h+1,1) with a blocking set of minimum cardinality
(Lemmas 1 and 2). These constructions are founded on trade-off method
[3] and Tarsi’s construction [9].

Suppose that a P(v,k, 1), (V, B), contains a set of s paths T}. Suppose
also that there exists another set of paths Py, T5, based on the same set V
such that T) N T3 = @ and both sets contain the same edges. Clearly, if we
remove T} from B and replace it by T, then we obtain a new P(v,k,1).
We will say that the pair (T}, T3) forms a trade of volume s and the process
of replacing T} by T5 a trade-off.

In order to construct a path design, Tarsi [9] constructed at first a col-
lection D of paths Ps,..1. When these paths are deleted from the completed
graph K,, what remains is Eulerian and Tarsi produced an Eulerian walk
in which any two occurrences of a particular vertex are separated by at
least k£ — 1 distinct vertices all different from it. This walk can be broken
into copies of Pzp+1- We prove Lemmas 1 and 2 by breaking opportunely
this walk and by applying the trade-off method {3] (with T} C D) so as to
construct an almost balanced path design with a blocking set of minimum
cardinality.

240



Theorem 5 Letv=0 (mod 4), v>4. Then

-2 v+2
<z< .
2 =f=>T3 }

BSABP(v,3,1) = {x | 2

Proof. Let V) = {ao,al,az,aS} and B; = {(a},al,al), (ad,a},al),
(ad,a},al)}. Then (V4,B,) is an almost balanced P(4,3,1) with blocking
sets X; = {a}} and ¥} = {al,az}

Let Vo, =W U {ao,al,a2,a3} and B; = B, U {(ao,al,a2) (a},a2,a3),
(a0ia2 al) (ag ao,az) (ao, %10'2) ,(a, a3, a3), (al,a3’a'3) (a2’aos0'3)1
(ad,a?,a}), (ad,a,a}), (a}, a%,al)}. Then (Vg, } is an almost balanced
P(8,3,1) with blocking sets X, = X3 U {a,a3} and Y2 = Y; U {a},a3}.

Suppose there is an almost balanced P(4t,3,1) (V,B), t > 2, with
two blocking sets X and Y, |X| = 2t — 1, |Y| = 2t. PutV =

t i 1 a1 ot t
v it N t+l}“g§ Uil oty 2 Vil ?il},
D ={( t+1,at+l’at+l) (a at, oty (attl, abt ,a”'l) (at'”,a at
(aH-l t+l) (ai ! f §+1 til’a:’nag‘-l) (a'Z: 11a3) (a'0! q
% 1,a3) (ao, ag +a1)} and fori=2,3,...,t, 8 = ao,a_f,“,az),
(a9 »ag) (al' aaa) al,a§+l a3) (at+lva0’a§+l) (ag l,ai,a +l)a
(a5*? az,aa b, (a0 1ai,a™)}. Let £ = Ui_,&;. It is easy to see that
(W,BUDUE) is an almost balanced P(4t + 4,3,1) with blocking sets X,
| X|=2t+1,and Y, |V| =2t +2. m

Lemma 1 For each p > 1 there is an almost balanced P(8,4p+1,1) with
a blocking set of cardinality 2.

Proof. Let V = Zg and B ={(6,0,1,7,2),(5,1,2,0,3),(6,2,3,1,4),
(7,3,4,2,5), (4,5,3,6,1), (5,6,4,7,0), (6,7,5,0,4)}.

Then (V,B) is an almost balanced P(8,5,1) with blocking set X =
{3,7}.

Let V = Zi. Fori =0,1,...,7, put b; = (3+1,15+4%,2414,4,9+14,8 +
1,1041,7+1,11+14) (the sum is (mod 16)). Let D = ({b; | i =0,1,...,7}
and € = {(0,1,2,3,4,5,6,7,8),(0,8,1,9,2,10,3,11,4),
(4,12,5,13,6,14,7,15,8),(3,9,4,10,5,11,6,12,7),
(7,13,8,14,9,15,10,0,11), (11,1, 12,2,13,3,14,4,15),
(15,5,0,6,1,7,2,8,3)}. Itlseasytoseethat (V, DUE) is an almost balanced
P(16,9,1). Now we construct a trade (T1,T2) of volume 2 as follows: T} =
{ba,bs}, To = {(5,1,4,2,11,14,12,9,13),(7,3,6,4,13,12,10,11,15}. By
replacing Ty by T we obtam an almost balanced P(16,9, 1) with blocking
set X = {3,14}.

Let V = Zg,, i > 3. For each path b= (yo,yl, ., Yay) denote by b+,
i € V, the following path b+i = (yo +¢,91 +1,..., Y4y + %) (the sum is
(mod 8u)).

Define the following paths:
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(1) dy = (071"'-’4ﬂ)'

(2) da = (21,60, 2 + 1,60+ 1,..., 2 + 2 — 1,6 + 2p — 1,4p).
(3) ds = (0,4p,1,4p+1,2,4u+2,...,2p — 1,4p + 2 — 1,2y).
(4) For i =0,1,...,4u — 1, let b; = (ag,ai,...,a4,) +1,

p+l—-ao c=0,1,...,0—-1
a2g =
7 3u+l+o o=p+lLu+2,...,2u—-1

a _J tu+l40 o=0,1,...,u-1
22417\ 5u—o0 o=p+1,u+2,...,2u-1

and
azy =4p+1, agp1 =4p and a4, =5p+ 1.

(5) Fora=1,2,...,pu—1let ca = (¥§,9%,--- Ydu), ¥5, =2+ a+o0,
Yoo41 =4p+2-a+o0,0=0,1,...,2u—1and y§, =2pu+2+a.
Put B = {d1,dz,d3}U{bo, b1, .. ., bape1 JU(ULZ} {Cas Cot20t, Cat+4pt, Cot+

64}). Then (V,B) is a P(8u,4u+1,1) (see [9]).

It is easy to verify that each vertex of V is an endpoint of either 1 or 3
paths of B. Therefore (V, B) is almost balanced.

Put
bo = (@o,a1,82,83,84,...,84p) = (L+1,Tp+ 1, g, p+2,0—1,...,5u+1),
by = (8o, ..., 82u—1,824,82p41,- - ., 84p) =

Ce+1,...,0-1,Tu+2,p,...,46p + 1).

By (4), we have
bO = (aOaalaa23a’3sa47~--1a4M) = (ﬂ+117"+1)ﬂv 7”""2)‘1'_17'--:5/-‘_"1)1
bﬂ = (O'Oa <003 @2p-1,824,82u 41, - - - ,0.4“) =
Qu+1,...,p—~1Lu+2,p,...,6p+1).

Then Ty = {bo, b1} and T = {bp, b} form a trade of volume 2.

By replacing Ty by T> we obtain an almost balanced P(8u,4p +1,1).

At last note that p + 1 is a vertex of ca, co + 4u, di, d3, by and b;,
J€{1,2,...,2u} — {u}, while 7 + 2 is a vertex of ¢, + 24, ¢ + 6, d2,
by and bj, j € {2u+1,2p+2,...,4p—1}. Then X ={u+1,7u+1} is a
blocking set. =]

Lemma 2 For each p > 1 there is an almost balanced P(8u +4,4u + 3,1)
with a blocking set of cardinality 2.

Proof. Let V = Zg, 4. Define the following paths:
(1) dy = (4p+2,4u+3,...,8u+3,0).
(2) Fori=0,1,...,4p+1, let b; = (ag, a1, .- -,a4pu4+2) + 14,

[ 140 c=0,1,...,u-1
G242\ 6u+3-0 o=p+1l,p+2,...,2u—1

_J8u+3-0 o0=0,1,...,u—-1
Q+3=V Y+2+0 o=p+lLp+2,...,26—1
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and

a=1,a1=0,a2,42=3p+2, a2u43=5p+ 3 and a4u42 =4u+2.

(3) Let ca = (¥ yt- - - ’ygu+2)? yga' =4p+3+o0, yga+1 =2u+1+0,0=
0,1,...,2u, y2“+2 =6u+4and, fora=1,2,...,u-1,9%, = 8ut+di-2a+o,
¥ =2u+3+0,0=0,1,...,20, Yfu 0 =2p+1 - 20

Put B = {d1} U {bo,b1,...,bagt+1} U (Uso{CasCa + 20 + 1,Ca + 4 +
2,¢q + 6 + 3}). Then (V,B) is a P(8p,4u + 1,1) (see [9]).

It is easy to verify that each vertex of V is an endpoint of either 1 or
3 paths of B. Therefore (V,B) is almost balanced. Moreover 2y + 2 is a
vertex of ¢, co +4p +2, ca+ 2+ 1, co +6p+3,a € {1,2,...,u -1},
and b;, i € {u+1,4+2,...,3u}, while 44+ 2 is a vertex of dy, co + 2 +1,
co+6p+3, Ca, Ca +4p+2a € {1,2,...,u—1},and b;, i € {0,1,...,u}U
{3u+1,3p+2,...,4u+1}. Then X = {2u + 2,4 + 2} is a blocking set.
(m}

Lemma 3 For each h > 2 it is possible to decompose the bipartite graph
Kynan into copies of Papy1 in such a way thet: 1 ) each element is an
endpoint of exactly two paths; 2) there is a Q C Kyp an such that each path
meets  (i.e. Q is a blocking set of the decomposition); 3) || = 4.

Proof. Let V(Kanan) = {ao,a1,-..,84n—1} U {¥0,¥1,- -, ¥an—1}-
Fori=0,1,...,4h — 1, put:

bi = (Ui, @i, Y14i) Gah—1+is Y2+is Gdh=24is - - - » Yh—1+is O3kt 1+i» Yheti)

and
¢ = (@is Y2h+is Qdh—1+i» Y2h+14i) Cah—2+4is - - -
e o) Y3h—2+4is O3h+14is Y3h—1+is G3h-ti)-
Let B = {bo,b1,...,ban—1}U{co,C1,--.,Can—1}. It is easy to see that (V, B)
is an edge-disjoint decomposition of K4p 45 into Pzp41 and that each vertex
of V appears as endpoint of two paths.
If h = 2, then each path of B meets Q = {ao,a4,¥s,y7}. Suzpose
h > 3. Let Q = {ao, a2, Yan—1,Y2h+1}- It is easy to see that b;N X # 0,
i€ {0,1,...,4h—i} — {h}, and ;N X # 0, i € {0,1,...,4h—3} — {3h+1}.
Define:

bh = (yh) AhyYh+1,Qh41y- -+ Yh-3, A4, Yn—2,03,Y2h+3, A2 Y2h+2; a'lyy2h),

bon+1 = (Y2h+1, Q2h+1, Y2h+2, B2, Y2ht3, G2h—14 - - - » Y3hs Bh42, Y3h+1)s
o= (azh+1,y2h, Q4h—1,Y2h+1) B4h—25 Y2h 425 - - - ,63h+1,y3h-1,¢13h)»
G = (@2, Y2h—1, @1, Y2h+3: B0s Y2h+4) - - - , G3h+3: Y3h+1, G3h+2),
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C3 = (03, Y2r—2,02, Y2h+4, @1, Y2h+5, - - - » A3h+45 Y3h4-2, ash+3),
C3h+1 = (Q3h+1, Yh+1) C3h) Yh421 B3h~11 Yh+3s - - - » G20 42, Y2h, G0 )-

Then T = {bn, b2n+1, ¢, C2, 3, c3p41} and Tz = {bp, bon+1, o, 2, 3, Can1}
form a trade of volume 4. By replacing T} by T, we obtain the required
decomposition. ]

Theorem 6 Let v=0 (mod 4h), v > 4h, h> 2. Then

BSABP(v,2h +1,1) = {x | % <z< (”‘T_hl)ﬁ}

Proof. By Lemmas 1 and 2 construct an almost balanced P(4h,2h+1,1)
(V, B) with a blocking set X of cardinality 2. Let X be a subset of V such
that X C X and |X| < 2h. Clearly X is a blocking set. So by Theorem 4
the theorem is proved when v = 4h.

Let v = 4ht, t > 2. Let V; be ¢t mutually disjoint v-sets. For each i,
it =12,...,1 let (V;,B;) be an almost balanced P(4h,2h + 1,1) with a
blocking set X, |X1| € {2,3, - ,2h} Let (V;U V,',Dij), i, € {1,2, - ,t},
i # J, be a decomposition of Ky 45 into Pppyy with a blocking set ;;
such that Q;; C X; U X;. This is possible by Lemma 3. Put W = U!_, V;,
€ = (Ui_1Bi) U (U, Di;) and X = UL X;. It is easy to verify that
(W,€) is an almost balanced P(4ht,2h + 1,1) with the blocking set X,
with 2t < |X| < t(4h - 2). (m]

3 BSABP(v,2h,1) forv=0 (mod 2h—1), h >
2.

In this section we determine the set BSABP(v,2h,1) forv =0 (mod 2h—
1), h > 1 and v > 4h — 2. By Theorem 4 it suffices to show that
{a: | g <z < [g]} C BSABP(v,2h,1) for all h > 2. The first step
is to construct an almost balanced P(4h — 2,2h,1) with a blocking set of
minimum cardinality (see Lemmas 4 and 5). To do this we use the trade-

off method and Tarsi’s construction as described at the beginning of above
section.

Lemma 4 For each p > 1 there is an almost balanced P(8y+ 2,4p +2,1)
with a blocking set of cardinality 2.

Proof. Let V = Zg, 5. Define the following paths:
(1) For i =0,1,...,4p, let b = (ao,a1,...,a4,) +14, ap = 0,

_J8u+l1-0c o0=0,1,...,u-1
B0+2=\ bu+1-0 o=pp+1,...,2u—1
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a _J 140 c=0,1,...,p0-1
20+1 = 2u+140 o=pp+1,...,2u

52) For a =)1,2,...,p— 1let ca = (¥5,95,---,95,) and do =
2827, 24y),s

v, =2u—a+o, Yo,y =4+2+a+o, 0=0,1,...,24,
25 =2u+l+a+0, Yoo =0—a, 0=0,1,...,2u.

Put B = {bo,b1,..., b} U(ULZg{Cas Ca+4p+1,da, da +4p+1}). Then
(V, B) is an almost balanced P(8y + 2,4p + 2,1) (see [9]).

It is easy to verify that each vertex of V' is an endpoint of either 1 or 3
paths of B. Therefore (V, B) is almost balanced. Moreover 0 is a vertex of
da, do +4p+1and b;, i€ {0,1,...,2}U{3u+1,3p2+2,...,4u}, while 2
is a vertex of co, o +4p+1and b;, i € {24 +1,2u+2,...,3u}. Therefore
X = {0,2u} is a blocking set. m]

Lemma 5 For each pu > 1 there is an almost balanced P(811—2,4p,1) with
a blocking set of cardinality 2.

Proof. Let V = Zg, 5 and let X = {0,514 —1}.

Put
Bl—{(, , 5,3),(1,3,0,4),(2,4 , , 5),(0,1,2,3),(3,4,5,0)};

B, = {(0,2,13,3,10,6,9,7),(1,3,0,4,11,7,10 8) (2,4,1,5,12,8,11,9),
(3,5,2,6,1 ,9,12,10), (4,6,3,7,0,10,13,11),(5,7,4,8,1,11,0,12),
(6.8.5,9.2,12.1,13), (0,1,2,3,4,5,6.7), (7,8,9, 10, 11,12, 13,0),
(2,8,3,9,4,10,5,11), (11,6,12,7,13,8,0,9),(9, 1,10,2,11,3,12,4),
(4,13,5,0,6,1,7,2)};

Bs = {(0,2,21,3,20,4,15,9,17,10,13,11),

(1,3,0,4,21,5,16,10,15,11, 14, 12),(2,4,1,5,0,6,17,11,16,12,15,13),
(3.5.2.6.1,7,18,12,17,13, 16, 14), (4,6,3,7,2,8, 19,13, 18, 14,17, 15),
(5,7,4,8,3,9,20,14,19,15,18,16), (6,8,5,9,14,10,21,15,20,16,19,17),
(7,9,6,10,5,11,0,16, 21,17, 20,18), (8,10,7,11,6,12,1,17,0, 18, 21, 19),
(9,11,8,12,7,13,2, 18,1,19,0,20), (10,12,9,13,8, 14, 3,19, 2,20, 1,21),
(0,1,2,3,4,5,6,7,8,9,10,11), (11, 12,13, 14, 15,16, 17,118, 19, 20,21,0),
(3,11,4,12,5,13,6,14,7,15,8, 16), (16 9,4,10,18,11,19,12,20,13,21, 14),
(14,0,15,1,16,2,17, 3, 18,4,19,5),(5,20,6,21,7,0,8,1,9,2, 10, 3),
(2,12,3,13,4, 14,5, 15, 6,16,7,17), (17,8, 18,9,19, 10, 20,11, 21, 12,0,13),
(13,1,14,2, 15,3, 16, 4, 17, 5,18, 6), (6, 19,7,20,8,21,9,0,10, 1, 11,2)}.
Then (V,B,), u =1,2,3, is an almost balanced P(8y — 2,4, 1) with block-
ing set X.

Now we prove the theorem for p > 4. Define the following paths:
(1) d; =(0,1,...,4u4 - 1),
(2) d2 = (4p — 1,4p,...,8u — 3,0).
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(3) Fori=0,1,...,4p -2, let b,-=(ao,a1,...,a4,,_1)+i,
o = 8u—2-0 o0=01,...,p0-1

227 6u—o c=pp+1,...,2u—-1
_ ) o+2 c=0,1,...,p0—-1

320+1 = 2u+0 o=p,p+1,...,2u-1

(4) Fora =0,1,..
o = (95,97, -

Y20 ={

g — a+_ﬁ_

Put B = {dl,dz} U {bo,bl,.. .

i —2let cq = (¥, 45, - - -
,95,—1), where for each 0 =0,1,...

ybap—2} U ( U“—l{caa Co +4p —

] ygp—l) and

y2u— 1, it is

p=1 (mod 2)
p=0 (mod2)

p=1 (mod 2)
p=0 (mod 2)
p=1 (mod 2)

u=0 (mod?2)

p=1 (mod 2)
p=0 (mod 2)

1,é0,6a +

4p — 1}). Then (V,B) is a P(8u,4p + 1,1) (see [9]). It is easy to verify
that each vertex of V' is an endpoint of either 1 or 3 paths of B. Therefore

(V, B) is almost balanced.

Let X = {0,5¢ — 1}. It is not difficult to prove that b, N X = 0,

i=2p2u+1,...
show in the following.
MHoedinX;

(I bsp—-1edynX;

(IH) a+i=0€eh;NX,i=0,1,..

, 34 — 3, while the remaining paths of B meet X as we

-1
(IV) a2(3u—l—i)+i=5ﬂ—1€b;‘ﬂX,i=p,p,+1,”
(V) a2(i—2p+2)+i=0GbinX,i=3/_l,—

2u—1;
2,3p—1,...,4u - 3;

(VI) Gy(p-1)4+1 +4p—2=5u—-1¢€ bnX.

(VII) Let p =1 (mod 2). Then

(VILa) y3,,, =5p—1€caNX, a—-“———a,a—O 1,.

(VII b) y20+1 +4ﬂ 1=0€ (ca +4ﬂ.
Yioqr +4p—1 =

a=‘ﬁ;—3+1,“—;—3+2,...,u—2;

(VILe) 98,41 =5p—1€éanNX, 0 =% +a,a=0,1
B8, =0€tnX,o=¥2 —0a a=t31 1,652 12, .
(VILd) 98,41 +4u—1=0€ (6o +4u-1)NX, 0 = &4

a=01,...,u0—2.
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LA N I
SH—2
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(VIII) Let p. =0 (mod 2). Then it is

(VIILa) 5, =5p—1€canNX,0=¥2 —a,0=0,1,...,u -2

(VIILb) 98,1 +4p—1=0€ (ca +4p - l)nX o=t"1—q,
a=01,. .,%4,

y2,+1+4u—1—5u—1 €(cat+4p-1)NX,0=0- 42,

S N RN 7

(VIIIc)yZ‘,H—Su—chaﬂX c=%¥+a,a=0,1,...,5%

9%, =0€é,nX, a——“z— a,a—“—2—+1 -“—2—+2 =2

(VIILd) 98, ., +4p—1=0€ (Ca+4u—-1)NX,0=§ +aq,
a=01,...,u—2.

In order to construct an almost balanced P(8u — 2,4y, 1) with blocking
set X, we use the trade-off method.

At first suppose p =1 (mod 2), ©n>5. Leto= - p,
p=0,1,..., 5% Then agos1+ 2 —p=4p-3- 2p,aza+2+"——p—
5u—1, aze+3 + B3 _p=4p—2-2p, a3, + 3-8 _ p =0. Therefore the
paths b,il-_g meet both vertices 0 and 5p—1 and edges {4u—3—p,5u—1},
{5u — 1,4p — 2 — 2p}. Moreover it is easy to verify that 2u — 2 is not a
vertex of b%s_ o

Leto = u~p-2,p=0,1,..., ”—;—3 Then agp+1+3u—3—p = 4u—3—2p,
02542+ 3u—3—p=2u-2, a2,+3+3u 3—p=4u—2-2p. Therefore the
paths bs,—_3_, meet both edges {4p —3 —2p, 2u — 2}, {21 — 2,4 -2 - 2p}.

Put bus_, = (70,7, ’74,;-1) and b3,—3-, = (70,7'1, > Tap—1),
where for ¢ = 0,1,...,2u — 1, it is: Y2041 = G2041 + L5~ 2 — Py Yoo = Q2¢
if o # M—Py ’Yaf‘{_ﬂ p = 28— 2 241 = G041 1+ 3¢ -3 - p,
Tog =G0 +3u—3—-pifo#pu—2—p, 7 2_,,—5;4 1.

Then T'1 = {buzs_ p,b3,,_3_,, | p = 0,1,...,65%} and T/, =
{bL-_J p,b3“_3_p | p= 0 1,..., %52} form a trade of volume y — 1.

Leta—3—"—7—p,p—"——+1L+2 .4t —3. Then
Qo1+ 85 —p=3p—4-2p, azep2+ %52 —p=0, 0043+ %2 —p=
3u—3-— 2p

Let 0 = T—p, p= L;§+1,’i;—3+2,...,u—3. Then az,,+§"2"—5—p=
5u — 1. Therefore the paths ng,-_s__ , meet both vertices 0 and 54 — 1 and
edges {3u — 4 — 2p,0}, {0,3u — 3 — 2p}. Moreover it is easy to verify that
3u — 1 is not a vertex of ba_u,-_s_p.

Leto=p, p= ~"—;—3+1,‘i;—3 +2,...,0—3. Thenag, +32 -3 —p=
3u—3-2p,a2041+3u—3—p=3u—1,a2042+3 -3 -p=3u—4-2p.
Therefore the paths b3, 3, meet both edges {3 — 3 — 2p,3u — 1},
{3p—-1,3p—4-2p}. i}

Put bg&[rs—ll = (70’71""’7411—1) and b3”_3_p = (To,Tl,...,T4,_,_1),
where for 0 =0,1,...,2u — 1, it is: Y2541 = @2041 + Qﬁ;—s -p,
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Yoo =20 + ¥72 —pif o £ ¥ —p yysucr ) =3u—1,
Too = Q20 + 3L — 3 — p, Too41 = Q2041 + 3 —3 = 2pif 0 # p, 72541 = 0.
Then T, = {bg%:g_p,ba,‘_a_,, | p= %3 + 1,%3 +2,...,p0— 3} and
T, = {53,:2—_5_,,,53"-3—,» | p= ”‘—;3 +1, ";—3 +2,...,p— 3} form a trade of
volume u — 3.
By replacing T"; UT"3 by T” UT",, we obtain (for each odd u > 5) an
almost balanced P(8u — 2,4u,1) with blocking set X.

For 4 = 0 (mod 2), ¢ > 4 the proof is similar.We leave it for the
reader. m]

Lemma 6 Let v =0 (mod (2h - 1)), v > 4h — 2. Suppose there exists
an almost balanced P(v,2h,1) with a blocking set of cardinality x. Then
there exists an almost balanced P(v + 2h — 1,2h,1) with a blocking set of
cardinality z+1.

Proof. Let (V,B),V = Z, x {1}, be a P(v,2h,1) with a blocking set
X, |X{ ==z Putv==¢(2h—-1),t > 2. Suppose {(c(2h —1),1) | 0 =
0,1,...,t =1} € X. Put W = Zp,_; x {2}. In the following we will
suppose that each pair (y,1) [(y,2), respectively| is taken  (mod (v, —))

[ (mod (2h — 1, -)), respectively].

Let . . . . . .
bi=(y:)’az)ryiiai""1y;z—11a;l—l) i € Zy,
Yp=(i+p1), a,=(i-p,2), p=0,1,...,h—1.

It is easy to verify that {b; | i € Z,} is a Pp,-decomposition of the complete
bipartite graph K 2p—1 on vertex set VUW.
_ At first we settle the case h = 2. Let by = ((1,2),(0,2),(1,1),(2,2)),
bi =b;, i =1,2,...,v-1and & = ((0,1),(0,2),(2,2),(1,2)). Put D =
{éo}u{b; |i=0,1,...,v~1}. Then (V,D) is an almost balanced P(v, 4,1)
with blocking set X U {(0,2)}.

Now let h > 3. Let

Cj=(Pg,qg’Pi.,(I{,---,Pi_z,Qi_gaPi_l) j=0a1a--'7h“27

pl=(0+742), ¢=0,1,...,h -1,
@ =02h-2-0+342), 0=0,1,...,h—2.

Note that each path c; has exactly 2h — 1 vertices and the set {¢; | j =
0,1,...,h — 2} covers all the edges of Kon_1 on W except the following
ones: {(5,2),(2h — 3 —35,2)}. Let

a=(Bo B 1) Bury Yury)
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be the permutation of W so defined:
Br=(th-1+72),7%=2h-3-7,2),7=0,1,...,u(h),

ute) = {
Let

C={g= q—liapavaqé’ap{’a 17° _
1ap'}1; 2aaq.’1; 2)ap-;l 1)'.7—01 h-2}7q]—1=(j)1)°
Note thatC covers the edges {(5,1),(4,2)}, 7 = O 1,...,h—2, and all the
edges of Kap—1 on W except the following ones {a(j,2),a(2h—3—3,2)} =
{(.77 2)v(h' - 1_+ j) 2)}'
Let £ = {b; | i € Z,},

=

=3 ifh=1 (mod 2)
ifh=0 (mod 2)

>
S
1S

B b o i=h—1,h,...,t(2h—1) -
(7, 8%, 78,84, ..., 90_1,8,_,) i=0,1,...,h—2

Go=(h—1+4,2), 5 =y}, & =a}, p=12,...,h— 1

Note that £ covers the edges (mlssmg inC) {C!(j, 2),a(2h-3-352)} =
{(5,2),(h — 1 + 7,2)} and all the edges of the complete bipartite graph
Ky 2n—1 on vertex set VUW except the following ones {(4,1), (j,2)} (these
edges are in C).

Therefore (VUW,BUCUE) is a P(v+ 2h — 1,2h,1). It is easy to
check that each vertex of V meets exactly h paths of C U £, each vertex of
W meets either 2 — 1 or h paths of £ and also each path of C. Therefore
(VUW,BUCUE) is almost balanced.

To prove that @ = X U {(0,2)} is a blocking set note that:

(1) (0,1) €bi,i=t(2h 1) =h+1,t(2h —1) — h+2,...,¢(2h - 1) ~ 1;
()(02)€b,,z—0'(2h—1)a(2h—1)+1 ,a(2h—1)+h—1
oc=0,1,. -1;

(3) ((o+1)(2h 1) 1)eb,i=0(2h—1)+h,0(2h—1)+h+1,...,0(2h—
1)+2h-1,0=0,1,...,t -2

(4) (0,2) € ¢j,J € Z2h—l' (]

Theorem 7 Letv=0 (mod2h—1),v>4h—2, h>2. Then

(2h - 2)v
2h—1 }

BSABP(v,2h,1) = {x | 2h"_ -<z<

Proof. Let (V,B) be an almost balanced P(4h — 2,2h,1) with a blocking
set X, |X| = 2 (see Lemmas 4 and 5). Foreach z,3 <z <2h-1,say Y
be a subset of V such that |Y| =z -2 and [Y N X|=0. Then XUY is
a blocking set. Therefore {2,3,...,2h — 1} C BSABP(4h — 2,2h,1). By
Theorem 4, we obtain the proof for v = 4h — 2.
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Now let BSABP(v,2h,1) = {a: | g <z < (—22%} By Lemma 6,

it is
{m | g +1<z< (-22"—,;31)2+1} C BSABP(v + 2h —1,2h,1).
Hence by Theorem 4 it follows
BSABP(v+2h—1,2h,1) = {z | %7l <o g Ghoizh-i D
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Addendum to
“Pairwise Balanced Designs on 4s+4 Points”

With reference to paper [2}, two comments are necessary.

First, there is an error in the title; the title refers to “Pairwise
Balanced Designs on 4s+4 Blocks”; this should read “Pairwise.
Balanced Designs on 4s+4 Points”.

Secondly, the purpose of the paper was to give a self-contained

account of the “case of first failure” for 4s+4 points. The actual
result that

g-1=2s2+4s5+1

is not new; it is a special case of the much more general result given
by Rolf Rees in Theorem 4.3 (i) of [1], namely, that

cp(Km+2 v Km®) = (m2 +2m -1)/2 for all odd m > 5.
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