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Abstract

Several g-polynomial identities are derived from a
consideration of classical finite polar spaces. One class of
identities is obtained by sorting maximal singular spaces
with respect to a given one. Another class is derived
from sorting sesquilinear and quadratic forms according
to their radicals.

1 Introduction

The idea of a g-polynomial identity, while suffering a certain
nebulosity, at a minimum, includes specific known pairs of func-
tions (f, g) satisfying one of the equivalent relations

om) = ool x| B (1)
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The g-polynomial identities are derived from several sources.
Sometimes they arise from equating powers of z in known factor-
izations in the ring of g-series in z; at other times they arise from
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brute-force synthesis of g-analogues of combinatorial identities

upon inserting appropriate powers of g at strategic points?.
Occasionally we find them derived from vector spaces over

GF(q). Here are two classical examples:

An example due to Rota.

zn=z~;=0[Z]q(;_l)(z-q)---(z—qk-n @)

results from sorting the 2" linear mappings GF(q)™ — Z into a
GF(q)-space Z with z vectors according to their kernels. Mébius
inversion then gives:

H:;;(z - =3 [ Z L (—l)kq( g )z"_k. (5)

Putting 2 = —y/z in (5) yields

Lo w+ed) =3, [ % Lq< '; )y"“"m"- (6)

This is called the “g-binomial theorem”, since it gives the bino-
mial theorem when g = 1. (See page 218 of {2].)
A second example.

Suppose V is an n-dimensional vector space over GF(g) and
U is a fixed d-subspace of V. Then the collection V. of all
e-dimensional subspaces can be sorted according to how they
intersect U. To start with, the number of elements V, which

meet U trivially is
d|l n— d
q [ . L- (7)

Fix a k-subspace W of U. Then there is a bijection between
the set of subspaces Xy of V. which intersect U at W, and the

1As in Example 2.2.5, p. 70,Enumerative Combinatorics, vol. I by R.
Stanley [3].
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set of (e — k)-spaces of V/W which meets U/W trivially. The
cardinality of the latter set can be calculated from equation 7
with the parameter change (n,d,e) — (n — k,d — k,e — k) as

ek [n—d
1 _e—k]‘

st e o

the g-analogue of the Chu-VanderMonde identity (see eq (3.3.10),
p. 37 of Andrews [1]).

These two examples used subspaces and mappings of a fi-
nite vector space. This raises the question whether something
more could be learned from the more elaborate context of clas-
sical finite polar spaces. This talk merely records a few simple
experiments probing this question.

Thus

2 The finite non-degenerate polar spaces.

2.1 Beginning concepts

A point-line geometry is an incidence system (P, £) of points
(P, just some set) and lines (£, certain (pairwise distinct) sub-
sets of P of size at least two). A subset X of P is called a
subspace if every line L € £ which has at least two of its
points in X has all of its points in X. The subspace X is said
to be singular if any two of its points are collinear — that is,
are members of a common line. (Graphs, grids, block designs,
projective spaces are all examples of point-line geometries.)

A (thick, non-degenerate) polar space is a point-line geom-
etry (P, L) with these properties:

(P1) Every line has at least three points: no point is collinear
with all remaining points.
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(P2) Given a non-incident point-line pair (p, L), either (1) p is
collinear with exactly one point of L, or (2) p is collinear
with all points of L.

A (thick, non-degenerate) generalized quadrangle is just
a polar space in which alternative (2) of (P2) does not occur.?

Lemma 1 Any (nondegenerate) polar space (with thick lines)
is a partial linear space (that is two distinct points are together
collinear with at most one line) and all singular subspaces are
projective spaces. Moreover, if a mazimal singular subspace has
finite projective rank r—1, then all mazimal singular spaces have
this rank and r is called the rank of the polar space.

Thus a generalized quadrangle is just a polar space of rank
2.

2.2 Finite polar spaces

Except for non-square grids, all finite generalized quadrangles
have s+ 1 points on each line, and ¢ + 1 lines on each point, and
the parameter-pair (s, t) is called the order of the generalized
quadrangle.

Of course from Lemma. 1 a finite polar space has a finite rank
r. If A is a singular subspace of projective rank r — 3 (that is,
it has codimension 2 in some maximal singular subspace), then
the system of singular subspaces containing A is the incidence
system of a generalised quadrangle of order (s,t). It can be
shown that these parameters are independant of the particular
choice of A, and so (s,t) is called the order of the residual
quadrangle of the polar space. This is an important invari-
ant of finite polar spaces. All lines of the polar space have s +1

2The adjectives “thick” and “nondegenerate” are in parenthesese be-
cause a good half of the literature would be compelled to add these terms
to make the definitions here compatible. They are also there because I
soon intend to drop these adjectives altogether, asking the reader to rely
internally on the definitions just as I have given them. It will save time.



points: all subspaces of codimension 1 in some maximal singular
subspace lie in exactly £ + 1 maximal singular subspaces.

2.3 The finite classical polar spaces
There are two very important examples of finite polar spaces:

1. Let s : V x V — GF(q) be a reflexive sesquilinear form
on vector space V over GF(g). The radical of V (with
respect to s) is the sub-vector space Rad (V) := {v €
V|s(v,V) = 0}. The form s is said to be non-degenerate
if Rad (V) = 0. A subspace of U of V is said to be totally
isotropic if and only if s(U,U) = 0. Now let P and £ be
the full collections of totally isotropic 1- and 2-dimensional
subspaces, respectively. Then (viewing each 2-space as the
set of 1-spaces within it) (P, £) is a polar space.

2. Now let Q : V — GF(q) be a quadratic form on the
GF(q)-space V with associated bilinear form B. A sub-
space U of V is totally singular if and only if, Q(U) = 0.
The radical of the form @ is the subspace of all totally
singular 1-subspaces of the radical of V' with respect to
the form B. The form @ is a non-degenerate quadratic
form if and only if Rad (@) = 0. The geometry (P, L) of
totally singular 1- and 2 subspaces of a space V' with a non-
degenerate quadratic form is a polar space of orthogonal

type.

Then the two examples above are called the finite classical
polar spaces. In addition to the classical generalized quad-
rangles, there are, amazingly, several further infinite families of
non-classical finite generalized quadrangles and it is not clear
that they can be classified. In contrast, all finite polar spaces of
rank at least three are one of the known classical examples.

There are just six types of finite classical polar spaces of rank
T; they are listed by the name of their associated classical group
in the first column of Table 1. (One should note that the names
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Type Ovoid no. | (s,t)
Sp(2n, q) " +1 (g,9)
O@2n+1,q9) |q"+1 (2,9)
O*(2n,q) " t+1 | (g1)
O (2n+2,9) [ ™' +1 | (q,4%)
U(2n,q%) ¢t +1 | (d%q)
Un+1,¢%) | & +1 | (% ¢°)

Table 1: The ovoid numbers and the orders of the residual quad-
rangles of the finite classical polar spaces of rank n.

of the classical groups utilizes two parameters: the field size q,
and the dimension of its natural module V). This dimension
has been expressed here in terms of the polar rank r — so that
we have a consistent look at rank r polar spaces. Each posseses
a residual quadrangle of order (s,t), and these pa,rameters are
listed in the third column of Table 1.

With each finite polar space A of polar rank r whose residual
quadrangle has order (s,t), there is associated a rather peculiar
number which we call the ovoid number of A, which is denoted
and calculated by the expression: Og(r) := s™ 't +1,. It is
a useful number because both the number of points, and the
number of maximal singular subspaces of A can be expressed
by means of this number:

Lemma 2 Let A be a finite polar space of rank r whose residual
quadrangle has order (s,t).

1. The number of points of the polar space A 1is given by
Pl=QQ+s+---+s) (s t+1).

2. The number of mazimal singular subspaces of A is

ma(r) : = Ost(1)O0st(2) -+ Oxt(r) (9)
(t+1)(st+1)--- (s +1). (10)
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[The reader might note that mg(r) is in fact the function (¢ :
T)s used so pervasively throughout Andrews’ book on partitions
([1]). Is this made transparent by some connection?)

To sum up the situation we record the following:

Corollary 3 Let P be one of the siz types of non-degenerate
polar spaces of rank n over a field GF(q) (or GF(q?) in the

Hermitian case).

1. Then the number of points of P is given below:

Type of geometry | Number of polar points No.opposite one
Sp(2n,q) 1+g")(1+g+---¢g") g
O(2n+1,q) (I+g)(1+g+---¢"") ¢!
O+(2n,q) A+ H(1+qg+---g"") g*"2
O~(2n+2,q) I+l +g+---¢") g

U(zn, q2) (1 + q2n—l)(1 + q2 +... q2(n—1)) q4n—3

U(2n + 1’ q2) (1 + q2n+1)(1 + q2 R q2(n—l)) q4n—1

2. The number of points opposite a given point p (that is,
points not collinear with p) is |P| — |pt|, and this is the
highest power of q to be discovered when the expression in
the middle column of the above table is written out as a
polynomial in q. The answer is given in the third column.

3. The number of mazimal singular subspaces is given in the
following table

Type of geometry | No. of maz.singular subspaces | No. opposite one
Sp(2n,q) 0+ +¢) -1+ PECRVE
O(2n+1,q) (1+4q)---(1+4g") RICE
O*(2n,q) 2-(1+¢q)-(1+¢") rine1)/2

O~ (2n +2,q) (1+¢%)---(1+q*) g +3)/2
U(2n,¢%) (1+q)(1+¢%)---(1+¢") | g™
Un+1,¢%) |(1+¢)(1+¢)---(g™) gt
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4. The number of mazimal singular subspaces opposite a given
one is the highest power of q¢ appearing when the ezpres-
sion appearing in the middle column of the above table is
expressed as a polynomial in q. This power is recorded
in the third column. (The definition of “opposite” will be
clear in the next subsection.)

2.4 The curious oriflame phenomenon

In the polar space of type O%(2r,q), the number of maximal
singular subspaces would be written (1 : 7), in Andrews’ nota-
tion, which I hope adjusts us to the funny “2” in front of the
factorized expression in the third line of the table presented in
part three of Corollary 3. The “2” is prophetic here. In fact
there are exactly two classes of maximal singular subspaces of
the O*(2r, q) polar space, say M; and M, defined by this prop-
erty: Two maximal singular subspaces belong to the same class
if and only if their intersection has even codimension in each
of the spaces. In other words, we are saying that this “even
codimension” relation is in fact an equivalence relation.3

2.5 Counting opposite subspaces.

Let us return, for a moment to a reflexive sesquilinear form
s:V xV — GF(q). For any subspace U of V, we set

Ut .= {veV|s(v,u)=0forallue U}

Comparing previous definitions, V4 = Rad (V). Let A and B
be singular subspaces of V' with respect to s. We say that A is
opposite B if and only if

A*NB=0=B'NnA

3A lucky accident that works in finite rank geometries with the infinitly
many points as well. Without it, we should have no diagram geometries of
type Dy, and no half-spin geometries.
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This condition forces s to induce two injective linear mappings
A — B*and B — A*.

Since dimensions are finite, we have dimA = dim B. (Thus
as an alternative, we could have defined “opposite subspaces”
by saying that At N B = 0 and A and B have the same finite
dimension.)

Elementary arguments yield the following

Lemma 4 Let A be a polar space over GF(q) of polar rank r
and residual quadrangle of order (s,t). Let d be a non-negative
integer at most r. Then the number of d-subspaces opposite a

given one is
g2a(r=d)+d(d-1)/2;d

In the special case that d = r, the formula yields the number
of mazimal singular subspaces having trivial intersection with a
gwen one, and that number is in fact the highest degree mono-
mial in s and t in the formula for mg(r) - that is,

sr(r—l)/2tr.

2.6 Counting forms.

The sesquilinear forms we have encountered are of three types:
alternating (giving rise to the symplectic groups when non-degenerate),
Hermitian (giving rise to the unitary groups when non-degenerate)
and the symmetric forms (giving rise to three species of orthogo-
nal groups when non-degenerate). We can count the total num-
ber of forms of these basic types (non-degenerate or not) by
simply counting the possible Grammian matrices of each of the
three types.

We record this count of forms in dimension n:
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A g

Sp(2'r, q) (q _ 1)(q3 _ 1) V. (q2r—1 _ l)qr(r—l)

O*(2r,q) (@ +D[(g-1(@-1)---(¢* - 1)lg" /2

0~ (2r +2,9) | (¢ = D[(g = 1)(¢® = 1)--- (¢*+' — 1)|g" " /2
OCr+1,q) [(g-1(*—1)---(¢"* —1)g""*+)

U(2r,¢*) @D +D(@+1)--- (¢ +1)]g*V
Ur+1,¢5) | @—D(@+ D@ +1)--- (g% +1)[g**+

Table 2: The number of non-degenerate sesquilinear or quadratic
forms on a vector space V of a given classical type.

Type of reflexivity | value of s | no. of forms
Alternating q grn-1/2
Symmetric (g odd) q gm+iin/2
Hermitian q° ™

But how many non-degenerate forms are there of each type?

Lemma 5 The total number of non-degenerate forms yielding a
polar space of rank T of one of the siz classical types is given by
the function g explicitly computed in the second column of Table
2.

This is about all that we need to know about polar spaces
in order to derive the subsequent results.

3 The identities from polar spaces.

3.1 Polynomial identities from maximal sin-
gular subspaces of polar spaces.

Here suppose A is one of the six types of classical polar spaces of
rank 7 > 2. Let M(A) denote its full class of maximal singular
subspaces (these are r-dimensional subspaces of V). If we fix
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one of these maximal singular subspaces — say M - we may
sort the remaining maximal singular subspaces according to how
they intersect M. Given a k-subspace U of M, the number of
maximal singular subspaces in M intersecting M at subspace U,
is exactly the number of maximal singular subspaces of the non-
degenerate rank r — k polar space induced on U+ /U which are
opposite M/U. This number is the highest power of g appearing
in the polynomial in g representing number of maximal singular
subspaces of U1/U - a number depending on A and rank r —
dim U only.

Thus if m(r) denotes the number of maximal singular sub-
spaces of a classical polar space with residual quadrangle of (s, t)
and rank r, and a4, is the number of maximal singular subspaces
opposite a given one in this rank and type, we have

ma(r) = Z;=0[;Last('l‘—k)
= S|} ] aett)

by the duality. Since as(r) = s""~V/2" | this means
mg(r) = (t+1)(st+1)--- (st +1) (11)
r T -
Zk=0 [ i :I sk(k 1)/2tk. (12)
8

The classical polar spaces produce five identities from equa-
tion (11), for (s,¢) = (¢,9), (¢, 1), (¢, ¢%), (6% 9), (¢%, 8°)-

On the “up side”, an induction argument shows that this
is a polynomial identity in arbitrary s and ¢. But actually the
identity can be obtained from the g-binomial theorem (equation
4) upon setting y = 1. So not much new seems to be happening.

However in one case there is an unforeseen breakup in sum-
mands.
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When (s,t) = (g,1), there are two parities to n, and in
the polar spaces (which are type O*(2n,q)) the oriflame phe-
nomenon causes us to have two classes of maximal singular sub-
spaces to choose to decompose. Thus altogether four distinct
identities appear.

(1) : Hj:l_z(qi +1) = 2n - 1 l gZ%=1/2,
q

@: 1L (@ +1)

i=1

! ] qzi(2i—1)/2_

@) : L +1)

i=1

]

M M M
lé:

— Y ) —
vy

2n—1 } g+,

an-1, 4 n-1| 2n i(2i
@: 1L, @+ = X, [2i+1] gy
q

3.2 Polynomial identities from quadratic and
sesquilinear forms.

Here we can present just three identities:

(2 — T 2r - -
¢y = Zk=o[2kL(q—1)(q3—1)-~(q2’° L~ 1)gt+-
g _ 9-lyw |n 2 1Y), .. (g k(k—1),
g -1 o ,c=1[k]q2 [(g+1)(g" +1)---(¢" + 1)lg
m(2m m 2m -
grém = Zk:O[ 2k] ¢ [(g = 1)(g* = 1) -+ (¢*1 = 1)]
q

3 [ 2k2 o qu"“”[(q - 1)@ -1 (@~

REMARK: The product in brackets on the right side of the first
and third lines above is understood to be 1 when k& = 0.
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Here, the paradigm works as follows: We consider the GF(q)-
vector space of all forms on an n-dimensional vector space V
which are either (1) symplectic bilinear forms over GF(q), (2)
Hermitian forms over GF(g?) or (3) quadratic forms Q : V —
GF(q). It is not difficult to see that the total number of forms
is a power of g — even when we are counting quadratic forms in
characteristic 2.

But of course, these forms can be sorted according to their
radicals. Now for each of these three cases, there is clearly a
bijection between the collection of forms on V of the given type
having radical U, and the collection of ha(d) non-degenerate
forms on a d-dimensional vector space such as V/U of the same
type. Thus, according to our paradigm,

q(appropriate T) = no. forms in a class ((1)-(3)) on V

=y [ Z] ha(n - k).

So three seperate Mobius-invertible identities appear. We ex-
amine these cases separately.

As one can see, the formulae depend on the number ha(n) of
non-degenerate forms of a given type on a space of fixed dimen-
sion n. It’s dependence on the dimension of the ambient space V'
distinguishes it from the function ga(r) of non-degenerate forms
of a certain type A having rank r, which was more convenient
for inductive counting arguments in the last section. (In the
case of g the “type” A even distinguished between elliptic and
hyperbolic forms. The present case division does not.)

In the symplectic option for A there is not much to say. The
function A is as follows

ha(n) = (@-1)(g*-1)--- (g2 - g™"=2/4  if n is even.
A\ =1 o if n is odd.

Plugging in, we obtain the first sum when dimV is even.
The odd-dimensional case is just a paraphrase of the first.
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The case (2) of Hermitian forms is also relatively simple. As
one sees, the two cases of even and odd dimension in Table 2
coalesce to a one-parameter formula, and the second identity
results.

The case of orthogonal forms is a little more compicated
for two reasons: (i) there are two different geometries with two
different formulaes and ranks when the dimension n = dimV
is even (summing to a nice formula), and (ii) the fact that this
does not coalesce well with the formula for the odd dimensional
cases (not to mention the different Gaussian coeflicients which
come into play in the sum upon changing parities).

Consider the even dimension n = 2m. We must add the
number of non-degenerate forms of type O*(2m, q) to the num-
ber of type O~(2m, g). From our table, this is

g™ [(g—1)(g® - 1)--- (™t - 1)).

For the odd dimension, n = 2m—1 the number of non-degenerate
quadratic forms is

g™ D[(g-1)(¢* —1)--- (™ - 1).

In the case that n = 2m—1, the value of h is given by Table 2.
Assembling these incompatible cases causes two seperate sums
to appear on the right in the third identity.

REMARK: One might think of the example of Rota at the be-
ginning of this note as being about 1-linear forms, f:V — Y.
The results of this last section might be regarded as a disussion
about sesquilinear forms V x V — W specialized to the case
W = GF(q). Could these experiments be extended to multilin-
ear forms V x --- xV — W?

[N.B. All of the unproved counting results in Section 2 on
non-degenerate polar spaces and forms explicitly proved in the
author’s unpublished monograph “A manual of enumerative com-
binatorics of the finite classical geometries”. Of course there are
many other scattered sources for these results.]
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