On Super Edge-Magic n-Stars

Sin-Min Lee

Department of Mathematics and Computer Science
San Jose State University
'San Jose, California 95192
lee@sjsumcs.sjsu.edu

M. C. Kong

Department of Electrical Engineering & Computer Science
University of Kansas
Lawrence, Kansas 66045
kong@eecs.ku.edu

ABSTRACT. A (p,q) graph G is total edge-magic if there exits a bijection f: V \cup E \rightarrow {1, 2, ..., p+q} such that \forall e = (u,v) \in E, f(u) + f(e) + f(v) = constant. A total edge-magic graph is a super edge-magic graph if f(V(G))= {1,2,...,p}. For $n \ge 2$, let $a_1, a_2, a_3, ..., a_n$ be a sequence of increasing non-negative integers. A n-star St($a_1, a_2, a_3, ..., a_n$) is a disjoint union of n stars St(a_1), St(a_2),..., St(a_n). In this paper we investigate several classes of n-stars that are super edge-magic.

1. Introduction

In this paper we consider graphs with no loops. For undefined concepts we refer the reader to [1]. A (p,q)-graph G=(V,E) with p vertices and q edges is called *edge-magic* if there is a bijection $f:E\to\{1,2,...,q\}$ such that the induced mapping $f^+:V\to \mathbf{Z}_p$, given by $f^+(u)=\Sigma\{f(u,v):(u,v)\text{ in }E\}\pmod{p}$ is a constant mapping. This concept of edge-magic graphs was introduced by Lee, Seah and Tan in 1992 [12]. An example of a (6,9)-graph with two different edge-magic labelings is shown in Figure 1.

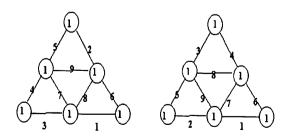


Figure 1

A necessary condition of edge-magicness of G is given in [12]: $q(q+1) \equiv 0 \pmod{p}$.

Given a graph G, the problem of deciding whether G admits an edge-magic labeling is equivalent to the problem of deciding whether a set of linear homogeneous Diophantine equations has a solution. No polynomial time bounded algorithm is known for determining whether a graph is edge-magic. It was shown, however, that no trees (except P_2) and unicyclic graphs are edge-magic [12]. For more general results and some conjectures on edge-magic graphs , the reader is referred to [11,12,13,15,16].

Recently, another labeling problem was considered by Enomoto et al [4] and Wallis et al [20]. A (p,q)-graph G=(V,E) with p vertices and q edges is called *total edge-magic* if there is a constant s and a bijection $f:V\cup E\to \{1,2,...,p+q\}$ such that $\forall e=(u,v)\in E, f(u)+f(e)+f(v)=s$. A total edge-magic graph is called *super edge-magic* if $f(V(G))=\{1,2,...,p\}$. An example of a unicyclic graph with 6 vertices and its total edge-magic labeling is shown in Figure 2.

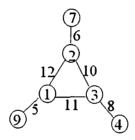


Figure 2

It has been shown that a wheel with n spokes has a total edge-magic labeling whenever $n \equiv 0$, 1, or 4 (mod 8); however, they are not edge-magic. Trees with more than 2 vertices, and all cycles, are not edge-magic. Kotzig and Rosa [10] showed that all cycles and caterpillars are total edge-magic. Thus the theory of edge-magic graphs and the theory of total edge-magic graphs are not related to each other.

The original concept of total edge-magic graph is due to Kotzig and Rosa [9]. They called it magic graph. They proved the following results:

- (1) All cycles, complete bipartite graphs, and caterpillars are total edge-magic.
- (2) A complete graph K_n is total edge-magic if and only if $n \in \{1, 2, 3, 5, 6\}$.
- (3) The disconnected graph nK₂ is total edge-magic if and only if n is odd.

They also showed caterpillars are super edge-magic. In [4], Enomoto et al gave a super edge-magic labeling for odd cycles. Several other classes of graphs have also been shown to be total edge-magic [2, 3, 4, 5, 7, 14].

We note here that our magic graphs are different from those investigated by Sedlacek et al [8, 17, 18, 19] and investigated in [8, 17]. In [6], Gallian presented an excellent survey article on magic graphs and graph labeling in general.

A subset S of integers is called *consecutive* if S consists of consecutive integers. Chen [2] showed that a graph G is super edge-magic if and only if there exists a vertex labeling f such that the two sets f(V(G)) and $\{f(u)+f(v): (u,v) \in E(G)\}$ are both consecutive. We will apply this result of Chen to show that several classes of n-stars are super edge-magic.

For any $n \ge 2$, let $a_1, a_2, a_3, \ldots, a_n$ be a sequence of increasing non-negative integers. We will use

 $St(a_1,a_2,a_3,...,a_n)$ to denote a n-stars, which is a disjoint union of n stars $K(1,a_1)$, $K(1,a_2),...,K(1,a_n)$. The graph $St(a_1,a_2,a_3,...,a_n)$ is shown in Figure 3.

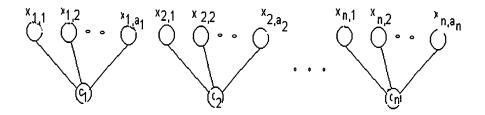


Figure 3

2. Super edge-magic 2-stars

Chen in [2] showed that if $f:V \rightarrow \{1,2,...,p\}$ is a bijection and $f^+(\{u,v\})$) = f(u)+f(v) for all (u,v) in E has the property that $f^+(E)$ is consecutive with $f^+(E)=\{c,c+1,...,c+q-1\}$ then we can extend f to a total edge-magic labeling of G by define $f^*: V \cup E \rightarrow \{1,2,...,p+q\}$ with $f^*(u)=f(u)$ and $f^*(\{u,v\})=p+q+c-f^+(\{u,v\})$. By applying the result of Chen, several classes of n-stars are shown to be super edge-magic.

Theorem 1. The 2-star St (n, n+1) is super edge-magic for all $n \ge 1$. **Proof.** We will give two different super edge-magic labelings for St(n,n+1), **Method 1.** We label the vertices by

$$f(x_{1,j}) = 3 + 2j, \ 1 \le j \le n, \qquad \qquad f(c_1) = 1, \quad f(x_{2,j}) = 2j, \ 1 \le j \le n + 1,$$

$$f(c_2) = 3.$$

Then we see that the edges in K(1, n) has labels $\{6, 8, ..., 4+2n\}$ and the edges in K(1,n+1) has labels $\{5,7,...,2n+5\}$. Thus St(n,n+1) is super edge-magic.

Method 2.

$$g(x_{1,j}) = 2j-1, 1 \le j \le n,$$

 $g(c_1) = 2n+3,$
 $g(x_{2,j}) = 2j, 1 \le j \le n+1,$
 $g(c_2) = 2n+1.$

Then we see that the edges in K(1, n) has labels $\{2n+4, ...4n+2\}$ and the edges in K(1,n+1) has labels $\{2n+3,2n+5, ...,4n+3\}$. Thus St(n,n+1) is super edgemagic

Example 1. Super edge-magic labelings for 2-stars St(1,2), St(2,3), and St(3,4) using the above two different methods.

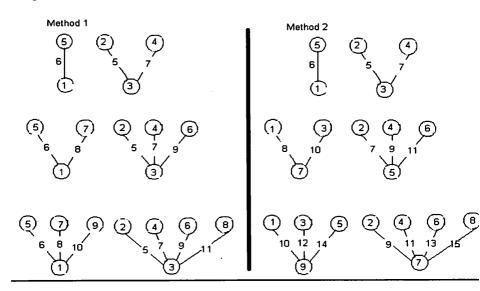


Figure 4

Theorem 2. The 2-star St(m,n) is super edge-magic for all $n \equiv 0 \pmod{m+1}$. **Proof.** Assume n = (m+1)k. The 2-star St(m,(m+1)k) has (m+1)(k+1)+1 vertices. We define a labeling

f:
$$V(ST(m,(m+1)k) \rightarrow \{1, 2, ..., (m+1)(k+1) + 1\}$$

as follows:

$$\begin{array}{lll} f(c_1) & = & (m+1)(k+1)+1, \\ f(c_2) & = & (m+1)(k+1)-k, \\ f(x_{1,j}) & = & 1+(j-1)(k+1), \ 1 \leq j \leq m, \\ f(x_{2,i}) & = & 1+i, \ 1 \leq i \leq k, \\ f(x_{2,i}) & = & i+2, \ k+1 \leq i \leq 2k. \end{array}$$

Hence, $f^{+}(E(St(1,2k))) = \{k+4, k+5, ..., 2k+4\}$ and f is a super edge-magic labeling.

Corollary 1. The 2-star St (1,n) is super edge-magic if n is even.

Example 2. A super edge-magic labeling of the 2-star St(1, n)

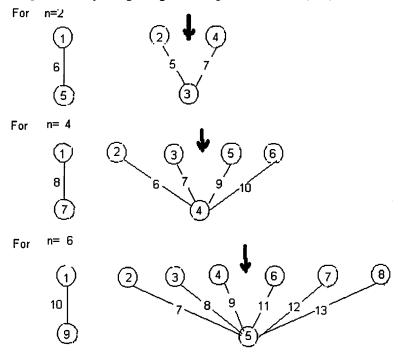


Figure 5

Corollary 2. The 2-star St (2,n) is super edge-magic if n is a multiple of 3.

Example 3. Super edge-magic labeling for 2-star St (2,n) n = 3, 6.

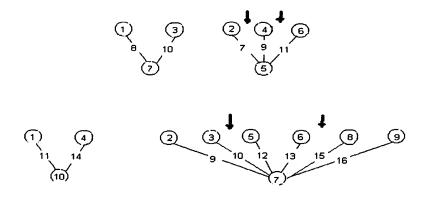


Figure 6

3. Super edge-magic 3-stars.

Theorem 3. The 3-star St (1,1,n) is super edge-magic, for all $n \ge 1$. **Proof.** A super edge-magic labeling of St(1,1,n) is given as follows:

Define f: $V(St(1,1,n)) \rightarrow \{1, 2, ..., n+5\}$ as follows:

 $f(c_1) = 1,$ $f(c_2) = 3,$ $f(c_3) = 2,$ $f(x_{1.1}) = 5,$ $f(x_{2.1}) = 4,$ $f(x_{3.i}) = 5 + i, 1 \le i \le n.$

It can easily be verified that f induces a super edge-magic labeling.

Example 4. A super edge-magic labeling for 3-star St (1,1,n).

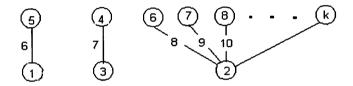
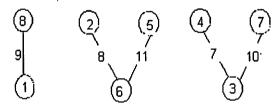


Figure 7

Theorem 4. The 3-star St (1,2,n) is super edge-magic for all $n \ge 2$. **Proof.** A super edge-magic labeling of St(1,2,n) is given in Figure 8. For n=2,



For n >2

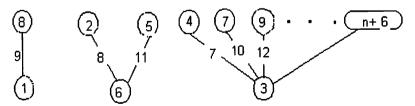


Figure 8

Theorem 5. The 3-star St (1,n,n) is super edge-magic for all $n \ge 1$. **Proof.** A super edge-magic labeling of St(1,n,n) is given in Figure 9.

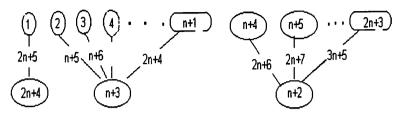
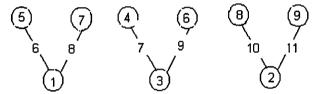


Figure 9

Theorem 6. The 3-star St (2,2,n) is super edge-magic for all $n \ge 2$. **Proof.** A super edge-magic labeling of St(2,2,n) is given in Figure 10. For n=2



For n= k

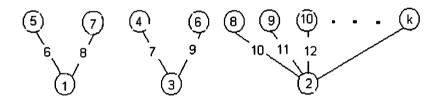


Figure 10

Theorem 7. The 3-star St(2,3,n) is super edge-magic for all $n \ge 3$ **Proof.** A super edge-magic labeling of St(2,3,n) is given in Figure 11.

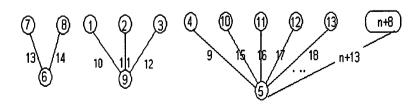


Figure 11

4. Super edge-magic 4-stars.

Theorem 8. The 4-star St(1,1,2,n) is super edge-magic for all $n \ge 2$. **Proof.** A super edge-magic labeling for St(1,1,2,n) for $n \ge 2$ is shown in Figure 12.

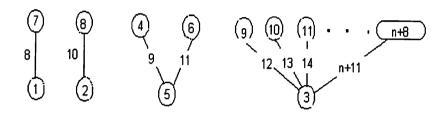


Figure 12

Theorem 9. The 4-star St(1,1,3,n) is super edge-magic for all $n \ge 3$. **Proof.** A super edge-magic labeling for St(1,1,3,n) for $n \ge 3$ is shown in Figure 13.

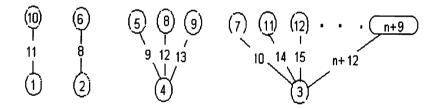


Figure 13

Theorem 10. The 4-star St(1,2,2,n) is super edge-magic for all $n \ge 2$. **Proof.** A super edge-magic labeling for St(1,2,2,n) is shown in Figure 14.

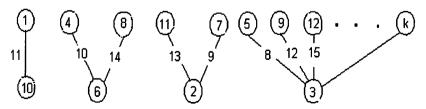


Figure 14

Theorem 11. The 4-star St(2,2,2,n) is super edge-magic for all $n \ge 2$. **Proof.** A super edge-magic labeling for St(2,2,2,2) and respectively St(2,2,2,n) for $n \ge 2$ is shown in Figure 15.

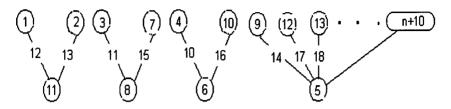


Figure 15

We propose the following

<u>Conjecture.</u> Given any odd integer $n \ge 2$. Let $a_1, a_2, a_3, \ldots, a_n$ be a sequence of increasing non-negative integers, the n-star $St(a_1, a_2, a_3, \ldots, a_n)$ is super edgemagic.

References

- [1] G. Chartrand and L. Lesniak, Graphs and digraphs, 2nd edition, Wadsworth & Brooks/Cole, Monterey, 1986.
- [2] Z. Chen, On super edge-magic graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 38 (2001), 55-64.
- [3] D. Craft and E.H. Tesar, On a question by Erdos about edge-magic graphs, *Discrete Math.* **207** (1999), 271-276.
- [4] H. Enomoto, A. S. Llato, T. Nakamigawa, A. Ringel, Super edge-magic graphs, SUT J. Math. Vol. 34, No. 2 (1998), 105-109.
- [5] H. Enomoto, K. Masuda and T. Nakamigawa, Induced graph theorem on magic valuations, *Ars Combinatorica* **56** (2000) 25-32.
- [6] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.* 5, 2001 ed., 95 pages.
- [7] R.D. Godbold and P. Slater, All cycles are edge-magic, *Bull. Inst. Combin.* Appl. 22 (1998) 93-97.
- [8] N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, *Journal of Recreational Mathematics* **21** (1989), 116-124.

- [9] A. Kotzig and A. Rosa, Magic valuations of finite graphs, *Canada Math. Bull.* 13 (1970), 451-461.
- [10] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publications du Centre de Recherches Mathematiques Universite de Montreal 175 (1972)
- [11] Sin-Min Lee, W.M. Pigg and T.J. Cox, On edge-magic cubic graphs conjecture, *Congressus*Numerantium 105 (1994), 214-222.
- [12] Sin-Min Lee, E. Seah and S.K. Tan, On edge-magic graphs, *Congressus Numerantium* **86** (1992), 179-191.
- [13] Sin-Min Lee, E. Seah and Siu-Ming Tong, On the edge-graceful and edge-magic total graphs conjecture, *Congressus Numerantium*,, **141** (1999), 37-48.
- [14] G. Ringel, A.S. Llado, Another tree conjecture, Bull. ICA 18 (1996), 83-85.
- [15] K. Schaffer and Sin-Min Lee, Edge-graceful and edge-magic labelings of cartesian product of graphs, *Congressus Numerantium* **141** (1999), 119-134.
- [16] W.C. Shiu, P.C.B. Lam and Sin-Min Lee, Edge-magicness of the composition of a cycle with a null graph, Congressus Numerantium 132 (1998), 9-18.
- [17] B.M. Stewart, Magic graphs, Canada J. Math. 18 (1966), 1031-1059.
- [18] J. Sedlacek, Problem 27, "Theory of Graphs and its applications," Proc. Symposium, Smolenica, 1963, Prague, 163-164.
- [19] J. Sedlacek, On magic graphs, Math. Slov. 26 (1976), 329-335.
- [20] W.D. Wallis, E.T. Baskoro, M. Miller and Slamin, Edge-magic total labelings, Australas. J. Combin. 22 (2000) 177-190.