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ABSTRACT. We describe a concrete data structure, called a sequence-
tree, that represents sequences of arbitrary elements, along with as-
sociated algorithms that allow single element access and assignment,
subsequence extraction (slicing), and concatenation to be done in
logarithmic time relative to sequence length. These operations are
functional, in the sense that they leave their operand sequences un-
changed. For a single sequence, space is linear in the sequence length.
Where a set of multiple sequences have been computed by these algo-
rithms, space may be sublinear, because of node sharing. Sequence-
trees use immutable, shared, dynamically allocated nodes and thus
may require garbage collection, if some of the sequences in a set
are abandoned. However, the interconnection of nodes is non-cyclic,
so explicity programmed collection using reference counting is rea-
sonable, should a general-purpose garbage collector be unavailable.
Other sequence representations admit only to linear-time algorithms
for one or more of the aforementioned operations. Thus sequence-
trees give improved performance in applications where all the opera-
tions are needed.

1. INTRODUCTION

A sequence-tree is a concrete data structure which represents an abstract
sequence. Sequence-trees allow single element access and assignment, sub-
sequence extraction (slicing), and concatenation to be done in logarithmic
time. Furthermore, all these operations leave their operand sequences un-
changed. For a single sequence, space is linear. For multiple sequences,
space can be sublinear.

Sequence-trees use immutable nodes, which can be shared among se-
quence values. Thus they may require garbage collection, either as part of
the underlying programming system, or explicitly programmed as part of
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the sequence-tree implementation. Sequence-trees are non-cyclically linked,
so simple reference counting will work.

Sequence-trees are useful in applications where both subscripting and ei-
ther slicing or concatenation operations are performed on sequences. Their
greatest value is in situations where the maximum sequence length is large
and asymptotic behavior dominates. They were developed in response to a
specific need, during implementation of a semantic programming editor that
internally maintains a variation of an abstract syntax tree, while providing
a text-editor style user interface.

Other concrete representations of sequences are generally variations on
either arrays or linked lists. Discussions of these can be found in standard
data structures and algorithms texts, e.g. [1], [2], [4], [8], [9]. Sequence-trees
maintain logarithmic complexity in all of the sequence operations discussed
while preserving operand values. The many variations on array and linked
representations are all linear in one or more of these operations. Most do
not preserve operand values.

In their concrete representation, sequence-trees resemble B-trees [2], [4],
[9]; 2-3 trees [3], [4], [9]; and (a,b) trees [10]. All these are height-balanced
trees whose nodes have varying but bounded out-degree. Huddleston and
Mehlhorn [10] give a set of invariants for (a,b) trees which are equivalent
to those stated here for sequence-trees.

However, sequence-trees differ from these others in the abstraction they
implement. B-trees etc. implement dictionaries, also called sorted sets.
That is, they map a possibly sparse, finite set of search keys (chosen from
some totally ordered set) to elements, where the association between a key
and its element is not altered by changes elsewhere in the mapping. The
search trees for these mappings are always sorted on the key values. Thus,
concatenation is not a meaningful operation, since it would not in general
preserve the sorting. Alterations to dictionaries are limited to single element
insertions and deletions.

In contrast, sequence-trees implement sequences, whose elements are lo-
cated by compactly numbered subscripts. These can be viewed as mappings
from a finite range of integers to sequence elements, but the mapping is al-
ways implied by the order of the elements. Thus, any insertions or deletions
of sequence elements will shift the mapping from subscripts to elements, for
elements located to the right of the leftmost change. The element values in a
sequence are not sorted and need not have an ordering defined. Their order
is instead determined by the series of operations creating the sequence.

There are many other tree structures that allow logarithmic search,
e.g. AVL trees [2], [8], [9]; weight balanced trees [12], red-black trees
[7], and weak B-trees [10]. All these represent dictionaries rather than
sequences, and all handle insertions and deletions of single elements only.
Aho, Hopcroft and Ullman [1] mention an operation CONCATENATE on

34



2-3 trees. This works on dictionaries and has a different meaning from that
used here, i.e. CONCATENATE requires that all keys in the left operand
be less than all those in the right operand.

Several authors have given tree structures which preserve operands dur-
ing modifications, by copying nodes on a path, e.g. [11] and [13]. Most
of these are again for dictionaries rather than sequences. Dobkin and
Munro [6] give a representation of sequences which also preserves operands
of sequence-modifying operations, but it requires that all modifications pre-
cede all accesses. Sarnak and Tarjan [14] briefly mention the application
of path copying to implement sequences, but do not suggest slicing or con-
catenation as operations.

Dagenais [5] offers a Modula-3 module implementing sequences which
uses the sequence-tree data structure. However, it does not preserve
operands, thus slicing and concatenation, which are not provided, could
not be done with logarithmic time. Instead, only single element insertion
and deletion are provided.

The rest of this paper is organized as follows. In section 2, we define
the sequence abstraction that sequence-trees will be used to represent. In
section 3, we define the concrete sequence-tree data structure, along with
the invariants it must satisfy, and give the mapping from sequence-trees
to the abstract sequences they represent. Section 4 defines some support
algorithms on sequence-trees that will be needed in the later sections. Sec-
tions 5 and 6 describe the single-element access and assignment algorithms.
Section 7 describes the concatenation algorithm and section 8 describes the
slicing algorithm. Finally, section 9 discusses some pragmatic aspects of
the data structure and algorithms and briefly relates some composites of
the basic algorithms presented.

2. THE SEQUENCE ABSTRACTION

Let ¥ be a set. We will call it the alphabet, and sequences will have
members of ¥ as elements. We define £* to denote the set of finite sequences
over L. Let s = 39, 81,...,84~1 € L*. We say that s is a sequence of length
g, which we write as |s| = g. We use € to denote the empty sequence, i.e.
the sequence with no elements. We also define the sets of sequences over &
with finite minimum and maximum length:

TP={se€Z" |p<|s| < g}
Definition 2.1. assign

The element assignment function is defined as:

assigh: " xRx X o Z*
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: . — 80581y ++58i-1,Ty Si41y-.-,8¢~1 Z<q
assign(s,i,z) = { s otherwise
wheres = 39,81,...,8,—1and [s| =¢

Definition 2.2. cat

The concatenation function is defined as:
cat : " xX* - %"

cat(r, 8) = T0,T1y+++-yTp—1,30,31y..+,8¢-1
wherer = rg,r1,...,7p1and |7|=p
and s = 8g,81,...,8-1and |s|=¢q

Definition 2.3. slice

The slice function is defined as:
slice: Z* xRx R X*

8iy8it1y--+y8itj i+j<gq
slice(s,4,j) = 8iy8it1y-+-18¢-1 1+J<q1<gq
€ i2q
where s = 89,81,...,8-1and |s] =¢

cat is associative, and we will sometimes write it as the infix operator @,
e.g. So & 31 & s2.

3. REPRESENTATION

In this section, we define the sequence-tree representation of sequences,
the invariants it must satisfy, and the representation function that maps a
sequence-tree to the abstract sequence it represents.

Intuitively, a sequence-tree is a possibly nil pointer to a node. A node
is either a leaf node or a nonleaf node. A leaf node is just a small array
whose elements are members of the alphabet ¥ and which represents itself
as a sequence. It has at least two and at most d elements. d is a small
constant, not less than 3, which is the maximum degree of any node. We
have used d = 8 in actual implementations. If the sequence elements are
large or variable in size, they can be actually represented in leaf nodes as
pointers to sequence elements.

A nonleaf node contains a positive integer field named Height and an
array whose element count also lies between 2 and d. Each of its elements
contains a positive integer field named CumChildCt and a never-nil pointer,
named ChildRef, to a subtree, which is a node. A nonleaf node represents
the concatenation of the sequences represented by its children.

A sequence-tree is height-balanced, meaning the paths to each leaf of a
given tree have the same length, called the height of the tree. The height
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of a leaf node is implicitly one, and the height of a nonleaf node is stored
(redundantly) in the Height field.

The length of a leaf node is its element count and the length of a nonleaf
node is the sum of the lengths of its subtrees. The value of CumChildCt of
an element of a nonleaf node (redundantly) contains the sum of the lengths
of the subtree rooted at this element and of all elements to its left in the
same nonleaf node.

As special cases, the nil pointer represents the empty sequence and a
pointer to a single sequence element represents a singleton sequence. Al-
ternatively, this can be viewed as a leaf node which has only one element,
violating the usual minimum degree of 2 for nodes. Some of the algorithms
will treat a singleton identically with a leaf node. These special cases can
only occur as entire sequence-trees, not as proper subtrees accessible from
a nonleaf node.

3.1. Concrete Data structure. We recursively define the following sets:

22,d

= NxM

— E2‘d

Rx A
LUN
MUZU{A}

NRZh e
|

A denotes a nil pointer and d > 3 is the maximum node degree described
above. Here, L is the set of leaf nodes, E is the set of nonleaf elements, A
is the set of arrays of nonleaf elements, whose length lies between 2 and d,
N is the set of nonleaf nodes, M is the set of nodes, and T is the set of
sequence-trees. For consistency with the subscripting of sequence elements,
we also use zero-origin subscripts to distinguish the elements of the two
cartesian products above. Thus, e.g., if e € E, then ¢y € R. For readability
in larger expressions, we will sometimes use the field names introduced
above to denote the elements of the cartesian products:

CumChildCt(e) = e

ChildRef(e) = e
Height(n) = no
Elems(n) = n,

where e € E and n € N. As usual with recursive data structures in
computer programs, ChildRef, as the name suggests, is actually represented
by a pointer to a member of M.
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Definition 3.1. rep

We define the representation function by

rep: T = &*
€ t=A
)t tex
rep(t) =9 4 tel

o t=(k,(no,n1,...,np-1)) EN
where o = rep(no,1) ® rep(n1,1) & -+ - @ rep(ny—1,1) and p = |Elems(t)|
We will refer to the four cases of the definition of rep as the empty case,
singleton case, leaf case, and nonleaf case, respectively.

Definition 3.2. Count field rule

The CumChildCt field of a nonleaf element a; of array a € A satisfies
the count field rule if:

12
CumChildCt(a;) = ) _ |rep(ChildRef(a;))|
j=0

A member of T satisfies the count field rule if every CumChildCt field
it contains satisfies the count field rule.

Informally, the count field rule says that the CumChildCt field of a
nonleaf node element contains the sum of the lengths of the sequences rep-
resented by the subtree rooted at this element and all elements to its left
in this nonleaf node. This field is redundant, but is required by the algo-
rithms we describe. An obvious algorithm, of O(1) complexity, to compute
|rep(t)| , t € T, where t satisfies the count field rule, follows from the def-
inition of the representation function, utilizing, in the nonleaf case, the
CumChildCt field of the last element of the nonleaf node and the fact that
the length of a concatenation is the sum of the lengths of the constituents.
We will denote this algorithm Length : T — R.

Definition 3.3. leftCount
The left count function is defined as:
leftCount : A x X — R

i—-1
leftCount(a,i) = ) _ |rep(ChildRef(a;))|
=0
An obvious algorithm, which we will call LeftCount (A x R) : R, of com-

plexity O(1), exists to compute leftCount. It uses CumChildCt(a;—;), with
a special case for i = 0.
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Definition 3.4. height

The height function on sequence-trees is defined as:

height : T — X
0 t=A
height(t) = 1 teLUX
1 + height(ChildRef(Elems(t)g) t€ N

Definition 3.5. Height balance condition

A nonleaf node n € N satisfies the height balance condition if:
height(ChildRef(a;)) = height(ChildRef(ao))
where a = Elems(n), Vj|0 < j < |a] - 1

A member of T satisfies the height balance condition if every nonleaf
node it contains satisfies the height balance condition.

Definition 3.6. Height field rule
The Height field of a nonleaf node n satisfies the height field rule if :
Height(n) = height(n)

Informally, this rule says that the Height field of a nonleaf node contains
the height of the subtree rooted at this node. This field is also redundant,
but is also required by the algorithms. An obvious algorithm, which we will
call Height(T') : R, of O(1) complexity, to compute height of a member of
T which satisfies the height balance and height field rules, follows directly

from the definition of height, using the Height field in the nonleaf node
case.

Definition 3.7. Well formedness of sequence-trees

We say a member of T is well formed if it satisfies the count field rule, the
height balance condition, and the height field rule. We call a well formed
member of T a sequence-iree.

Because leaf nodes have height=1 and nonleaf nodes have height>1,
it follows from the height balance condition that, in a sequence-tree, any
nonleaf node contains, in its ChildRef fields, either all leaf nodes or all
nonleaf nodes, but not a mixture.

Theorem 3.8. The height bound theorem
Let ¢ € T be well formed, s = rep(t), [s| > 1. Then height(t) < [log, |s||

Proof. The empty and singleton cases are excluded by the premise |s| >
1. For the leaf case, |s| > 2implies log, |s| > 1and |log, |s|] > 1, while
height(t) = 1. These together satisfy the conclusion of the theorem. For
the nonleaf case, we prove the theorem by induction on tree height. The leaf
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case above is also the basis case for the induction. For the induction step,
assume the theorem holds for every sequence-tree u with height(u) < h.
Thus 2%~ < |rep(u)|. Now h has at least two subtrees up and u;, and
|rep(uo)| + [rep(u1)| < |s|- Then 281 +24=1 = 2% < |s], and h < log; |s| <
|log, |s|], since h is integral. O

Definition 3.9. sch
The search function, defined on nonleaf nodes, is given by

sch: N xR R

sch(n, i) = the smallest j such that i < CumChildCt(Elems(n);)

An algorithm Sch(lV x R) : R to compute sch can be constructed, using
classical binary search of the array Elems(n). Although nontrivial, this
is a well-known algorithm that we will not repeat here. Its complexity
is O([logy(p)]), where p is the number of elements of the array. This is
bounded by O([log,(d)]), which is constant, thus Sch is O(1). Simple linear
search would also have constant time complexity, but the binary search has
a better constant factor.

3.2. Comments on the Representation. Fig. 3.1 shows a diagram-
matic notation. Part (a) is a leaf node, showing an array of four elements,
together with their subscripts written above. Part (b) shows a nonleaf node,
with its Height field at the left, separated by a bold line from the Elems
field. This is an array of degree three, with its subscripts shown above.
The CumChildCt and ChildRef fields of each nonleaf element are shown,
separated by a dashed line.

Fig. 3.2 shows several example sequence-trees, using the node notation
of Fig. 3.1, together with the sequence each represents. Examples (b) and
(c) are different sequence-tree representations of the same sequence.

The nodes are linked together in a tree using only child pointers in the
ChildRef fields. There are no sibling or parent pointers. Thus no node
contains any inherited information. Furthermore, nodes are immutable,
that is, once created, a node is never changed. These two properties mean
that a node, and therefore a sequence-subtree, can be shared among many
parents, each of which belongs to a different sequence-tree.

If each node has exactly two elements, the sequence-tree resembles a
binary tree. Since nodes may have more than two children, the height can
be significantly less. In fact, if the degree of every node is d, then the
sequence-tree height is O(log,(}s|)). In the worst case, where each node
has only two elements, there are O(log,(|s|) — 1 nonleaf levels containing a
total of |s| — 2 elements, so total space occupied is O(]s|).
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FIGURE 3.1. Sequence-tree node notation

4. SUPPORT ALGORITHMS

Besides those already mentioned in the definitions, we will need the
following support functions in the algorithms to be specified.

Algorithm 4.1. MakeNonleaf

We assume the existence of algorithm MakeNonleaf (Elems : M%4) : N
which takes a sequence of members of M (i.e. pointers to either leaf or
nonleaf nodes) and constructs a nonleaf node from them, properly comput-
ing the Height and CumChildCt fields. This construction is mechanical and
bounded in complexity by d, and thus O(1). We will not show its algorithm,
but note that, in order to be able to construct a node of a sequence-tree, it
will require as a precondition, that |Elems] lie in the range 2 - - - d and that
the elements of Elems all have the same height.

Algorithm 4.2. MakeNonleafPair

The algorithm MakeNonleafPair(m : M224) : N x (N U A) accepts a
string of leaf or nonleaf elements and constructs either one or two new non-
leaf nodes, whose children are the supplied elements. It has preconditions
that all such elements have the same height and that the length of the string
is at most 2d. If only one nonleaf node is required to hold the elements, it
returns A as the second member of the pair it computes.
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FUNCTION MakeNonleafPair
(m:M): (Nx (NUA))
= LET ct := LEN m
IN IF ct <= d
THEN ( MakeNonleaf (m ) , A )
ELSE LET j := ct DIV 2
IN ( MakeNonleaf (m [0]1 @ ---®m [ j-11)
, MakeNonleaf (m [ j]1 &® ---®m [ct -1])

)
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In the algorithms, LEN is a prefix operator that returns the length of an
array, DIV is integer division with truncation, and @ is concatenation of
arrays and/or single elements into a longer array.

Theorem 4.3. Correctness and complexity of MakeNonleafPair

Let m = my,...,me—1 € M>?, |m| = ¢, and 3k such that, Vm,, m,, is
a sequence-tree, and height(m,) = h, for 0 < p < ¢. Further, let (I, r) =
MakeNonleafPair(m). Then

(1) ! and r are sequence-trees

(2) height(l) =h +1

(3) either r = A or height(r) = h+ 1

(4) rep(!) ® rep(r) = rep(mg) & - - - ® rep(mc_,)
(56) MakeNonleafPair terminates in constant time.

Proof. The precondition that all elements of m have the same height ensures
height balance of the one or two constructed new nodes. The calls on
MakeNonleaf ensure that these satisfy the height field and count field rules.
These, plus well formedness of the elements of m ensure well-formedness of
the results. Height of the results follows directly from the construction. The
condition on the representations follows directly from the node construction
also.

We must show that the precondition of MakeNonleaf is satisfied. In the
then case of the if expression, the lower bound follows from the precon-
dition to MakeNonleafPair, and the upper limit follows directly from the
condition of the if statement. In the else case, ct > d > 3, thus ct >4,
and j = ctdiv2 > 2. Also, 2j = j + j < ct from computation of 7, so
J +2 < ct, and the two constructed leaf nodes have element counts of at
least two. By precondition to MakeNonleafPair, ct < 2d, so j < d and
ct — j < d, and thus the two new nodes satisfy the upper limit of node size.

The concatenations in MakeNonleafPair are bounded by the constant
d, and MakeNonleaf has constant complexity, so MakeNonleafPair does
also. a

Algorithm 4.4. MakeLeafPair

The algorithm MakeLeafPair (e : £224) : (L x (L U A)) is similar to, but
simpler than MakeNonleafPair. It accepts a sequence of abstract sequence
elements with the same length bounds as MakeNonleafPair and returns a
pair of leaf nodes. Its code is just like MakeNonleafPair except it does not
call MakeNonleafNode or any counterpart to it. Its correctness theorem
and proof are also just like MakeNonleafPair.
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The algorithm Ss returns the ith element of the sequence represented
by a sequence-tree. Informally, Ss proceeds top-down, using a subscript
which is always relative to the current sequence-subtree. The empty and
singleton sequence cases are straightforward. If the sequence-subtree is
a leaf, the sequence subscript is the subscript to the node and leads to
the desired sequence element in constant time. If the sequence-subtree is
a nonleaf, Ss chooses the child which must contain the sought sequence
element and descends into that subtree. It uses Sch to make this choice.
The sought element will, in the subtree, have a different subscript, reduced
by the number of sequence elements in subtrees to the left, which LeftCount

will provide.

Algorithm 5.1. Ss

FUNCTION Ss (t : T

5. SUBSCRIPTING

;i R) X U e

= IF i = Length ( t ) THEN €
ELSIF t € ¥ THEN t
ELSIFt € L THEN t [ i ]

ELSE LET
a
j:

Elems ( t )
Sch (a, i)

IN Ss ( ChildRef (a [ j 1)
, i - LeftCount ( a , j )

)

Theorem 5.2. Correctness and complezity of Ss

Ss(t, i) computes (rep(t)); in time bounded by O(log,(|rep(t)|)

Proof. Only the nonleaf case is nontrivial. Consider the point where the
recursive call on Ss is about to be evaluated. Using the value names in the

algorithm, define the following;:

]

Ci+1
C

T
S =

¢j £t < ¢jy1, from the definitions of leftCount and sch. From the

leftCount(a, j)

leftCount(a, j + 1)

Ci+1 — €

rep(ChildRef(a;)) = 1o, 715 - .-, Te—1
rep(t)

definition of rep(t), we have:

$=250,D...0,80;~1 DSc;,D.-.,DPScip1—1 D 8cjy1,D-..,DS|5—1
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FIGURE 6.1. After single element assignment

By correspondence of elements, 7y = S¢; 4+, for 0 < k < ¢. Choose k = i—c;.
Then

Ti—c; = Si

The left side of this equality is what the recursive call on Ss computes and
the right side is what we desire.

When the algorithm is applied to a nonleaf node of height h, the recursive
call is applied to a node of height 2 — 1. Thus the algorithm terminates
and has complexity O(h) < log, [rep(t)|, by the height bound theorem,
since the other functions evaluated, Sch and LeftCount have constant time
complexity. ]

6. SINGLE ELEMENT ASSIGNMENT

Element assignment begins like single element access, proceeding top-
down through the sequence-tree to the correct element of each node. How-
ever, the located element cannot be altered in place, because this would
violate node immutability. Instead, the assignment operation allocates a
copy of the old leaf node and alters the ith element of the copy. It then
returns the pointer to the new node to the level above. Each nonleaf level
does essentially the same thing, except it replaces only the ChildRef field
of the selected element of its copied node with the pointer it receives from
below. The Height and CumChildCt fields do not need to be recomputed
in the copied node.

The result is a new sequence-tree in which all nodes on the path from
the root to the leaf node containing the ith sequence element have been
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replaced, while all nodes off this path are shared with the original sequence-
tree. The complexity is proportional to the sequence-tree height, times the
maximum node element count d. This is bounded by O(log, (|rep(?)|))-

Algorithm 6.1. Assign

FUNCTION Assign (t : T ; i : R, val : ) : T
= IF i > Length ( t )
THEN t
ELSIF Height (t ) =1
THEN (* leaf/singleton case *)
t[0]ld -t [1i-1]
@ val
etl[i+1]d---dt [LENt-1]
ELSE (* nonleaf case *)
LET
a := Elems ( t )
j Sch (a, i)
k :=i - LeftCount (a , j)
n := Assign ( ChildRef (a [ j 1) , k, val )

v w .

new

:= ChildRef (a [ 0] )
@ - @ ChildRef (a [j -11)
@& n
@ ChildRef (a [ j + 1]

1])
@ --- @ ChildRef (a [LENa - 1] )
IN MakeNonleaf ( new )

Theorem 6.2. Correctness and complezity of Assign

Let s = Assign(t,i,v). Then rep(s) = assign(rep(t),?,v) and Assign
completes in time bounded by O(log,(|rep(t)])

Proof. The proof directly mirrors that of Ss, with, at both the leaf and
nonleaf levels, construction of a new sequence with one element replaced,
instead of selecting the desired element. O

6.1. An assignment example. Fig. 6.1 shows the result of assigning the
value 8 to the sequence element whose subscript is 4, in the sequence-tree
of Fig. 3.2(d). The nodes boxed in heavy dashes have identical contents
and are the same nodes as before the assignment. The other nodes are
new. The two new nonleaf nodes look the same as before the assignment,
but each differs in having a different value in one of its ChildRef fields. To
‘illustrate this, pointer values which have changed since the assignment are
shown as dotted arrows.

46



7. CONCATENATION

At least for sequence-trees of equal height, there is a naive algorithm
for concatenation that just constructs a new nonleaf node whose two chil-
dren are the operand sequence-trees. In order to handle trees of unequal
height and also, to attempt to keep nodes more nearly full, we give a more
sophisticated algorithm.

Concatenation of the sequences represented by two sequence-trees is per-
formed by constructing a seam along the right edge of the left operand
sequence-tree and the left edge of the right operand sequence-tree. The
seam is constructed bottom up, matching and possibly joining pairs of
nodes of the same height from the two sides of the seam. At each level in
the seam, one or two new nodes may be allocated. All other nodes in the
two operand sequence-trees are shared with the result sequence-tree.

At the leaf level, if the total number of elements from the two seam nodes
of a pair is < d, these elements are all repacked into a single, new leaf node
and the pointer to this is returned to the level above, to be incorporated
into the seam at that level. The two old leaf nodes are left alone, since
they belong to the operand sequence-trees. Even if both the operand leaf
nodes are singleton sequences, there will be enough elements to satisfy the
two-element minimum.

If the total number of elements in the two leaf nodes is > d, the pointers
to the two old leaf nodes are both returned, again to be incorporated into
the seam at the level above. In this case, each of these two nodes will
be shared between the value of the concatenated result and one of the
operands.

At nonleaf levels, the procedure must be generalized somewhat. As be-
fore, a pair of nodes from the edges of the operand trees is being matched
and/or joined. If the two nodes at the level below are being reused intact,
then the two nodes at this level are treated exactly as at the leaf level, i.e.
they are repacked into one new node if possible or reused intact otherwise.

If any repacking was done at the level below, then the sequence of sub-
trees needed for the seam at this level consists of all but the rightmost child
of the left node, the one or two new sequence-subtree(s) returned from be-
low, and all but the leftmost child of the right node. These are collected
into either one or two new nodes, as required to hold them. The total num-
ber of children will be at least 3 and at most 2d, so one or two new nodes
will always suffice and the bounds on node degree can always be satisfied.

If one of the operand sequence-trees of a concatenation is lower than the
other, there can be nonleaf levels where there is no existing node on one
side of the seam. At all such levels, the concatenation algorithm behaves
as though the low operand sequence-tree were extended with a fictitious
nonleaf node of degree one, whose single child points to the fictitious or real
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sequence-tree node below. Furthermore, at such levels, repacking is always
performed, so that the fictitious node, which would otherwise violate the
two-element minimum, will never actually be constructed. Even in this
case, there will be at least 2 elements to be repacked at this level.

Although the leaf level can return only one new sequence-subtree, a
nonleaf level can return one or two, so the seam construction at a nonleaf
level assumes for generality that it can receive two new sequence-subtrees
from below. At height > 3, this is possible.

Above the topmost level of the operand sequence-trees, either one or
two children will be returned. If there is only one, this is the result of
the concatenation. Otherwise, a new, two-element nonleaf node must be
constructed, with these as its children, which will be the result.

The work of the concatenation algorithm proceeds bottom-up. However,
since sequence-trees have only child pointers, all algorithms must begin at
the top of a sequence-tree, descending recursively to the bottom, and doing
the node copying and repacking on the way back up. The Height fields in
sequence-tree nodes are needed so that the algorithm can properly locate
the pairs of nodes of equal height on either side of the seam. This height
synchronization must be established during the downward phase.

The complete concatenation algorithm has a top level function Cat and
a recursive function CatRecurse.

Algorithm 7.1. Concatenation

FUNCTION Cat ( left , right : T ) : T
= IF left = A THEN right
ELSIF right = A THEN left
ELSE LET ( newLeft , newRight )
:= CatRecurse ( left , right )
IN IF newRight = A
THEN (* casel *) newLeft
ELSE (* case2 *)
MakeNonleaf ( newLeft & newRight )

Algorithm 7.2. CatRecurse

FUNCTION CatRecurse ( left , right : MU X ) : (T x T)
= LET leftHeight := Height ( left )

, rightHeight := Height ( right )

, h := MAX ( leftHeight , rightHeight )

, lct := Length ( left )

, rct := Length ( right )

INIFh=1

THEN (* the leaf/singleton case *)
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LET ct := lct + rct
IN IF ct < d OR 1lct < 2 OR rct < 2
THEN (* leafl *) MakeLeafPair( left & right )
ELSE (* leaf2 *) ( left , right )
ELSE (* h > 1, the nonleaf case *)
LET ( leftContext , leftDesc )
:= IF leftHeight < h
THEN ( ¢ , left )
ELSE ( ChildRef ( Elems ( left ) [ 0 ] )
® @

ChildRef ( Elems( left ) [ 1lct - 2] ) )
» ChildRef ( Elems ( left ) [ lct - 1]
)
» ( rightContext, rightDesc )
:= IF rightHeight < h
THEN ( ¢ , right )
ELSE ( ChildRef ( Elems ( right ) [ 1] )
® -
ChildRef ( Elems ( right ) [rct - 1] ) )

» ChildRef ( Elems ( right ) [ 0 ]
)
» ( newLeft, newRight )
:= CatRecurse ( leftDesc , rightDesc )
, new
:= IF newRight = A
THEN leftContext @& newLeft @ rightContext
ELSE leftContext @ newLeft @ newRight
@ rightContext
IN IF LEN new < d
OR leftContext = €
OR rightContext = ¢
OR newLeft # leftDesc
OR newRight # rightDesc
THEN (* nonleafl *) MakeNonleafPair ( new )
ELSE (* nonleaf2 *) ( left , right )

We will use the labels enclosed in comments in the algorithm to de-
note various cases. Most of the proof of this algorithm lies in the follow-
ing lemma, which expresses preconditions and postconditions for calls on
CatRecurse.
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Lemma 7.3. Correctness of CatRecurse

Let lp € MUZ, and 19 € M UZX be well-formed. Further, let (l,r) =
CatRecurse ( lp, 70 ). Then

(1) I € M is well-formed.

(2) » € M UA is well-formed.

(3) rep(l) © rep(r) = rep(lo) & rep(ro).

(4) Height(l) = max(Height(lo), Height(ro)).
(5) either 7 = A or Height(r) = Height(l).

Proof. We will prove the lemma by induction on tree height.

Basis case, i.e. height = 1. This is the leaf case, [y € LUY and rp € LUX.
From the definitions of L. and ¥, ct > 2.

In case leafl, if ct > d, then either Ict = lorrct = 1,s0ct < d+1 < d+2,
thus ct < 2d, and the preconditions of MakeLeafPair are satisfied. Leaf
nodes trivially satisfy well-formedness and are all of the same height. The
postconditions of MakeLeafPair ensure the remaining postconditions of the
lemma.

In case leaf2, the result pair is exactly the argument pair, and the post-
conditions follow directly.

Induction step: Assume the lemma holds for sequence-trees of height
h—1, h > 1. For height h, this is a nonleaf case, i.e. Height(lp) > 1 or
Height(re) > 1. Prior to the recursive call, we have

rep(lo) rep(leftContext) @ rep(leftDesc)
rep(ro) = rep(rightDesc) @ rep(rightContext)

by either of the alternate constructions of leftContext and rightContext.
leftDesc and rightDesc satisfy the precondition for the recursive call, either
from the precondition of this invocation of CatRecurse or from the definition
of N. Appealing to the inductive assumption, after new has been computed,

rep(new) = rep(lo) ® rep(ro)

In case nonleafl, by inductive assumption, |[newLeft| > 2, and thus
[new| > 2. Also, |new| £ 2+ 2(d — 1) = 2d, and |new| satisfies the
length preconditions of MakeNonleafPair. Elements in new that came from
leftContext or rightContext are well-formed by assumption of the lemma,
and those from newLeft and newRight are well-formed by the inductive
assumption for the recursive call. Similarly, any elements in new that came
from leftContext or rightContext have height h by their construction, and
those from newLeft and newRight have height h by the inductive assump-
tion for the recursive call and the omission of newRight from new when it
equals A. This satisfies all the preconditions of MakeNonleafPair, whose
postconditions directly imply the desired conclusions of the lemma.
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FIGURE 7.1. Before concatenation

In case nonleaf2, the results of the algorithm equal its arguments. The
4th conclusion of the lemma, on the height of the results, follows from
leftContext # € and rightContext # €, which are necessary to get to this
case. The other conclusions follow directly from the assumptions of the
lemma. O

Theorem 7.4. Correctness and complexity of Cat

Let I € T and r € T be well formed and let s = Cat(l,r). Then it fol-
lows that rep(s) =rep(!) @ rep(r), and Cat completes in time bounded by

O(logs(Jrep(s)]))

Proof. The cases where either sequence is empty are trivial, and they are
ruled out prior to the call on CatRecurse, thus satisfying its precondition.
In casel, the postconditions of CatRecurse directly satisfy the conclusion of
the theorem. In case2, the postconditions of CatRecurse satisfy the precon-
ditions of MakeNonleaf, whose postconditions in turn satisfy the conclusions
of the theorem.

Each of the functions Height, Ct, and MakeNonleaf that is called in
catRecurse has constant complexity. Likewise, each of the concatenations
in Cat and in CatRecurse has at most 2d elements and is thus of constant
bounded complexity. When CatRecurse is applied to nonleaf nodes whose
maximum height is h, the recursive call is applied to nodes whose maximum
height is h — 1. Thus the algorithm terminates and has complexity O(h) <
log,(|rep(s)|), by the height bound theorem. O
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7.1. A Concatenation Example. We give an example of a concatena-
tion, showing in full, only the nodes along the seam. In the example, d = 6.
Fig. 7.1 shows two sequence-trees before the concatenation, with nodes of
matching height aligned along the seam at the center. Fig. 7.2 shows the
result. As before, reused nodes are shown boxed in heavy dashes. Height
and CumChildCt fields of nonleaf nodes are omitted. The small numbers
in circles represent nodes to either side of the seam without showing their
contents. All such nodes are also reused.

At height 1, the two leaf nodes have collectively 7 elements, which cannot
be repacked into one node, so they are reused intact in the result. At
height 2, there are collectively 6 elements, so they are repacked into one
new nonleaf node.

At height 3, there are initially 8 elements. Two of these point to nodes
which are not reused in the result and which are both replaced by a single
node. This leaves a total of 7 elements needed along the seam in the new
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sequence-tree at this height. The new elements are distributed 3 and 4 into
the two new nodes.

At height 4, only the right operand sequence-tree has a node. The root
pointer of the left operand is treated as a one-element fictitious node, which
must be repacked with the elements from the right side of the seam. This
requires a total of seven elements, two of which point to replacements for
old nodes and the rest point to reused nodes to the right of the seam.

Finally, a new node at height 5 is needed to collect the two nodes of
height 4. Thus the height of the result sequence-tree is one greater than
the highest operand sequence-tree.

8. SLICING

Slicing of sequence-trees is performed bottom up by constructing two
cuts through the operand sequence-tree along the left and right edges of
what will become the result sequence-tree. At each height, the sequence-
tree node is divided between the elements belonging to the slice and those
outside the slice. The node slice of the divided node on its “sliceward” side
needs to be included in the result sequence-tree.

The node slice could turn out to have only one element. If this happens,
it is repacked with the adjacent node in the sliceward direction. This will
give a total of at least 3 and at most d + 1 elements, which can always
be packed into either one or two nodes. As an optimization to keep nodes
more nearly full, the node slice and the adjacent node can also be repacked
if they collectively will fit into one new node, even when the node slice has
more than one element.

As with concatenation, the slice algorithm must start at the top of the
operand sequence-tree, descend recursively, and do its reconstruction on the
way back up. However, when slicing, the descending phase must determine,
at each height, which child to descend to, using the starting and ending slice
subscripts. The algorithm Sch is used to do this.

The descent is always into the sequence-subtree which contains the left-
most or rightmost slice element, respectively. This means that, at every
height, the node slice will never be empty.

When computing a sufficiently broad slice at sufficiently low heights, the
left and right cuts are separated by other sequence-tree nodes. Whenever
at least two nodes separate the nodes containing the left and right cut,
each side of the slice can be constructed independently, since each cut can
involve repacking with at most one sliceward neighboring node.

At higher levels, the cuts merge. This can happen when three or fewer
nodes are involved. Three nodes are involved at some level when a single
node separates the nodes containing the left and right cuts. The left and
right node slices could each be as short as one element and thus need to
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be repacked with the center node. The center node could have as few as
two elements. Furthermore, at a nonleaf level, the level below could have
replaced the leftmost two nodes with just one, and likewise for the rightmost
two. At most, three full nodes could be needed to hold all the elements of
the result sequence-tree at this level.

The two cuts can also be in adjacent nodes, leaving only two nodes
involved. The cuts can also be in the same node. In all of these cases, the
number of elements to be included in the result sequence-tree at this level
can range from 1 to 3d. When only one element exists, no construction is
done at this level. Instead, the single pointer to a node at a lower level is
just returned, eventually to be the result sequence-tree by itself. In this
case, the result sequence-tree is lower than the operand sequence-tree.

In all other cases involving one, two, or three old nodes, the elements
are repacked into one, two, or three new nodes, as needed. The pointers
to these are returned to be collected by the next higher level. As long as
the left and right cuts involve three or fewer nodes, the recursive descent
through the operand sequence-tree must take care of both cuts in a single
subroutine invocation, in order to handle these interactions between the
two. Lower than this, independent handling of the left and right cuts can
be done by independent recursion.

In all situations where elements are repacked into one, two, or three new
nodes, it is always possible to satisfy the bounds on node degree. If the
total number of elements to be repacked is three or less, one node will hold
them, since d is at least 3. If the total is four or more, that is enough for
two nodes, if required, to have two elements each. Larger total numbers of
elements can always be divided among the minimum required number of
nodes with at least two elements per node.

8.1. The Slicing algorithm. The complete slicing algorithm is quite
large. At a given height, the number of nodes involved can be one, two,
three, or four or more. These four cases all require similar but distinct
algorithms. There is, of course, a leaf and a nonleaf case for each of these.
Furthermore, for each of nonleaf case, a distinct algorithm is needed for each
of the possibilities of number of nodes involved at the next lower height,
which be the same or larger. Finally, when the number of nodes involved
is four or more, two distinct recursive algorithms are required for the left
and right cuts.

Altogether, there are 10 differently coded leaf and 10 nonleaf cases.
While all are conceptually similar, they differ sufficiently in detail that
an attempt to merge them into fewer cases would doubtless result in a
considerably more difficult algorithm, and probably no reduction in overall
algorithm size. In one of the implementations that have been programmed,
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the concatenation routines require about 200 lines of code, whereas slicing
requires over 1000.

In the interests of reasonable brevity, we present here, only one case,
namely the recursive function for the right cut, when it is far enough re-
moved so as not to interact with the left cut. Both leaf and nonleaf cases
are included, since these can occur at any separation of cuts. We state and
prove a lemma whose assumptions and conclusions are the needed precon-
ditions and postconditions for the function.

Algorithm 8.1. SliceRecurseRight

FUNCTION SliceRecurseRight
(left , right : M; i : R) : M x (MU A)
= IF i = Length ( right ) - 1
THEN (* entire right node is included *) ( left , right )
ELSE LET h := Height ( left )
INIFh=1
THEN (* leaf/singleton case *)
LET new := left @ right [ 0 ]
® ---@right [i-1]
IN MakeLeafPair ( new )
ELSE (* h > 1, nonleaf case %)
LET j := Sch ( right , i)
, k := i - LeftCount ( right , j )
, leftElems := Elems ( left )
, rightElems := Elems ( right )
, 1lct := len leftElems
» ( leftContext , leftDesc )
:=IFj=0
THEN ( leftElems [ O ]
® --- & leftElems [ lct - 2 ]
, leftElems [ 1lct - 1]

ELSE ( leftElems @ rightElems [ O ]
@ --- @ rightElems [ j - 2 ]
rightElems [ j - 1]

N’ e

, rightDesc := rightElems [ j ]
, ( newLeft , newRight )
:= RecurseRight ( leftDesc , rightDesc , k )
, new := IF newRight = A
THEN leftContext @ newLeft
ELSE leftContext @ newLeft & newRight
IN MakeNonleafPair ( new )
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Lemma 8.2. Correctness and complezity of SliceRecurseRight

Let lo € M, and 7o € M be well-formed, with height(lp) = height(ro).
Let 0 < i < length(ro). Further, let (I, r) = SliceRecurseRight(lo, 7o, 7).
Then

(1) I € M is well-formed

(2) » € M UA is well-formed

(3) rep(l) ®r = rep(lo) & slice(rep(ro), 0, %)
(4) Height(l) = Height(lo)

(5) either r = A or Height(r) = Height(lo).

Proof. If i = length(right) — 1, all the desired conclusions follow directly.
Otherwise, as usual, we will prove the lemma by induction on tree height.

Basis case, i.e. height = 1: This is the leaf case, I € L and 79 € L.
From the definition of L and the assumption 0 < i, 3 < |new| < 2d, so the
preconditons of MakeLeafPair are satisfied, and the desired conclusions fol-
low directly from the postconditions of MakeLeafPair and the assumptions
of the lemma.

Induction step: Assume the lemma holds for sequence-trees of height
h -1, h > 1. For height h, this is a nonleaf case, i.e. Height(lp) =
Height(ro) > 1. Prior to the recursive call, we have

rep(lp) & slice(rep(ro),0,i) =
rep(leftContext) & rep(leftDesc) @ slice(rep(rightDesc), 0, k)

by construction of leftContext, leftDesc, rightDesc, and k. These also satisfy
the precondition for the recursive call by their construction. Appealing to
the inductive assumption, after new has been computed,

rep(new) = rep(leftContext) & rep(leftDesc) @ slice(rep(rightDesc), 0, k)

From construction, we have 1 < |leftContext| < 2d — 2, thus 2 < |new| <
2d. By the inductive assumption, all elements of new have the same height,
satisfying the preconditions of MakeNonleafPair, whose postconditions im-
ply that rep(l) @ rep(r) = rep(new). From the two forgoing conclusions
about representations, this is equal to rep(lo) @ slice(rep(ro), 0, ), which
is conclusion (3) of the theorem. The postconditions of MakeNonleafPair
directly imply the other conclusions of the lemma. a

The complete slicing algorithm includes four additional recursive functions.
Function SliceRecurseLeft is symmetrical to SliceRecurseRight. It handles
the left cut, accepting as parameters, the node in which the cut is to be
found and the node to its right, along with the starting subscript of the
beginning of the slice relative to the subtree it lies in.

Function SliceRecurse3 handles both cuts, when there is one additional
node between the one containing the left cut and that containing the right
cut. It accepts these three nodes and the subscripts of the two cuts and
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returns as many as three reconstructed nodes, two of which could be ab-
sent, as represented by A. To construct its results, it uses a support func-
tion MakeNonleafTriple, which is very similar to MakeNonleafPair, but
accepts a sequence in M3 and can build as many as three nodes. It calls
SliceRecurseLeft and SliceRecurseRight.

Function SliceRecurse2 accepts two adjacent subtrees and two subscripts,
where the two cuts lie in the two trees. It returns one or two subtrees. It
can make a recursive call on itself, on SliceRecurse3, or SliceRecurseLeft
and SliceRecurseRight.

Function SliceRecursel accepts a single tree in which the two cuts are
known to lie, along with the usual two subscripts. It returns one tree, which
is the desired slice. It may make a recursive call on itself, on SliceRecurse2,
SliceRecurse3, or both SliceRecurseLeft and SliceRecurseRight.

Finally, there is a top level function which checks the initial subscript
bounds and calls SliceRecursel. A complete implementation of all the
sequence-tree algorithms is available, in both Modula-3 and Ada at:

http://www.cs.twsu.edu/"rodney/

8.2. A Slicing Example. Here, we give an example of slice construc-
tion, showing only relevant nodes along the cuts. Fig. 8.1 is the operand
sequence-tree and Fig. 8.2 is the result slice sequence-tree. The notation is
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the same as in Fig. 7.1, with the extension that dashed lines through nodes
of the original sequence-tree are used to show the location of the left and
right cuts.

At height one, the two cuts are independent. On the left, the node slice
of the leftmost node shown in full contains one element whose value is 20.
This is repacked with the 3 elements 19, 4, and 25 of the next rightward
node to give a new node with 4 elements. On the right cut at this same
level, the entire node containing element values 16 and 10 is reused.

At height 2, three nodes are involved in the slice. At the left cut, two
elements have been replaced by one new element, returned from below. All
the rest of the elements involved are reused. This gives a total of 7 elements
for the result sequence-tree at this level. These are repacked into two new
nodes, whose pointers are returned to height 3.

At height 3, only two nodes are involved. The level below returns two
new node pointers to replace the three that were passed down to it. These
are packed into a single new node.

Finally, at height 4, only one node is involved. Two of its elements
are passed down and one new element is returned. Since the one node
pointer does not require a node at this level, it is just returned from level
4 unchanged, to become the entire result sequence-tree. The result height
is thus one less than that of the operand.

8.3. Complexity of Slicing. The slice algorithm proceeds down two cuts,
using the same technique as single element access. This is O(log,(]s])),
where s = rep(t), and ¢ is the operand sequence. During its bottom-up
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reconstruction, at most two cuts times two nodes or 4d total elements are
visited at each level. This is again O(log;(|s])), which is the complexity of
the overall slice algorithm.

9. DiscUsSION

In the implementations done, whenever several elements are repacked
into two or three nodes, they are distributed among the nodes as nearly
equally as possible. This is not essential to the correctness or complexity
bounds of the algorithms, but it attempts to minimize skewing of the dis-
tribution of node sizes. This should presumably improve the actual overall
space and time complexity.

The actual implementation of sequence-tree operations turns out to be
complex in handling the various cases. Slicing near the top where the
cuts are merging is particularly complex. A fairly pure implementation in
Module-3, containing single element access and assignment, concatenation,
slicing, and iteration over sequences consumes about 2000 lines of source
code, using a rather liberal formatting style. Additional code to dump
and consistency-check sequence-trees is not counted in this number, nor is
garbage collection itself nor support therefor (e.g. maintenance of reference
counts) included.

Variations on the operations are possible, using the same data structure
and invariants. In a given application, where the pattern of sequence op-
erations is known, it is often sensible to make some of the operations lazy.
This is particularly likely to apply to slicing.

For sequence-trees, making some operations lazy and combining their
eventual evaluation with other operations can lead further to specialized
operations which have better constant-factor efficiency, keep nodes more
nearly full, and produce less garbage. The algorithmic complexity is, of
course, correspondingly increased. Single-element insertion and deletion
are relatively simple examples.

In the semantic editor for which sequence-trees were initially developed,
slices are only used as intermediate results, which are always then con-
catenated. Furthermore, the concatenations are, in general, multi-operand.
This implementation uses the data structure definition and the single ele-
ment access and assignment operations as given here, but has a composite
operation which simultaneously slices and then concatenates the intermedi-
ate slice to another sequence. This avoids the significant work entailed by
computing autonomous slices, because a one-element node slice need not
be repacked with a sliceward node. Instead, it will be repacked with other
elements on the other side during the following concatenation.

Additionally, since this implementation assumes there will be multiple
concatenations, it temporarily keeps the state of the result sequence-tree
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along one seam in pseudo-nodes. These contain the same information as
real nodes, but are preallocated and always have enough space for d el-
ements, even when not necessarily all elements are used. Since they are
never shared, they need not be immutable and can have additional ele-
ments packed in during later concatenations. This reduces the produc-
tion of garbage and aids in fully packing nodes near the top of the result
tree. When all concatenations of a single result sequence are complete, the
pseudo-nodes along the seam are copied into real, heap-allocated, exact-size
nodes.
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