On blocking sets in almost balanced path designs *

Gaetano Quattrocchi

Department of Mathematics and Informatics, University of Catania viale A. Doria, 6 95125 Catania, Italy

quattrocchi@dipmat.unict.it

Dedicated to "una farfalla senza tempo", the Italian artist Ernesto Treccani on the occasion of his 80th birthday.

Abstract

Let r(a) be the replication number of the vertex a of a path design $P(v,k,1), k \geq 3$. Let $\bar{r}(v,k) = \min\{\max_{a \in V} r(a) \mid (V,\mathcal{B}) \text{ is a } P(v,k,1)\}$. A path design $P(v,k,1), \ (W,\mathcal{D})$, is said to be almost balanced if $\bar{r}(v,k)-1 \leq r(y) \leq \bar{r}(v,k)$ for each $y \in W$. Let $v \equiv 0$ or $1 \pmod{2(k-1)}$ (for each odd $k,k \geq 3$) and let $v \equiv 0$ or $1 \pmod{k-1}$ (for each even $k,k \geq 4$). In this note we determine the spectrum $\mathcal{BSABP}(v,k,1)$ of integers x such that there exists an almost balanced path design P(v,k,1) with a blocking set of cardinality x.

1 Introduction

Let G be a subgraph of K_v , the complete undirected graph on v vertices. A G-design of K_v is a pair (V, \mathcal{B}) , where V is the vertex set of K_v and \mathcal{B} is an edge-disjoint decomposition of K_v into copies of the graph G. Usually we say that b is a block of the G-design if $b \in \mathcal{B}$, and \mathcal{B} is called the block-set. A G-design of K_v is also called a G-design of order v.

A balanced G-design [4, 5] is a G-design such that each vertex belongs to the same number of copies of G. Obviously not every G-design is balanced.

^{*}Research supported by MURST and GNSAGA of CNR Italy.

A (balanced) path design P(v, k, 1) [4] is a (balanced) P_k -design of K_v , where P_k is the simple path with k-1 edges (k vertices) $(a_1, a_2, \ldots, a_k) = \{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}.$

M. Tarsi [9] proved that the necessary conditions for the existence of a P(v, k, 1), $v \ge k$ (if v > 1) and $v(v - 1) \equiv 0 \pmod{2(k - 1)}$, are also sufficient.

S. H. Y. Hung and N. S. Mendelsohn [5] proved that a balanced P(v, 2h+1, 1) $(h \ge 1)$ exists if and only if $v \equiv 1 \pmod{4h}$, and a balanced P(v, 2h, 1) $(h \ge 2)$ exists if and only if $v \equiv 1 \pmod{2h-1}$.

Let (V, \mathcal{B}) be a P(v, k, 1). A subset X of V is called a blocking set of \mathcal{B} if for each $b \in B$, $b \cap X \neq \emptyset$, and $b \cap (V - X) \neq \emptyset$. A P(v, k, 1) with a blocking set X is said to be 2-colorable, and the partition (X, V - X) is called a 2-coloring.

Numerous articles have been written on the existence of blocking sets in projective spaces, in t-designs and in G-designs [1, 2, 6, 7].

The spectrum $\mathcal{BSH}(v, k, 1)$ of integers x such that there exists a balanced P(v, k, 1) with a blocking set of cardinality x is determined in [8].

Theorem 1 Let $v \equiv 1 \pmod{2(k-1)}$ (for each odd $k, k \geq 3$), and let $v \equiv 1 \pmod{k-1}$ (for each even $k, k \geq 4$). Then it is

$$\mathcal{BSH}(v,k,1) = \left\{ x \mid \frac{v-1}{k-1} \leq x \leq \frac{(k-2)v+1}{k-1} \right\}.$$

Let v be a positive integer such that $v(v-1) \equiv 0 \pmod{2(k-1)}$. When v not verifies the necessary (and sufficient) conditions for the existence of a balanced P(v,k,1), the following problem is immediate: How close can we come to constructing a balanced P(v,k,1)? The most satisfying answer seems to be the following. Given a P(v,k,1), $k \geq 3$, say r(a) be the replication number of a vertex a (i.e. r(a) is the number of paths of the decomposition having a as a vertex). Define $\bar{r}(v,k) = \min\{\max_{a \in V} r(a) \mid (V,\mathcal{B}) \text{ is a } P(v,k,1)\}$.

Definition. A path design P(v, k, 1) is said to be almost balanced if $\bar{r}(v, k) - 1 \le r(a) \le \bar{r}(v, k)$ for each vertex a.

Example 1. The following is an example of an almost balanced P(8,5,1) (see Theorem 2). $V = Z_8$, $\mathcal{B} = \{(0,2,6,4,1), (0,7,4,3,2), (0,4,2,7,6), (5,3,0,1,7), (1,3,7,5,4), (2,1,5,6,3), (1,6,0,5,2)\}.$

Let $\mathcal{BSABP}(v, k, 1)$ be the spectrum of integers x such that there is an almost balanced P(v, k, 1) with a blocking set of cardinality x. For each $v \equiv 1 \pmod{2(k-1)}$ (k odd, $k \geq 3$) or $v \equiv 1 \pmod{k-1}$ (k even, $k \geq 4$), a P(v, k, 1) is almost balanced if and only if it is balanced. Then it is $\mathcal{BSABP}(v, k, 1) = \mathcal{BSH}(v, k, 1)$.

The aim of this note is to determine $\mathcal{BSABP}(v, k, 1)$ for each $v \equiv 0 \pmod{2(k-1)}$ if $k \geq 3$ is odd, and $v \equiv 1 \pmod{k-1}$ if $k \geq 4$ is even.

The following theorem gives a limitation to $\bar{r}(v, k)$.

Theorem 2 Let $v \equiv 0 \pmod{2(k-1)}$ (for each odd $k, k \geq 3$) and let $v \equiv 0 \pmod{k-1}$ (for each even $k, k \geq 4$). Then it is $\bar{r}(v,k) \geq \frac{kv}{2(k-1)}$.

Proof. Let $\sigma(a)$ be the number of paths of a P(v, k, 1) having a as an endpoint. Define $\bar{\sigma}(v, k) = \min\{\max_{a \in V} \sigma(a) \mid (V, \mathcal{B}) \text{ is a } P(v, k, 1)\}$. Suppose at first k = 2h and v = (2h - 1)(2t - 1), $h \ge 2$ and $t \ge 2$. Clearly it is

$$v \max_{a \in V} \sigma(a) \ge \sum_{a \in V} \sigma(a) = \frac{v(v-1)}{2h-1}.$$

Hence $\max_{a\in V} \sigma(a) \geq 2t-1-\frac{1}{2h-1}$. The fact that $\max_{a\in V} \sigma(a)$ is an even positive integer implies the following inequality $\max_{a\in V} \sigma(a) \geq 2t = \frac{v}{k-1} + 1$. To complete the proof it is sufficient to note that by $r(a) = \frac{v-1-\sigma(a)}{2} + \sigma(a)$, it is $\bar{r}(v,k) = \frac{v-1+\bar{\sigma}(v,k)}{2}$. The remaining cases can be treated in a similar way.

Theorem 3 (Necessary condition). Let v and k be given by Theorem 2. Suppose that $\bar{r}(v,k) = \frac{kv}{2(k-1)}$. If $x \in \mathcal{BSABP}(v,k,1)$, then

$$\frac{v}{k-1} \le x \le \frac{(k-2)v}{k-1} \quad \text{ for all } k \ge 4$$
$$\frac{v-2}{2} \le x \le \frac{v+2}{2} \quad \text{ for } k = 3.$$

Proof. Put k = 2h + 1, v = 4ht. Let X be a blocking set in an almost balanced P(4ht, 2h + 1, 1) (V, \mathcal{B}) , |X| = x. Then

$$\sum_{a\in V} r(a) - \frac{x(x-1)}{2} \geq \frac{x(x-1)}{4h}.$$

By $r(a) \le t(2h+1)$, we obtain

$$\sum_{a \in V} r(a) \le xt(2h+1).$$

Hence,

$$x \ge \tau = \left\lceil \frac{2t(2h+1) + 1 - \sqrt{16t^2h^2 + 4t^2 - 16ht^2 + 8th + 12t + 1}}{2} \right\rceil.$$

It is $2t-2 < \tau \le 2t-1$ if h=1 and $2t-1 < \tau \le 2t$ if $h \ge 2$. These inequalities and the fact that V-X is a blocking set imply the proof when k is odd.

The proof for even k is left for the reader.

Theorem 4 Suppose that $\left\{x\mid \frac{v}{k-1}\leq x\leq \left\lfloor \frac{v}{2}\right\rfloor\right\}\subseteq \mathcal{BSABP}(v,k,1)$ for all $k\geq 4$, and $\left\{x\mid \frac{v-2}{2}\leq x\leq \frac{v}{2}\right\}\subseteq \mathcal{BSABP}(v,3,1)$. Then the necessary condition is also sufficient.

Proof. Let X be a blocking set of a path design (V, \mathcal{B}) . Then V - X is also a blocking set.

2
$$\mathcal{BSABP}(v, 2h+1, 1)$$
 for $v \equiv 0 \pmod{4h}$, $h \ge 1$.

In this section we determine the set $\mathcal{BSABP}(v, 2h+1, 1)$ for $v \equiv 0 \pmod{4h}$, $h \geq 1$. By Theorem 4, it suffices to show that

$$\left\{x\mid rac{v-2}{2}\leq x\leq rac{v}{2}
ight\}\subseteq \mathcal{BSABP}(v,3,1)$$

and

$$\left\{x\mid \frac{v}{2h}\leq x\leq \frac{v}{2}\right\}\subseteq \mathcal{BSABP}(v,2h+1,1) \text{ for } h\geq 2.$$

Case h = 1 is settled by Theorem 5. For $h \ge 2$, we need to construct an almost balanced P(4h, 2h+1, 1) with a blocking set of minimum cardinality (Lemmas 1 and 2). These constructions are founded on *trade-off* method [3] and Tarsi's construction [9].

Suppose that a P(v, k, 1), (V, \mathcal{B}) , contains a set of s paths T_1 . Suppose also that there exists another set of paths P_k , T_2 , based on the same set V such that $T_1 \cap T_2 = \emptyset$ and both sets contain the same edges. Clearly, if we remove T_1 from \mathcal{B} and replace it by T_2 , then we obtain a new P(v, k, 1). We will say that the pair (T_1, T_2) forms a trade of volume s and the process of replacing T_1 by T_2 a trade-off.

In order to construct a path design, Tarsi [9] constructed at first a collection \mathcal{D} of paths P_{2h+1} . When these paths are deleted from the completed graph K_v , what remains is Eulerian and Tarsi produced an Eulerian walk in which any two occurrences of a particular vertex are separated by at least k-1 distinct vertices all different from it. This walk can be broken into copies of P_{2h+1} . We prove Lemmas 1 and 2 by breaking opportunely this walk and by applying the trade-off method [3] (with $T_1 \subseteq \mathcal{D}$) so as to construct an almost balanced path design with a blocking set of minimum cardinality.

Theorem 5 Let $v \equiv 0 \pmod{4}$, $v \geq 4$. Then

$$\mathcal{BSABP}(v,3,1) = \left\{x \mid \frac{v-2}{2} \leq x \leq \frac{v+2}{2}\right\}.$$

Proof. Let $V_1 = \{a_0^1, a_1^1, a_2^1, a_3^1\}$ and $\mathcal{B}_1 = \{(a_0^1, a_1^1, a_2^1), (a_0^1, a_2^1, a_3^1), (a$ (a_0^1, a_3^1, a_1^1) . Then (V_1, \mathcal{B}_1) is an almost balanced P(4,3,1) with blocking sets $X_1 = \{a_0^1\}$ and $Y_1 = \{a_1^1, a_2^1\}$.

Let $V_2 = V_1 \cup \{a_0^2, a_1^2, a_2^2, a_3^2\}$ and $\mathcal{B}_2 = \mathcal{B}_1 \cup \{(a_0^2, a_1^2, a_2^2), (a_2^1, a_2^2, a_3^2), (a_2^1, a_3^2, a_3^2, a_3^2, a_3^2), (a_2^1, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2), (a_2^1, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2), (a_3^1, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2, a_3^2), (a_3^1, a_3^2, a$ $(a_0^2, a_3^2, a_1^{\overline{2}}), (a_0^2, a_0^1, a_2^2), (a_0^2, a_1^1, a_2^2), (a_1^2, a_1^2, a_3^2), (a_1^2, a_3^2, a_3^2), (a_1^2, a_0^2, a_0$ $(a_0^1, a_1^2, a_1^1), (a_0^2, a_2^2, a_3^1), (a_0^1, a_3^2, a_1^1)\}.$ Then (V_2, \mathcal{B}_2) is an almost balanced P(8,3,1) with blocking sets $X_2 = X_1 \cup \{a_0^2, a_3^2\}$ and $Y_2 = Y_1 \cup \{a_1^2, a_2^2\}.$

Suppose there is an almost balanced P(4t,3,1) $(V,\mathcal{B}), t \geq 2$, with two blocking sets X and Y, |X| = 2t - 1, |Y| = 2t. two discking sets A and Y, |A| = 2t - 1, |Y| = 2t. Put $V = \bigcup_{i=1}^{t} \{a_0^i, a_1^i, a_2^i, a_3^i\}$, $X = \{a_0^1\} \cup (\bigcup_{i=2}^{t} \{a_0^i, a_3^i\})$, $Y = \bigcup_{i=1}^{t} \{a_1^i, a_2^i\}$, $W = V \cup \{a_0^{t+1}, a_1^{t+1}, a_2^{t+1}, a_3^{t+1}\}$, $X = X \cup \{a_0^{t+1}, a_3^{t+1}\}$, $Y = Y \cup \{a_1^{t+1}, a_2^{t+1}\}$, $D = \{(a_0^{t+1}, a_1^{t+1}, a_2^{t+1}), (a_1^t, a_2^{t+1}, a_3^{t+1}), (a_0^{t+1}, a_3^{t+1}, a_1^{t+1}), (a_0^{t+1}, a_0^t, a_2^{t+1}), (a_0^{t+1}, a_1^{t+1}, a_1^{t+1}), (a_0^{t+1}, a_1^{t+1}, a_1^{t+1},$ $(W, \mathcal{B} \cup \mathcal{D} \cup \mathcal{E})$ is an almost balanced P(4t+4,3,1) with blocking sets \bar{X} , |X| = 2t + 1, and Y, |Y| = 2t + 2.

Lemma 1 For each $\mu \geq 1$ there is an almost balanced $P(8\mu, 4\mu+1, 1)$ with a blocking set of cardinality 2.

Proof. Let $V = Z_8$ and $\mathcal{B} = \{(6,0,1,7,2), (5,1,2,0,3), (6,2,3,1,4),$ (7,3,4,2,5), (4,5,3,6,1), (5,6,4,7,0), (6,7,5,0,4).

Then (V, \mathcal{B}) is an almost balanced P(8,5,1) with blocking set X = ${3,7}.$

Let $V = Z_{16}$. For i = 0, 1, ..., 7, put $b_i = (3 + i, 15 + i, 2 + i, i, 9 + i, 8 + i, 15 + i,$ i, 10+i, 7+i, 11+i) (the sum is (mod 16)). Let $\mathcal{D} = (\{b_i \mid i = 0, 1, \dots, 7\})$ and $\mathcal{E} = \{(0, 1, 2, 3, 4, 5, 6, 7, 8), (0, 8, 1, 9, 2, 10, 3, 11, 4), \}$ (4, 12, 5, 13, 6, 14, 7, 15, 8), (3, 9, 4, 10, 5, 11, 6, 12, 7),

(7, 13, 8, 14, 9, 15, 10, 0, 11), (11, 1, 12, 2, 13, 3, 14, 4, 15),

(15,5,0,6,1,7,2,8,3)}. It is easy to see that $(V,\mathcal{D}\cup\mathcal{E})$ is an almost balanced P(16, 9, 1). Now we construct a trade (T_1, T_2) of volume 2 as follows: $T_1 =$ $\{b_2, b_4\}, T_2 = \{(5, 1, 4, 2, 11, 14, 12, 9, 13), (7, 3, 6, 4, 13, 12, 10, 11, 15\}.$ By replacing T_1 by T_2 we obtain an almost balanced P(16, 9, 1) with blocking set $X = \{3, 14\}.$

Let $V = Z_{8\mu}$, $\mu \ge 3$. For each path $b = (y_0, y_1, \dots, y_{4\mu})$ denote by b + i, $i \in V$, the following path $b+i=(y_0+i,y_1+i,\ldots,y_{4\mu}+i)$ (the sum is $(\text{mod }8\mu)$).

Define the following paths:

- (1) $d_1 = (0, 1, \ldots, 4\mu)$.
- (2) $d_2 = (2\mu, 6\mu, 2\mu + 1, 6\mu + 1, \dots, 2\mu + 2\mu 1, 6\mu + 2\mu 1, 4\mu)$.
- (3) $d_3 = (0, 4\mu, 1, 4\mu + 1, 2, 4\mu + 2, \dots, 2\mu 1, 4\mu + 2\mu 1, 2\mu).$
- (4) For $i = 0, 1, \ldots, 4\mu 1$, let $b_i = (a_0, a_1, \ldots, a_{4\mu}) + i$,

$$a_{2\sigma} = \left\{ \begin{array}{ll} \mu + 1 - \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 3\mu + 1 + \sigma & \sigma = \mu + 1, \mu + 2, \dots, 2\mu - 1 \end{array} \right.$$

$$a_{2\sigma+1} = \left\{ \begin{array}{ll} 7\mu + 1 + \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 5\mu - \sigma & \sigma = \mu + 1, \mu + 2, \dots, 2\mu - 1 \end{array} \right.$$

and

$$a_{2\mu} = 4\mu + 1$$
, $a_{2\mu+1} = 4\mu$ and $a_{4\mu} = 5\mu + 1$.

(5) For
$$\alpha = 1, 2, \dots, \mu - 1$$
 let $c_{\alpha} = (y_0^{\alpha}, y_1^{\alpha}, \dots, y_{4\mu}^{\alpha}), y_{2\sigma}^{\alpha} = 2 + \alpha + \sigma, y_{2\sigma+1}^{\alpha} = 4\mu + 2 - \alpha + \sigma, \sigma = 0, 1, \dots, 2\mu - 1$ and $y_{4\mu}^{\alpha} = 2\mu + 2 + \alpha.$

Put $\mathcal{B} = \{d_1, d_2, d_3\} \cup \{b_0, b_1, \dots, b_{4\mu-1}\} \cup (\bigcup_{\alpha=1}^{\mu-1} \{c_{\alpha}, c_{\alpha} + 2\mu, c_{\alpha} + 4\mu, c_{\alpha} + 6\mu\})$. Then (V, \mathcal{B}) is a $P(8\mu, 4\mu + 1, 1)$ (see [9]).

It is easy to verify that each vertex of V is an endpoint of either 1 or 3 paths of \mathcal{B} . Therefore (V, \mathcal{B}) is almost balanced.

Put

$$\bar{b}_0 = (\bar{a}_0, \bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4, \dots, \bar{a}_{4\mu}) = (\mu + 1, 7\mu + 1, \mu, \mu + 2, \mu - 1, \dots, 5\mu + 1),
\bar{b}_\mu = (\bar{a}_0, \dots, \bar{a}_{2\mu-1}, \bar{a}_{2\mu}, \bar{a}_{2\mu+1}, \dots, \bar{a}_{4\mu}) = (2\mu + 1, \dots, \mu - 1, 7\mu + 2, \mu, \dots, 46\mu + 1).$$

By (4), we have

$$b_0 = (a_0, a_1, a_2, a_3, a_4, \dots, a_{4\mu}) = (\mu + 1, 7\mu + 1, \mu, 7\mu + 2, \mu - 1, \dots, 5\mu + 1),$$

$$b_{\mu} = (a_0, \dots, a_{2\mu-1}, a_{2\mu}, a_{2\mu+1}, \dots, a_{4\mu}) = (2\mu + 1, \dots, \mu - 1, \mu + 2, \mu, \dots, 6\mu + 1).$$

Then $T_1 = \{b_0, b_1\}$ and $T_2 = \{\overline{b}_0, \overline{b}_1\}$ form a trade of volume 2.

By replacing T_1 by T_2 we obtain an almost balanced $P(8\mu, 4\mu + 1, 1)$.

At last note that $\mu + 1$ is a vertex of c_{α} , $c_{\alpha} + 4\mu$, d_{1} , d_{3} , \bar{b}_{0} and b_{j} , $j \in \{1, 2, \dots, 2\mu\} - \{\mu\}$, while $7\mu + 2$ is a vertex of $c_{\alpha} + 2\mu$, $c_{\alpha} + 6\mu$, d_{2} , \bar{b}_{μ} and b_{j} , $j \in \{2\mu + 1, 2\mu + 2, \dots, 4\mu - 1\}$. Then $X = \{\mu + 1, 7\mu + 1\}$ is a blocking set.

Lemma 2 For each $\mu \geq 1$ there is an almost balanced $P(8\mu + 4, 4\mu + 3, 1)$ with a blocking set of cardinality 2.

Proof. Let $V = Z_{8\mu+4}$. Define the following paths:

- (1) $d_1 = (4\mu + 2, 4\mu + 3, \dots, 8\mu + 3, 0).$
- (2) For $i = 0, 1, \ldots, 4\mu + 1$, let $b_i = (a_0, a_1, \ldots, a_{4\mu+2}) + i$,

$$a_{2\sigma+2} = \left\{ \begin{array}{ll} 1 + \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 6\mu + 3 - \sigma & \sigma = \mu + 1, \mu + 2, \dots, 2\mu - 1 \end{array} \right.$$

$$a_{2\sigma+3} = \begin{cases} 8\mu + 3 - \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 2\mu + 2 + \sigma & \sigma = \mu + 1, \mu + 2, \dots, 2\mu - 1 \end{cases}$$

and

$$a_0 = 1$$
, $a_1 = 0$, $a_{2\mu+2} = 3\mu + 2$, $a_{2\mu+3} = 5\mu + 3$ and $a_{4\mu+2} = 4\mu + 2$.

(3) Let $c_{\alpha} = (y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{4\mu+2}^{\alpha}), y_{2\sigma}^{0} = 4\mu + 3 + \sigma, y_{2\sigma+1}^{0} = 2\mu + 1 + \sigma, \sigma = 0, 1, \dots, 2\mu, y_{4\mu+2}^{0} = 6\mu + 4 \text{ and, for } \alpha = 1, 2, \dots, \mu-1, y_{2\sigma}^{\alpha} = 8\mu + 4 - 2\alpha + \sigma, y_{2\sigma+1}^{\alpha} = 2\mu + 3 + \sigma, \sigma = 0, 1, \dots, 2\mu, y_{4\mu+2}^{\alpha} = 2\mu + 1 - 2\alpha.$

Put $\mathcal{B} = \{d_1\} \cup \{b_0, b_1, \dots, b_{4\mu+1}\} \cup (\bigcup_{\alpha=0}^{\mu-1} \{c_{\alpha}, c_{\alpha} + 2\mu + 1, c_{\alpha} + 4\mu + 2, c_{\alpha} + 6\mu + 3\})$. Then (V, \mathcal{B}) is a $P(8\mu, 4\mu + 1, 1)$ (see [9]).

It is easy to verify that each vertex of V is an endpoint of either 1 or 3 paths of \mathcal{B} . Therefore (V,\mathcal{B}) is almost balanced. Moreover $2\mu+2$ is a vertex of c_0 , $c_0+4\mu+2$, $c_\alpha+2\mu+1$, $c_\alpha+6\mu+3$, $\alpha\in\{1,2,\ldots,\mu-1\}$, and b_i , $i\in\{\mu+1,\mu+2,\ldots,3\mu\}$, while $4\mu+2$ is a vertex of d_1 , $c_0+2\mu+1$, $c_0+6\mu+3$, c_α , $c_\alpha+4\mu+2$ $\alpha\in\{1,2,\ldots,\mu-1\}$, and b_i , $i\in\{0,1,\ldots,\mu\}\cup\{3\mu+1,3\mu+2,\ldots,4\mu+1\}$. Then $X=\{2\mu+2,4\mu+2\}$ is a blocking set. \square

Lemma 3 For each $h \geq 2$ it is possible to decompose the bipartite graph $K_{4h,4h}$ into copies of P_{2h+1} in such a way that: 1) each element is an endpoint of exactly two paths; 2) there is a $\Omega \subset K_{4h,4h}$ such that each path meets Ω (i.e. Ω is a blocking set of the decomposition); 3) $|\Omega| = 4$.

Proof. Let $V(K_{4h,4h}) = \{a_0, a_1, \dots, a_{4h-1}\} \cup \{y_0, y_1, \dots, y_{4h-1}\}$. For $i = 0, 1, \dots, 4h-1$, put:

$$b_i = (y_i, a_i, y_{1+i}, a_{4h-1+i}, y_{2+i}, a_{4h-2+i}, \dots, y_{h-1+i}, a_{3h+1+i}, y_{h+i})$$

and

$$c_i = (a_i, y_{2h+i}, a_{4h-1+i}, y_{2h+1+i}, a_{4h-2+i}, \dots, y_{3h-2+i}, a_{3h+1+i}, y_{3h-1+i}, a_{3h+i}).$$

Let $\mathcal{B} = \{b_0, b_1, \dots, b_{4h-1}\} \cup \{c_0, c_1, \dots, c_{4h-1}\}$. It is easy to see that (V, \mathcal{B}) is an edge-disjoint decomposition of $K_{4h,4h}$ into P_{2h+1} and that each vertex of V appears as endpoint of two paths.

If h=2, then each path of \mathcal{B} meets $\Omega=\{a_0,a_4,y_4,y_7\}$. Suppose $h\geq 3$. Let $\Omega=\{a_0,a_{2h},y_{4h-1},y_{2h+1}\}$. It is easy to see that $b_i\cap X\neq\emptyset$, $i\in\{0,1,\ldots,4h-i\}-\{h\}$, and $c_i\cap X\neq\emptyset$, $i\in\{0,1,\ldots,4h-i\}-\{3h+1\}$. Define:

$$\bar{b}_h = (y_h, a_h, y_{h+1}, a_{h+1}, \dots, y_{h-3}, a_4, y_{h-2}, a_3, y_{2h+3}, a_{2h}, y_{2h+2}, a_1, y_{2h}),$$

$$\bar{b}_{2h+1} = (y_{2h+1}, a_{2h+1}, y_{2h+2}, a_2, y_{2h+3}, a_{2h-1}, \dots, y_{3h}, a_{h+2}, y_{3h+1}),$$

$$\bar{c}_0 = (a_{2h+1}, y_{2h}, a_{4h-1}, y_{2h+1}, a_{4h-2}, y_{2h+2}, \dots, a_{3h+1}, y_{3h-1}, a_{3h}),$$

$$\bar{c}_2 = (a_2, y_{2h-1}, a_1, y_{2h+3}, a_0, y_{2h+4}, \dots, a_{3h+3}, y_{3h+1}, a_{3h+2}),$$

$$\bar{c}_3 = (a_3, y_{2h-2}, a_2, y_{2h+4}, a_1, y_{2h+5}, \dots, a_{3h+4}, y_{3h+2}, a_{3h+3}),$$

$$\bar{c}_{3h+1} = (a_{3h+1}, y_{h+1}, a_{3h}, y_{h+2}, a_{3h-1}, y_{h+3}, \dots, a_{2h+2}, y_{2h}, a_0).$$

Then $T_1 = \{b_h, b_{2h+1}, c_0, c_2, c_3, c_{3h+1}\}$ and $T_2 = \{\bar{b}_h, \bar{b}_{2h+1}, \bar{c}_0, \bar{c}_2, \bar{c}_3, \bar{c}_{3h+1}\}$ form a trade of volume 4. By replacing T_1 by T_2 , we obtain the required decomposition.

Theorem 6 Let $v \equiv 0 \pmod{4h}$, $v \geq 4h$, $h \geq 2$. Then

$$\mathcal{BSABP}(v,2h+1,1) = \left\{x \mid \frac{v}{2h} \leq x \leq \frac{(2h-1)v}{2h}\right\}.$$

Proof. By Lemmas 1 and 2 construct an almost balanced P(4h, 2h+1, 1) (V, \mathcal{B}) with a blocking set X of cardinality 2. Let \bar{X} be a subset of V such that $X \subset \bar{X}$ and $|\bar{X}| \leq 2h$. Clearly \bar{X} is a blocking set. So by Theorem 4 the theorem is proved when v = 4h.

Let v=4ht, $t\geq 2$. Let V_i be t mutually disjoint v-sets. For each $i,i=1,2,\ldots,t$, let (V_i,\mathcal{B}_i) be an almost balanced P(4h,2h+1,1) with a blocking set $X_i, |X_i| \in \{2,3,\ldots,2h\}$. Let $(V_i \cup V_j, \mathcal{D}_{ij}), i,j \in \{1,2,\ldots,t\}, i\neq j$, be a decomposition of $K_{4h,4h}$ into P_{2h+1} with a blocking set Ω_{ij} such that $\Omega_{ij}\subseteq X_i\cup X_j$. This is possible by Lemma 3. Put $W=\cup_{i=1}^t V_i, \mathcal{E}=(\cup_{i=1}^t \mathcal{B}_i)\cup(\cup_{i,j=1}^t \mathcal{D}_{ij})$ and $X=\cup_{i=1}^t X_i$. It is easy to verify that (W,\mathcal{E}) is an almost balanced P(4ht,2h+1,1) with the blocking set X, with $2t\leq |X|\leq t(4h-2)$.

3
$$\mathcal{BSABP}(v, 2h, 1)$$
 for $v \equiv 0 \pmod{2h-1}$, $h \ge 2$.

In this section we determine the set $\mathcal{BSABP}(v,2h,1)$ for $v \equiv 0 \pmod{2h-1}$, $h \geq 1$ and $v \geq 4h-2$. By Theorem 4 it suffices to show that $\left\{x \mid \frac{v}{2h-1} \leq x \leq \left\lfloor \frac{v}{2} \right\rfloor\right\} \subseteq \mathcal{BSABP}(v,2h,1)$ for all $h \geq 2$. The first step is to construct an almost balanced P(4h-2,2h,1) with a blocking set of minimum cardinality (see Lemmas 4 and 5). To do this we use the trade-off method and Tarsi's construction as described at the beginning of above section.

Lemma 4 For each $\mu \geq 1$ there is an almost balanced $P(8\mu + 2, 4\mu + 2, 1)$ with a blocking set of cardinality 2.

Proof. Let $V = Z_{8\mu+2}$. Define the following paths: (1) For $i = 0, 1, ..., 4\mu$, let $b_i = (a_0, a_1, ..., a_{4\mu}) + i$, $a_0 = 0$,

$$a_{2\sigma+2} = \left\{ \begin{array}{ll} 8\mu + 1 - \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 6\mu + 1 - \sigma & \sigma = \mu, \mu + 1, \dots, 2\mu - 1 \end{array} \right.$$

$$a_{2\sigma+1} = \left\{ \begin{array}{ll} 1+\sigma & \sigma=0,1,\ldots,\mu-1 \\ 2\mu+1+\sigma & \sigma=\mu,\mu+1,\ldots,2\mu \end{array} \right.$$

(2) For $\alpha=1,2,\ldots,\mu-1$ let $c_{\alpha}=(y_0^{\alpha},y_1^{\alpha},\ldots,y_{4\mu}^{\alpha})$ and $d_{\alpha}=(z_0^{\alpha},z_1^{\alpha},\ldots,z_{4\mu}^{\alpha}),$

$$y_{2\sigma}^{\alpha} = 2\mu - \alpha + \sigma, \ y_{2\sigma+1}^{\alpha} = 4\mu + 2 + \alpha + \sigma, \ \sigma = 0, 1, \dots, 2\mu,$$
 $z_{2\sigma}^{\alpha} = 2\mu + 1 + \alpha + \sigma, \ y_{2\sigma+1}^{\alpha} = \sigma - \alpha, \ \sigma = 0, 1, \dots, 2\mu.$

Put $\mathcal{B} = \{b_0, b_1, \dots, b_{\mu}\} \cup (\bigcup_{\alpha=0}^{\mu-1} \{c_{\alpha}, c_{\alpha} + 4\mu + 1, d_{\alpha}, d_{\alpha} + 4\mu + 1\})$. Then (V, \mathcal{B}) is an almost balanced $P(8\mu + 2, 4\mu + 2, 1)$ (see [9]).

It is easy to verify that each vertex of V is an endpoint of either 1 or 3 paths of \mathcal{B} . Therefore (V,\mathcal{B}) is almost balanced. Moreover 0 is a vertex of d_{α} , $d_{\alpha} + 4\mu + 1$ and b_i , $i \in \{0, 1, \ldots, \mu\} \cup \{3\mu + 1, 3\mu + 2, \ldots, 4\mu\}$, while 2μ is a vertex of c_{α} , $c_{\alpha} + 4\mu + 1$ and b_i , $i \in \{2\mu + 1, 2\mu + 2, \ldots, 3\mu\}$. Therefore $X = \{0, 2\mu\}$ is a blocking set.

Lemma 5 For each $\mu \geq 1$ there is an almost balanced $P(8\mu - 2, 4\mu, 1)$ with a blocking set of cardinality 2.

```
Let V = Z_{8\mu-2} and let X = \{0, 5\mu - 1\}.
Proof.
    Put
\mathcal{B}_1 = \{(0, 2, 5, 3), (1, 3, 0, 4), (2, 4, 1, 5), (0, 1, 2, 3), (3, 4, 5, 0)\};
\mathcal{B}_2 = \{(0, 2, 13, 3, 10, 6, 9, 7), (1, 3, 0, 4, 11, 7, 10, 8), (2, 4, 1, 5, 12, 8, 11, 9), \}
(3, 5, 2, 6, 13, 9, 12, 10), (4, 6, 3, 7, 0, 10, 13, 11), (5, 7, 4, 8, 1, 11, 0, 12),
(6, 8, 5, 9, 2, 12, 1, 13), (0, 1, 2, 3, 4, 5, 6, 7), (7, 8, 9, 10, 11, 12, 13, 0),
(2, 8, 3, 9, 4, 10, 5, 11), (11, 6, 12, 7, 13, 8, 0, 9), (9, 1, 10, 2, 11, 3, 12, 4),
(4, 13, 5, 0, 6, 1, 7, 2);
\mathcal{B}_3 = \{(0, 2, 21, 3, 20, 4, 15, 9, 17, 10, 13, 11),
(1, 3, 0, 4, 21, 5, 16, 10, 15, 11, 14, 12), (2, 4, 1, 5, 0, 6, 17, 11, 16, 12, 15, 13),
(3, 5, 2, 6, 1, 7, 18, 12, 17, 13, 16, 14), (4, 6, 3, 7, 2, 8, 19, 13, 18, 14, 17, 15),
(5, 7, 4, 8, 3, 9, 20, 14, 19, 15, 18, 16), (6, 8, 5, 9, 14, 10, 21, 15, 20, 16, 19, 17),
(7, 9, 6, 10, 5, 11, 0, 16, 21, 17, 20, 18), (8, 10, 7, 11, 6, 12, 1, 17, 0, 18, 21, 19),
(9, 11, 8, 12, 7, 13, 2, 18, 1, 19, 0, 20), (10, 12, 9, 13, 8, 14, 3, 19, 2, 20, 1, 21),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 0),
(3, 11, 4, 12, 5, 13, 6, 14, 7, 15, 8, 16), (16, 9, 4, 10, 18, 11, 19, 12, 20, 13, 21, 14),
(14, 0, 15, 1, 16, 2, 17, 3, 18, 4, 19, 5), (5, 20, 6, 21, 7, 0, 8, 1, 9, 2, 10, 3),
(2, 12, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17), (17, 8, 18, 9, 19, 10, 20, 11, 21, 12, 0, 13),
(13, 1, 14, 2, 15, 3, 16, 4, 17, 5, 18, 6), (6, 19, 7, 20, 8, 21, 9, 0, 10, 1, 11, 2).
Then (V, \mathcal{B}_{\mu}), \mu = 1, 2, 3, is an almost balanced P(8\mu - 2, 4\mu, 1) with block-
ing set X.
```

Now we prove the theorem for $\mu \geq 4$. Define the following paths:

- $(1) d_1 = (0,1,\ldots,4\mu-1),$
- (2) $d_2 = (4\mu 1, 4\mu, \dots, 8\mu 3, 0).$

(3) For
$$i = 0, 1, \dots, 4\mu - 2$$
, let $b_i = (a_0, a_1, \dots, a_{4\mu-1}) + i$,
$$a_{2\sigma} = \begin{cases} 8\mu - 2 - \sigma & \sigma = 0, 1, \dots, \mu - 1 \\ 6\mu - \sigma & \sigma = \mu, \mu + 1, \dots, 2\mu - 1 \end{cases}$$

$$a_{2\sigma+1} = \begin{cases} \sigma + 2 & \sigma = 0, 1, \dots, \mu - 1 \\ 2\mu + \sigma & \sigma = \mu, \mu + 1, \dots, 2\mu - 1 \end{cases}$$
(4) For $\alpha = 0, 1, \dots, \mu - 2$ let $c_{\alpha} = (y_0^{\alpha}, y_1^{\alpha}, \dots, y_{4\mu-1}^{\alpha})$ and $\hat{c}_{\alpha} = (\hat{y}_0^{\alpha}, \hat{y}_1^{\alpha}, \dots, \hat{y}_{4\mu-1}^{\alpha})$, where for each $\sigma = 0, 1, \dots, 2\mu - 1$, it is
$$y_{2\sigma}^{\alpha} = \begin{cases} \sigma - \alpha + \frac{3\mu - 3}{2} & \mu \equiv 1 \pmod{2} \\ \sigma - \alpha + \frac{3\mu - 2}{2} & \mu \equiv 0 \pmod{2} \end{cases}$$

$$y_{2\sigma+1}^{\alpha} = \begin{cases} \sigma + \alpha + \frac{7\mu + 1}{2} & \mu \equiv 1 \pmod{2} \\ \sigma + \alpha + \frac{11\mu - 1}{2} & \mu \equiv 0 \pmod{2} \end{cases}$$

$$\hat{y}_{2\sigma}^{\alpha} = \begin{cases} \sigma + \alpha + \frac{11\mu - 1}{2} & \mu \equiv 1 \pmod{2} \\ \sigma + \alpha + \frac{11\mu - 1}{2} & \mu \equiv 0 \pmod{2} \end{cases}$$

$$\hat{y}_{2\sigma+1}^{\alpha} = \begin{cases} \sigma - \alpha + \frac{7\mu - 3}{2} & \mu \equiv 1 \pmod{2} \\ \sigma - \alpha + \frac{7\mu - 3}{2} & \mu \equiv 0 \pmod{2} \end{cases}$$
Put $\mathcal{B} = \{d_1, d_2\} \cup \{b_0, b_1, \dots, b_{4\mu-2}\} \cup (\bigcup_{\alpha=1}^{\mu-2} \{c_{\alpha}, c_{\alpha} + 4\mu - 1, \hat{c}_{\alpha}, \hat{c}_{\alpha} + 4\mu - 1\}$). Then (V, \mathcal{B}) is a $P(8\mu, 4\mu + 1, 1)$ (see [9]). It is easy to verify that each vertex of V is an endpoint of either 1 or 3 paths of \mathcal{B} . Therefore (V, \mathcal{B}) is almost balanced.

Let $X = \{0, 5\mu - 1\}$. It is not difficult to prove that $b_i \cap X = \emptyset$, $i = 2\mu, 2\mu + 1, \dots, 3\mu - 3$, while the remaining paths of \mathcal{B} meet X as we

 $4\mu - 1$). Then (V, \mathcal{B}) is a $P(8\mu, 4\mu + 1, 1)$ (see [9]). It is easy to verify that each vertex of V is an endpoint of either 1 or 3 paths of \mathcal{B} . Therefore

 $i=2\mu,2\mu+1,\ldots,3\mu-3$, while the remaining paths of \mathcal{B} meet X as we show in the following.

(I)
$$0 \in d_1 \cap X$$
;
(II) $5\mu - 1 \in d_2 \cap X$;
(III) $a_{2i} + i = 0 \in b_i \cap X$, $i = 0, 1, \dots, \mu - 1$;
(IV) $a_{2(3\mu - 1 - i)} + i = 5\mu - 1 \in b_i \cap X$, $i = \mu, \mu + 1, \dots, 2\mu - 1$;
(V) $a_{2(i - 2\mu + 2)} + i = 0 \in b_i \cap X$, $i = 3\mu - 2, 3\mu - 1, \dots, 4\mu - 3$;
(VI) $a_{2(\mu - 1) + 1} + 4\mu - 2 = 5\mu - 1 \in b_i \cap X$.
(VII) Let $\mu \equiv 1 \pmod{2}$. Then
(VII.a) $y_{2\sigma + 1}^{\alpha} = 5\mu - 1 \in c_{\alpha} \cap X$, $\sigma = \frac{3\mu - 3}{2} - \alpha$, $\alpha = 0, 1, \dots, \mu - 2$;
(VII.b) $y_{2\sigma + 1}^{\alpha} + 4\mu - 1 = 0 \in (c_{\alpha} + 4\mu - 1) \cap X$, $\sigma = \frac{\mu - 3}{2} - \alpha$, $\frac{\alpha = 0, 1, \dots, \mu - 3}{2}$;
 $y_{2\sigma + 1}^{\alpha} + 4\mu - 1 = 5\mu - 1 \in (c_{\alpha} + 4\mu - 1) \cap X$, $\sigma = \mu - \frac{\mu - 3}{2} + \alpha$, $\alpha = \frac{\mu - 3}{2} + 1, \frac{\mu - 3}{2} + 2, \dots, \mu - 2$;
(VII.c) $\hat{y}_{2\sigma + 1}^{\alpha} = 5\mu - 1 \in \hat{c}_{\alpha} \cap X$, $\sigma = \frac{3\mu + 1}{2} + \alpha$, $\alpha = 0, 1, \dots, \frac{\mu - 3}{2}$;
 $\hat{y}_{2\sigma}^{\alpha} = 0 \in \hat{c}_{\alpha} \cap X$, $\sigma = \frac{5\mu - 3}{2} - \alpha$, $\alpha = \frac{\mu - 3}{2} + 1, \frac{\mu - 3}{2} + 2, \dots, \mu - 2$;
(VII.d) $\hat{y}_{2\sigma + 1}^{\alpha} + 4\mu - 1 = 0 \in (\hat{c}_{\alpha} + 4\mu - 1) \cap X$, $\sigma = \frac{\mu + 1}{2} + \alpha$, $\alpha = 0, 1, \dots, \mu - 2$.

 $\begin{array}{ll} \text{(VIII) Let } \mu \equiv 0 \pmod{2}. \text{ Then it is} \\ \text{(VIII.a) } y_{2\sigma+1}^{\alpha} = 5\mu - 1 \in c_{\alpha} \cap X, \, \sigma = \frac{3\mu-4}{2} - \alpha, \, \alpha = 0, 1, \ldots, \mu-2; \\ \text{(VIII.b) } y_{2\sigma+1}^{\alpha} + 4\mu - 1 = 0 \in (c_{\alpha} + 4\mu - 1) \cap X, \, \sigma = \frac{\mu-4}{2} - \alpha, \\ \alpha = 0, 1, \ldots, \frac{\mu-4}{2}; \\ y_{2\sigma+1}^{\alpha} + 4\mu - 1 = 5\mu - 1 \in (c_{\alpha} + 4\mu - 1) \cap X, \, \sigma = \alpha - \frac{\mu-2}{2}, \\ \alpha = \frac{\mu-4}{2} + 1, \frac{\mu-4}{2} + 2, \ldots, \mu-2; \\ \text{(VIII.c) } \hat{y}_{2\sigma+1}^{\alpha} = 5\mu - 1 \in \hat{c}_{\alpha} \cap X, \, \sigma = \frac{3\mu}{2} + \alpha, \, \alpha = 0, 1, \ldots, \frac{\mu-2}{2}; \\ \hat{y}_{2\sigma}^{\alpha} = 0 \in \hat{c}_{\alpha} \cap X, \, \sigma = \frac{5\mu-4}{2} - \alpha, \, \alpha = \frac{\mu-2}{2} + 1, \frac{\mu-2}{2} + 2, \ldots, \mu-2; \\ \text{(VIII.d) } \hat{y}_{2\sigma+1}^{\alpha} + 4\mu - 1 = 0 \in (\hat{c}_{\alpha} + 4\mu - 1) \cap X, \, \sigma = \frac{\mu}{2} + \alpha, \\ \alpha = 0, 1, \ldots, \mu-2. \end{array}$

In order to construct an almost balanced $P(8\mu-2,4\mu,1)$ with blocking set X, we use the trade-off method.

At first suppose $\mu \equiv 1 \pmod{2}$, $\mu \geq 5$. Let $\sigma = \frac{3\mu-3}{2} - \rho$, $\rho = 0, 1, \ldots, \frac{\mu-3}{2}$. Then $a_{2\sigma+1} + \frac{3\mu-3}{2} - \rho = 4\mu - 3 - 2\rho$, $a_{2\sigma+2} + \frac{\mu-3}{2} - \rho = 5\mu - 1$, $a_{2\sigma+3} + \frac{\mu-3}{2} - \rho = 4\mu - 2 - 2\rho$, $a_{2\sigma} + \frac{3\mu-3}{2} - \rho = 0$. Therefore the paths $b_{\frac{\mu-3}{2}-\rho}$ meet both vertices 0 and $5\mu-1$ and edges $\{4\mu-3-\rho,5\mu-1\}$, $\{5\mu-1,4\mu-2-2\rho\}$. Moreover it is easy to verify that $2\mu-2$ is not a vertex of $b_{\frac{\mu-3}{2}-\rho}$.

Let $\sigma = \mu - \rho - 2$, $\rho = 0, 1, \dots, \frac{\mu - 3}{2}$. Then $a_{2\sigma + 1} + 3\mu - 3 - \rho = 4\mu - 3 - 2\rho$, $a_{2\sigma + 2} + 3\mu - 3 - \rho = 2\mu - 2$, $a_{2\sigma + 3} + 3\mu - 3 - \rho = 4\mu - 2 - 2\rho$. Therefore the paths $b_{3\underline{\mu} - 3 - \rho}$ meet both edges $\{4\mu - 3 - 2\rho, 2\mu - 2\}$, $\{2\mu - 2, 4\mu - 2 - 2\rho\}$.

Put $\bar{b}_{\frac{\mu-3}{2}-\rho} = (\gamma_0, \gamma_1, \dots, \gamma_{4\mu-1})$ and $\bar{b}_{3\mu-3-\rho} = (\tau_0, \tau_1, \dots, \tau_{4\mu-1})$, where for $\sigma = 0, 1, \dots, 2\mu - 1$, it is: $\gamma_{2\sigma+1} = a_{2\sigma+1} + \frac{\mu-3}{2} - \rho$, $\gamma_{2\sigma} = a_{2\sigma}$ if $\sigma \neq \frac{3\mu-3}{2} - \rho$, $\gamma_{\frac{3\mu-3}{2}-\rho} = 2\mu - 2$, $\tau_{2\sigma+1} = a_{2\sigma+1} + 3\mu - 3 - \rho$, $\tau_{2\sigma} = a_{2\sigma} + 3\mu - 3 - \rho$ if $\sigma \neq \mu - 2 - \rho$, $\tau_{\mu-2-\rho} = 5\mu - 1$.

Then $T'_1 = \{b_{\frac{\mu-3}{2}-\rho}, b_{3\mu-3-\rho} \mid \rho = 0, 1, \dots, \frac{\mu-3}{2}\}$ and $T'_2 = \{\bar{b}_{\frac{\mu-3}{2}-\rho}, \bar{b}_{3\mu-3-\rho} \mid \rho = 0, 1, \dots, \frac{\mu-3}{2}\}$ form a trade of volume $\mu - 1$.

Let $\sigma = \frac{3\mu - 7}{2} - \rho$, $\rho = \frac{\mu - 3}{2} + 1$, $\frac{\mu - 3}{2} + 2$, ..., $\mu - 3$. Then $a_{2\sigma + 1} + \frac{3\mu - 5}{2} - \rho = 3\mu - 4 - 2\rho$, $a_{2\sigma + 2} + \frac{3\mu - 5}{2} - \rho = 0$, $a_{2\sigma + 3} + \frac{3\mu - 5}{2} - \rho = 3\mu - 3 - 2\rho$.

Let $\sigma = \frac{5\mu - 3}{2} - \rho$, $\rho = \frac{\mu - 3}{2} + 1$, $\frac{\mu - 3}{2} + 2$, ..., $\mu - 3$. Then $a_{2\sigma} + \frac{3\mu - 5}{2} - \rho = 5\mu - 1$. Therefore the paths $b_{\frac{3\mu - 5}{2} - \rho}$ meet both vertices 0 and $5\mu - 1$ and edges $\{3\mu - 4 - 2\rho, 0\}$, $\{0, 3\mu - 3 - 2\rho\}$. Moreover it is easy to verify that $3\mu - 1$ is not a vertex of $b_{\frac{3\mu - 5}{2} - \rho}$.

Let $\sigma = \rho$, $\rho = \frac{\mu-3}{2} + 1$, $\frac{\mu-3}{2} + 2$, ..., $\mu - 3$. Then $a_{2\sigma} + 3\mu - 3 - \rho = 3\mu - 3 - 2\rho$, $a_{2\sigma+1} + 3\mu - 3 - \rho = 3\mu - 1$, $a_{2\sigma+2} + 3\mu - 3 - \rho = 3\mu - 4 - 2\rho$. Therefore the paths $b_{3\mu-3-\rho}$ meet both edges $\{3\mu - 3 - 2\rho, 3\mu - 1\}$, $\{3\mu - 1, 3\mu - 4 - 2\rho\}$.

Put $\bar{b}_{\frac{3\mu-5}{2}-\rho} = (\gamma_0, \gamma_1, \dots, \gamma_{4\mu-1})$ and $\bar{b}_{3\mu-3-\rho} = (\tau_0, \tau_1, \dots, \tau_{4\mu-1})$, where for $\sigma = 0, 1, \dots, 2\mu - 1$, it is: $\gamma_{2\sigma+1} = a_{2\sigma+1} + \frac{3\mu-5}{2} - \rho$,

$$\begin{array}{l} \gamma_{2\sigma}=a_{2\sigma}+\frac{3\mu-5}{2}-\rho \text{ if } \sigma\neq\frac{3\mu-7}{2}-\rho, \, \gamma_{2(\frac{3\mu-7}{2}-\rho)}=3\mu-1, \\ \tau_{2\sigma}=a_{2\sigma}+3\mu-3-\rho, \, \tau_{2\sigma+1}=a_{2\sigma+1}+3\mu-3-2\rho \text{ if } \sigma\neq\rho, \, \tau_{2\rho+1}=0. \\ \text{Then } T"_1=\left\{b_{\frac{3\mu-5}{2}-\rho}, b_{3\mu-3-\rho} \mid \rho=\frac{\mu-3}{2}+1, \frac{\mu-3}{2}+2, \ldots, \mu-3\right\} \text{ and} \end{array}$$

Then $T_1^n = \{b_{\frac{3\mu-5}{2}-\rho}, b_{3\mu-3-\rho} \mid \rho = \frac{\mu-3}{2} + 1, \frac{\mu-3}{2} + 2, \dots, \mu-3\}$ and $T_2^n = \{\bar{b}_{\frac{3\mu-5}{2}-\rho}, \bar{b}_{3\mu-3-\rho} \mid \rho = \frac{\mu-3}{2} + 1, \frac{\mu-3}{2} + 2, \dots, \mu-3\}$ form a trade of volume $\mu - 3$.

By replacing $T'_1 \cup T'_2$ by $T"_1 \cup T"_2$, we obtain (for each odd $\mu \geq 5$) an almost balanced $P(8\mu - 2, 4\mu, 1)$ with blocking set X.

For $\mu \equiv 0 \pmod{2}$, $\mu \geq 4$ the proof is similar. We leave it for the reader.

Lemma 6 Let $v \equiv 0 \pmod{(2h-1)}$, $v \geq 4h-2$. Suppose there exists an almost balanced P(v,2h,1) with a blocking set of cardinality x. Then there exists an almost balanced P(v+2h-1,2h,1) with a blocking set of cardinality x+1.

Proof. Let $(V,\mathcal{B}),V=Z_v\times\{1\}$, be a P(v,2h,1) with a blocking set X, |X|=x. Put $v=t(2h-1), t\geq 2$. Suppose $\{(\sigma(2h-1),1)\mid \sigma=0,1,\ldots,t-1\}\subseteq X$. Put $W=Z_{2h-1}\times\{2\}$. In the following we will suppose that each pair (y,1)[(y,2), respectively] is taken $\pmod{(v,-)}$ [$\pmod{(2h-1,-)},$ respectively].

$$b_i = (y_0^i, a_0^i, y_1^i, a_1^i, \dots, y_{h-1}^i, a_{h-1}^i) \quad i \in Z_v,$$

$$y_{\rho}^i = (i + \rho, 1), \ a_{\rho}^i = (i - \rho, 2), \ \rho = 0, 1, \dots, h-1.$$

It is easy to verify that $\{b_i \mid i \in Z_v\}$ is a P_{2h} -decomposition of the complete bipartite graph $K_{v,2h-1}$ on vertex set $V \cup W$.

At first we settle the case h=2. Let $\bar{b}_0=((1,2),(0,2),(1,1),(2,2)),$ $\bar{b}_i=b_i,\ i=1,2,\ldots,v-1$ and $\bar{c}_0=((0,1),(0,2),(2,2),(1,2)).$ Put $\mathcal{D}=\{\bar{c}_0\}\cup\{\bar{b}_i\mid i=0,1,\ldots,v-1\}.$ Then (V,\mathcal{D}) is an almost balanced P(v,4,1) with blocking set $X\cup\{(0,2)\}.$

Now let $h \geq 3$. Let

$$c_j = (p_0^j, q_0^j, p_1^j, q_1^j, \dots, p_{h-2}^j, q_{h-2}^j, p_{h-1}^j) \qquad j = 0, 1, \dots, h-2,$$
$$p_{\sigma}^j = (\sigma + j, 2), \quad \sigma = 0, 1, \dots, h-1,$$
$$q_{\sigma}^j = (2h - 2 - \sigma + j, 2), \quad \sigma = 0, 1, \dots, h-2.$$

Note that each path c_j has exactly 2h-1 vertices and the set $\{c_j \mid j=0,1,\ldots,h-2\}$ covers all the edges of K_{2h-1} on W except the following ones: $\{(j,2),(2h-3-j,2)\}$. Let

$$\alpha = (\beta_0 \ \gamma_0)(\beta_1 \ \gamma_1) \dots (\beta_{\mu(h)} \ \gamma_{\mu(h)})$$

be the permutation of W so defined:

$$\beta_{\tau} = (h-1+\tau,2), \ \gamma_{\tau} = (2h-3-\tau,2), \ \tau = 0,1,\ldots,\mu(h),$$

$$\mu(h) = \begin{cases} \frac{h-3}{2} & \text{if } h \equiv 1 \pmod{2} \\ \frac{h-4}{2} & \text{if } h \equiv 0 \pmod{2} \end{cases}$$

Let

$$\mathcal{C} = \{\bar{c}_j = (\bar{q}_{-1}^j, \alpha p_0^j, \alpha q_0^j, \alpha p_1^j, \alpha q_1^j, \dots$$

$$\ldots, \alpha p_{h-2}^j, \alpha q_{h-2}^j, \alpha p_{h-1}^j) \mid j = 0, 1, \ldots, h-2\}, \ \bar{q}_{-1}^j = (j, 1).$$

Note that \mathcal{C} covers the edges $\{(j,1),(j,2)\}, j=0,1,\ldots,h-2$, and all the edges of K_{2h-1} on W except the following ones $\{\alpha(j,2),\alpha(2h-3-j,2)\}=$ $\{(j,2),(h-1+j,2)\}.$

Let $\mathcal{E} = \{\bar{b}_i \mid i \in Z_n\},\$

$$\bar{b}_i = \left\{ \begin{array}{ll} b_i & i = h-1, h, \dots, t(2h-1)-1 \\ (\bar{y}_0^i, \bar{a}_0^i, \bar{y}_1^i, \bar{a}_1^i, \dots, \bar{y}_{h-1}^i, \bar{a}_{h-1}^i) & i = 0, 1, \dots, h-2 \end{array} \right.$$

$$\bar{y}_0^i = (h-1+i,2), \ \bar{y}_0^i = y_0^i, \ \bar{a}_0^i = a_0^i, \ \rho = 1,2,\ldots,h-1.$$

 $\begin{array}{l} \bar{y}^i_0=(h-1+i,2),\,\bar{y}^i_\rho=y^i_\rho,\,\bar{a}^i_\rho=a^i_\rho,\,\rho=1,2,\ldots,h-1.\\ \text{Note that \mathcal{E} covers the edges (missing in \mathcal{C}) } \{\alpha(j,2),\alpha(2h-3-j,2)\}=0. \end{array}$ $\{(j,2),(h-1+j,2)\}$ and all the edges of the complete bipartite graph $K_{v,2h-1}$ on vertex set $V \cup W$ except the following ones $\{(j,1),(j,2)\}$ (these edges are in \mathcal{C}).

Therefore $(V \cup W, \mathcal{B} \cup \mathcal{C} \cup \mathcal{E})$ is a P(v+2h-1,2h,1). It is easy to check that each vertex of V meets exactly h paths of $C \cup \mathcal{E}$, each vertex of W meets either h-1 or h paths of \mathcal{E} and also each path of \mathcal{C} . Therefore $(V \cup W, \mathcal{B} \cup \mathcal{C} \cup \mathcal{E})$ is almost balanced.

To prove that $\Omega = X \cup \{(0,2)\}$ is a blocking set note that:

- $(1) (0,1) \in \bar{b}_i, i = t(2h-1)-h+1, t(2h-1)-h+2, \ldots, t(2h-1)-1;$
- $(2) (0,2) \in \bar{b}_i, i = \sigma(2h-1), \sigma(2h-1)+1, \ldots, \sigma(2h-1)+h-1,$ $\sigma=0,1,\ldots,t-1;$
- (3) $((\sigma+1)(2h-1), 1) \in \bar{b}_i$, $i = \sigma(2h-1) + h$, $\sigma(2h-1) + h + 1$, ..., $\sigma(2h-1) + h + 1$
- 1) + 2h 1, $\sigma = 0, 1, \ldots, t 2$;

$$(4) (0,2) \in \bar{c}_j, j \in Z_{2h-1}.$$

Theorem 7 Let $v \equiv 0 \pmod{2h-1}$, $v \geq 4h-2$, $h \geq 2$. Then

$$\mathcal{BSABP}(v,2h,1) = \left\{ x \mid \frac{v}{2h-1} \leq x \leq \frac{(2h-2)v}{2h-1} \right\}.$$

Proof. Let (V, \mathcal{B}) be an almost balanced P(4h-2, 2h, 1) with a blocking set X, |X| = 2 (see Lemmas 4 and 5). For each $x, 3 \le x \le 2h - 1$, say Y be a subset of V such that |Y| = x - 2 and $|Y \cap X| = 0$. Then $X \cup Y$ is a blocking set. Therefore $\{2,3,\ldots,2h-1\}\subset\mathcal{BSABP}(4h-2,2h,1)$. By Theorem 4, we obtain the proof for v = 4h - 2.

Now let
$$\mathcal{BSABP}(v,2h,1) = \left\{x \mid \frac{v}{2h-1} \le x \le \frac{(2h-2)v}{2h-1}\right\}$$
. By Lemma 6, it is
$$\left\{x \mid \frac{v}{2h-1} + 1 \le x \le \frac{(2h-2)v}{2h-1} + 1\right\} \subseteq \mathcal{BSABP}(v+2h-1,2h,1).$$
 Hence by Theorem 4 it follows
$$\mathcal{BSABP}(v+2h-1,2h,1) = \left\{x \mid \frac{v+2h-1}{2h-1} \le x \le \frac{(2h-2)(v+2h-1)}{2h-1}\right\}.$$

References

- [1] L.M. Batten, Blocking sets in designs, Congressus Numerantium, 99 (1994), 139-154.
- [2] H. Gropp, Blocking sets in configurations n_3 , Mitt. Math. Sem. Giessen **201** (1991), 59-72.
- [3] A.S. Hedayat, The theory of trade-off for t-designs, Collection: Coding theory and design theory (Ed. D. Ray-Chauduri), Part II, 101-206. Springer, New York (1990).
- [4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math., 2 (1972), 229-252.
- [5] S. H. Y. Hung and N. S. Mendelsohn, (1974) Handcuffed designs, Aequationes Math., 18, 256-266.
- [6] C.C. Lindner and C.A. Rodger, Blocking set preserving embedding of partial $K_4 e$ designs, Australasian J. Combin., 12 (1995), 121-126.
- [7] S. Milici and Z. Tuza, Disjoint blocking sets in cycle systems, *Discrete Math*, to appear.
- [8] G. Quattrocchi, Blocking sets in balanced path designs, Australasian J. Combin., 19 (1999), 283-286.
- [9] M. Tarsi, Decompositions of a complete multigraph into simple paths: non-balanced handcuffed designs, J. Combin. Theory (A), 34 (1983), 60-70.

Addendum to "Pairwise Balanced Designs on 4s+4 Points"

With reference to paper [2], two comments are necessary.

First, there is an error in the title; the title refers to "Pairwise Balanced Designs on 4s+4 Blocks"; this should read "Pairwise. Balanced Designs on 4s+4 Points".

Secondly, the purpose of the paper was to give a self-contained account of the "case of first failure" for 4s+4 points. The actual result that

$$g - 1 = 2s^2 + 4s + 1$$

is not new; it is a special case of the much more general result given by Rolf Rees in Theorem 4.3 (i) of [1], namely, that

$$cp(K_{m+2} \vee K_{m}^{c}) = (m^{2} + 2m - 1)/2$$
 for all odd $m \ge 5$.

References.

- [1] Rolf Rees, Minimal Clique Partitions and Pairwise Balanced Designs, Discrete Mathematics 61 (1986), 269-280.
- [2] R.G. Stanton, Pairwise Balanced Designs on 4s+4 Blocks with Longest Block of Cardinality 2s+1, JCMCC 40 (2002), 161-165.