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Abstract
Let I' be a finite group and let A be a generating set for I'. A Cayley map
associated with I' and A is an oriented 2-cell embedding of the Cayley graph

G, (T) such that the rotation of arcs emanating from each vertex is determined

by a unique cyclic permutation of generators and their inverses. A formula for
the average Cayley genus is known for the dihedral group with generating set
consisting of all the reflections. However, the known formula involves sums of
certain coefficients of a generating function and its format does not specifically
indicate the Cayley genus distribution. We determine a simplified formula for
this average Cayley genus as well as provide improved understanding of the
Cayley genus distribution.

1 Introduction and Preliminaries

A surface is a closed orientable 2-manifold, which can be thought of as a sphere
with handles. The number of handles is the genus of the surface. For an integer
k20,let S, denote the surface of genus k. For a connected graph G the genus

v(G) of G is the minimum non-negative integer & such that G is 2-cell
embedded on S, and the maximum genus y,,(G) is the maximum such integer.
A rotation embedding scheme g is a collection of cyclic permutations
P, : N(v) > N(v), one for each veV (G), where V(G) is the set of vertices
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of Gand N(v) denotes the neighborhood of v. It is well known (see Edmonds
[1]) that the labeled 2-cell embeddings of a connected graph G are in one-to-one
correspondence with the rotation schemes of G. Thus, for a connected graph G

with V(G)={}, 2, ..., p}, there are IZI(deg(i)—l)! many labeled 2-cell
i=l
embeddings of G.
If g is a rotation scheme for G, then the ordered pair (G,go) is called a
map and we say that the genus g(G,%) of the map (G.p) iskif g determines

a 2-cell embedding of G on §,. Thus, y(G)= mgn g(G,p) and
Ty (G) = mgxg(G, #). One of the major areas of research has been the study

of all 2-cell embeddings of a labeled connected graph G and, in particular, the
enumeration of the embeddings of G on a given surface and the determination of
the average genus of G.

This paper focuses on a special class of embeddings of Cayley graphs,
namely, those called Cayley maps. Let I' be a finite group and A be a

generating set for T' such that the identity eg A. Also let A™ = {6" IS € A}

and A" =AUA™. Furthermore, let A be chosen so that if € AnA™, then
8>=e. Thatis, if & is chosen as a generator, then 8™ is not chosen, unless
8?=e (8 is its own inverse). The Cayley graph G, (T)is that graph whose

vertex set is I' and edge set is {{x, x8}|er' ,de A'}. For a cyclic
permutation p:A’ — A’ the Cayley map (T, A, p) is the map (GA (1), g.))
where ga={p, Ixel'} is the rotation scheme for G,(I') such that

P, (y)=xp(x" y) for each xeT and each yeN(x). In other words, a

Cayley map is a 2-cell embedding of a Cayley graph in which each vertex
rotation p_ is determined by the same cyclic ordering of the elements of A” .

If a given Cayley map (T, A, p) determines a 2-cell embedding of G, (')
in S, , then k is called the genus g(T', A, p) of the Cayley map (T, A, p). The
Cayley genus is (I, A)= mgn g(T, A, p), the maximum Cayley genus is
Yu (T, A)= mgxg(l‘, A, p), and the average Cayley genus is the average of
the genera of all Cayley maps for some group I' with fixed generating set A
and is denoted by 7(T,, A).

Specifically, in this paper, we improve the existing formula for the average
Cayley genus of the dihedral group with the generating set consisting of all the
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reflections. Weuse D, to denote the dihedral group of order 2m, where m >3 .

The presentation we use is D, = <x, ylx"‘ =y'= (xy)z = e) , where

e x x>, ..., x are the rotations and y, xy, x’y, .., x""'y are the
reflections. Let A= { ¥ x, X2y, L, y}. Then the Cayley graph G, (D,,)
is X, ,,. Actually, when m is odd, the genus of every Cayley map (D,, A, p)
is | mf2 |(m-2), as was shown in [5]. Hence we are interested in the formula

for D.

2n>

where 7 > 2, with generating set A consisting of all the reflections.

2 Existing Formula

Some notation is necessary. For positive integers & < j , the generating function
u,(t, k) for the number of partitions having & unequal parts with no part greater

than j is given by
t(k;l] (l_’j)(l_tj_:)"'(l—ti-kﬂ) lfk<j
u, (1, k)= (1-0)(1-7)..(1-¢)
(%)
i ifk=j.
(See Riordan [4], for example.) The coefficient of ¢ in u,(t, k) will be

denoted by [t‘ ]u (1, k), that is, [t' ]u ; (¢, k) is the number of partitions of the

integer 7 into £ unequal parts having no part greater than j. The following
formula for the average Cayley genus is given in [5].

Theorem A Let n22 be an integer and let a=0 ifnisevenand a=n ifnis
odd. Then the average Cayley genus 7(D,,, A), where A is the generating set

Jor D,, consisting of all the reflections, is given by

¥(D,, A)=%(E%{g[(2nz—2n+l—gw(2n, a+2i))

x;; [:[;]"”"J o (1 n-—l)}} .

[Note: In Theorem A, we take gcd(2n, 0) to mean ged(2n, 2n) so that
ged(2n, 0)=ged(2n, 2n)=2n]
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i ged | genus Sum of Generating Function Coefficients

0 24 241 | 1+76+1109+6300+18320+30554+30554+18320+6300+1109+76+1 = 112720
1 2 263 1+98+1317+7040+19496+31132+29849+17125+5597+921+56 = 112632
2 4 261 2+129+1564+7850+20696+31641+29087+15968+4962+766+42 = 112707
3 6 259 3+165+1838+8698+21863+32017+28218+14812+4368+628+30 = 112640
4 8 257 5+212+2156+9613+23034+32312+27302+13703+3836+515+22 = 112710
5 2 263 7+266+2505+10560+24152+32467+26295+12608+3342+415+15 = 112632
6 12 253 | 11+336+2907+11573+25261+32540+25261+11573+2907+336+11 = 112716
7 2 263 15+415+3342+12608+26295+32467+24152+10560+2505+266+7 = 112632
8 8 257 22+515+3836+13703+27302+32312+23034+9613+2156+212+5 = 112710
9 6 259 30+628+4368+14812+28218+32017+21863+8698+1838+165+3 = 112640
10 4 261 42+766+4962+15968+29087+3 164 1+20696+7850+1564+129+2 = 112707
11 2 263 56+921+5597+17125+29849+31132+19496+7040+1317+98+1 = 112632
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the genus for each i (0<i<11) is 2(12)2 -2(12)+1-ged(2(12), 2i), taken
from Theorem A. Thus, by using the values in the third and fourth columns of
Table 1, we obtain

¥(Ds» A) =(121111)/231] 241(112720) + 263(112632) + 261(112707) +

259(112640) +257(112710) + 263(112632) + 253(112716) + 263(112632) +

174631897

257(112710) + 259(112640) + 261(112707) + 263(112632) | = 265195

We make two observations. First, for different values of /, we see the same
greatest common divisor, the same genus, and the same coefficient sum. What
this suggests is that it may be possible to reduce the number of cases, and by
doing so, we would consequently arrive at a more convenient representation of
the Cayley genus distribution. Second, it is tedious work to determine the
coefficients of the generating function and then find certain sums of these
coefficients. We will see that, in fact, it is possible to find the necessary sums of
coefficients directly without using the generating function at all.

3 Preparation for New Formula

We begin with a study of the generating function u,,,(s, n-1). Define

o (=) 1-22). (1)
f(’)—t(—,.]“zn-l (t n-1)= (1_1"")(1-t"'2)...(1—t)

so that we may write

2

n{n- "

f(t) as g(9)= Zl)a,,t" , where_ a, =[1(2}k:|u2n_, (r, n-1). Let ¢ =

k=0
a+a,+a,, +..+a,, ,+a,,, and let ¢ =a,+a, +a,, o4y, ., for

each i (I1<isn-1). In this way, ¢, (0<i<n-1) is the sum of the

coefficients in the ith case of the existing formula. We proceed to set up a
system of »n-1 equations in the variables ¢, c,,..,c,,. Since

Ec,. = (Zn— IJ , we will then be able to solve for ¢, .
e n-1

The n-1 equations are obtained by considering each expression for f(¢)
near the non-trivial #th roots of unity. The nth roots of unity are the » solutions
to the equation z"=1, so they are of the form z=e™""  where
£=0,1,2,..,n-1. For simplicity, we define e(¢/n)= ™ For a
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positive integer n, the set of all of the nth roots of unity forms a multiplicative
group that is cyclic. An nth root of unity that generates this multiplicative group
is called a primitive nth root of unity. Before proceeding any further, a few
remarks are in order.

Fact1 If ce Z, then e(c)=1.

Fact 2 For e(a) and e(B) being solutions to z” =1, we have e(a+B)=
e(a)-e(B).

Fact 3 Let £ be a primitive nth root of unity, then " +£" >+ .. +& =~1 and
EN+E™ 4 +E+1=0.

For the functions f(t)=( ~r)(-r). (1) and g(f)=

(1-)(1-12)..(1-1)
o)

> at*, we see that g(r) is defined for all complex numbers and f () is
k=0

n-1
defined on C - ¥, where 9:"=U{e(]—,;-):0$ksN—l}. Certainly f(f)=

N=1

g(t) for all teC- o and g(r) is continuous on C. Thus, g(y)=
hmg(t)—hmf(t) and we use 1, =e({/n) for £=1,2, ..., n—1 to get n—-1

131y

equations and we write this system of equations as the matrix equation (*).

e(i/n) e(2/n) . e((n-1)/n) I ¢ ] [ ,_l,i}(}},,)f ()¢ ]
e(2/n) e(4/n) .. e(2(n-1)/n)| lim f(f)-c,

t—>¢(2/n)

_e((n—l)/n) e(2(n-1)/n) ... e((n—l)z/n)_ [Cnn1 ] (t) 6|

f—»((n—l)/n)

Observe that the coefficient matrix is a Vandermonde matrix whose
determinant is non-zero, which implies that this system not only has a solution,
but that the solution is unique. We proceed to determine the solution. First, we

calculate ‘_l'%") f(@).
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Theorem 1 Let £ be an integer such that 1<{<n-1 and let d =ged(n, £).

Then
Jm,r0=(3)

Proof We consider two cases.
Case 1 Suppose that d =1. In this case, e(£/n) is a primitive #th root of unity

so that if £E=e(¢/n), then £"=1. Since, f(¢) is defined at & and is
(]_E’Zn-l)(l_gzn-z)m(l_gml) )
(1-gm)(1-¢?)..(1-¢)

d-1
=1. Also when d =1, we have (Zd l)=

continuous there, we have lim f@)=r¢)=

(l _én—lén )(1 _ E_,"'ZE,")...(I _ E,E.\")
(1-g)(1-2"?)..(1-¢)
Case 2 Suppose that d satisfies 1<d <n . Since d =ged(n, £), we may write
n=dN and £=dL for some integers N and L with ged(N, L)=1. So
f(). Since ged(N, L)=1, it follows that e(L/N) is a

t—n(l/n)f( )- l—-n(L/N)
primitive Nth root of unity. Let £=e(L/N) and so E" =1. Evaluating

(1= -22). (1= (1- 1)
lim f (1), we obtain lim (1) =lim (-r)(1-r2).(1-7).(-1)
(]_tnﬂ)

(] ) , for some i with 1<i<n-1. Observe that
-t

. l— n+i
if NJi, then since n=dN, ¢¥ =1, and &' #1, we obtain ( 5 )=

(1-¢)
(1-g'e®) - - |
gy e i/ O=im) I IS )

Consider the general term

Nr- Nli
1 __tm-i | d-1 1 _I(d+j)N
llm = im — | =
- ls!:'!-l 1-¢ t->% lj:! 1=t
Nii
d-1 (l-—lN (l+t~ +tz~+...+t(d""")N)

|in§1 =
1

o (1= )1 Y )
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An immediate corollary follows.

Corollary 2 For integers (,, £,, and n with 1<¢,, £, Sn—l,' l‘i(rln/ )f(t):
lim )f(t) if and only if ged(n, £,)=ged(n, ¢,).

1l /n

In order to solve the matrix equation (*), it is useful to have the following
notation for certain column vectors. First, if ¥ is a row vector, then we write
¥" for the transpose of ¥. Let n be a positive integer and let d be a divisor of
with n=dN. We define several (m-1)x1 column vectors. Let
¢=(c, ¢, ...\ c,,_,)T, i=(11, .., l)T, and for each &k (1sks<n-1),
1 if d=gcd(k, n)
0 if d=ged(k, n)
0 if Nk
1 if N}tk

- T
V=%, V50 oy v,,) , where v, ={ for each &k and

- T
i, =(u, uy, .., u,,) , where u, ={ for each k. Then observe

1 if Nk
0 if Njk’
let 4 be the coefficient matrix of the equation (*) and b be the right side of the

that i —di, =(1-u, 1~u,, .., 1-u,,)’, where 1-u, ={ Also

matrix equation (*). Define D={d :d|n, 1<d < n} so that from Theorem 1
and Corollary 2, we may write

Several lemmas are useful in solving the matrix equation (*), which is

A =b with the new notation.

Lemma 3 Using A and ii as defined previously, Aii =(-1, -1, ..., —l)T.
Proof Let Aii =(j,, j,, - s juu )T so that j, is the sum of the 4th row of the

n-1
matrix A4, that is, j, =) e(kf/n) for each k where 1sks<n-1. If

(=1
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n-1
ged(k, n) =1, then by Fact 3 we have Y e(ké¢/n)=-1. So suppose that the
=1
ged(k, n)=d, where d #1. Then we may write k=Kd and n=Nd for
integers K and N with gcd(K, N)=1. Inthis case, j, consists of the sum of
all N Nth roots of unity d -1 times plus the N -1 nontrivial Nth roots of unity

once, that is, j, = :z:e(kl/n)=(d~1)[t2j;e(K£/N)]+§e(K£/N) . Using

Fact 3, we obtain j, =(d-1)-(0)+(-1)=-1. o

So Lemma 3 gives us that A[(c0 - l)ii] =(1-¢,)# , which is the first term

in our solution vector b . Later we define values U v for each N €D such that

2d -1
A(Z Uy iy ] = Z(( )—l] v, , which is the second part of our solution

NeD deD d-1
vector. However, it is useful to first provide a few more helpful observations.

Lemma4 Let Ne D and n=dN. Then Aii =-N (i -i,).

0 if dlk

1 if dk

Aiiy = (i, iy, ..., i,,), where i, = > e(k¢fn). Since the sum of the entries
Ls,tls'r-!

in an entire row of A is -1, we have that Y e(ké¢/n)=

1<fsn-)
dyre

N-1
-1- Y e(kgfn)=-1- Y e(k¢fn)=-1-> e(L/N) . If N|k, then
ﬁ[lsn-! l!igin-l L=)

k=NK for some integer K so that by wusing Fact 1, dAi, =

Proof Notice that iy =(u,, u,, ..., #,, ) , where u, ={ Then

N-1 N-1

-1-) e(NKL/N)=-1-Y e(KL)=-1-(N-1)=-N. If Nk, then k=
L=} L=1

NK +r for some integers K and  with 1<r < N -1 so that using Facts 1 and 3,

we have that Ai, =-1 —%e((NK +r)L[N)=-1 —ge(NKL/N) e(rL/N)=

L=1
-NifN|k

—1- .
0 ifNfk

-1
e(rL/N)=-1-(-1)=0. So Az?N={ Thus, since

L=
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1 if Nk
i-i,=(1-u, 1-u,, ..., l—u,,_,)T, where 1-u, ={0 lif NIIk’ it follows
that Aii, =-N(@-i,). o
Lemma5 Let D={d:d|n,1<d <n} andlet NeD. Then

=il =2 V,.
deD
Nid
. . [v if Nk
Proof Note that & —d,, = (i, b, ..., 1,,_,)T, where i, ={0 it NIk Next,

consider the sum Z v, , whose index set is the set of positive proper divisors of
i
n that are also multiples of N. Thus, Z Uy =V, Vases Vot )T , where for each

deD
N|d

1 if ged(k, n)e{de D:N|d}
0 if ged(k, n)e{deD:N|d}
that v, =i, for each k=1, 2, ..., n-1. If ged(k, n)e{de D:N|d}, then
N|k. On the other hand, if ged(k, n)e{d e D:N|d}, then N |gcd(k, n)
andso N[ k. o

k (1sk<n-1), we have v, ={ We verify

The previous two lemmas provide a relationship between the vectors #,
(N € D) and a sum of vectors ¥, (d D). We are ready to define the values

2d -1
Uy, N e D, such that A(ZUN 17”)=Z((d IJ_IJ‘?"' Foreach Ne D,

NeD deD

N -1
define Uy =— ( J “1- 3 kU, |. Afinal lemma is useful.
N 1 l<k<N

2d-1
Lemma 6 For each d € D, the sum ZNU~=( ]—1.

NeD d-1
Nid
2d-1
Proof ) NU, = Y NU,+dU,= ) NU,+ -1- Y NUy. ©
xleD ;7I~<d I’;IZ'«I d-1 }\7IN<d
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With the help of the previous four lemmas, we are now prepared to solve
Aé=b for .

Theorem 7 The solution to the matrix equation A =b shown as (*) is
E=(c,-1)i— D Uy #iy.

NeD

Recall the Euler ¢ - function ¢(m), which denotes the number of positive

integers less than m that are relatively prime to m for m>1 and ¢(1) is defined
to be 1. Then, for each proper divisor d of n, the number of elements in
{c, :1<i<n-1, ged(i, n)=d} is ¢(n/d). A basic result of number theory
(see [3], for example) that will be useful in the following proof is that
2 0(nfd)=n. For our purposes, we will use that Y ¢(n/d)=n-1. Also,
din 1sd<n
din

define D" =DoU{1}. The next result allows us to find the coefficient sums
without having to determine all the coefficients of the generating function.

n{n-1) (;}k

Corollary 8 Let n>2 be a positive integer. Let u,, ,(t, n-1)= Y a,t
k=0
be the generating function for partitions of integers into n—1 unequal parts and

n-1
no part greater than 2n~1. Let ¢, =) a, andforeach i=1, 2, ..., n-1, let
=0

n-2
¢ =Z(;a,.w.. Then ¢, =c, (i, j#0) if and only if ged(i, n)=gcd(j, n).
=

2n-1 »
Furthermore, c, = L ) > &(n/k) > Uy | and for each ie D",
n n—l keD’ N,Zf,)

the value ¢, =c,~|1+ Y U, |.
NeD
nliN

Proof From Corollary 2, it follows that ¢, =¢, if and only if ged(i, n)=

ged(J, n). For each ie D", ¢, =¢,~|1+ > U, | follows from Theorem 7.

NeD
nliN
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a-l 2n-1
Finally, to solve for ¢,, we know ¢, +Zc, =[ ) ) so that by the comments
n p—

i=1
2n-1 o
preceding this corollary, we have that [: . J—co =>¢ = o(nfk)e, =

i=1 keD’

3| 6(8)| (e -1)- ZUx ||= T [0(/R)e -1)]- 3| $(/0) 3. Vs |=

keD"
nfkdN

(co-1)(n-1)-3 Mn/k),é,UN . O

keD’
nlkN

So now, we have reduced the number of cases from » (in the original
formula) to the number of divisors of n. To show what an improvement this is,

from Hardy [2], we have that the number of divisors of n is d(n)= O(ns) for
all positive 8. Also, from Corollary 8, we are now able to determine the
coefficient sums of the original formula without having to use the generating
function. Thus, we arrive at a more compact formula for finding the average

Cayley genus for dihedral groups with generating set consisting of all the
reflections.

4 New Formula and Special Cases

. . . [2n*-4n+1 ifniseven .
Since the genus corresponding to ¢, is ) L , while for
2n° -3n+1 if nisodd

2n* -2n-2d +1 if nis even .
, W
2n* -2n—-d+1 ifnisodd

obtain the simplified version of the formula for calculating the average Cayley
genus. As before, weuse D={d:d|n, 1<d <n} and D" =DU{1}.

d e D, the genus corresponding to ¢, is {

Theorem 9 Let n>2 be an integer. Then the average Cayley genus
Y(D,,, A) for the dihedral group with generating set consisting of all the

reflections is given by 7 (D,,, A)=
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n-1 deD'

s

(2” _IJ-I [co (2n* -an+1)+ ¥ c,4(nfd)(2n* -2n-2d “)] if nis even

(2”_1)_ [ (27* -3n+1)+ 3 c,0(nfd)(2n® 2n—d+l)] if nis odd

n-1 deD’

. 2N -1
where for NeD and ieD, UN=%( ) l—ZkU,,, Cy =
kIN

1<k<N

;1;(2:_1)_‘_” l+Zd>(n/k)ZU vand ¢, = ¢y — 1+ZU
keD' "’m ')11'36)

Let us revisit the example of n=12. Table 2 contains the necessary
information for using the new formula. We must find ¢, and ¢, for each
deD'={l, 2,3, 4, 6}. Since n is even, we use the first equation in the
formula. Now, we use the values from the table in the formula for when » is
even. We obtain

¥(Dus A)—l—z—n—ﬂ[241(112720)+4 -263(112632)+2:261(112707) +

2.250(112640) + 2-257(112710) + 253(112716) | = oo 897
869193
Table 2 Example of #» =12 Using New Formula
d 21’ —4n+1 ca
0 241 112720
d o35  |en’-2n-2d+1 ¢
1 4 263 112632
2 2 261 112707
3 2 259 112640
4 2 257 112710
6 1 253 112716
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Next, we consider some special cases of this formula. First, let n=p,
where p is an odd prime. The only divisor d of p that satisfies 1<d < p is 1.
So for an odd prime integer, there are only two distinct values of the coefficient

2p-1
sums, namely, ¢, and ¢,. Using Corollary 8, we find ¢, =l|:[ : ])+ p—l]
p -—

2p-1

and ¢, =¢c,— =l[( : l)—l]’ so that by Theorem 9, we obtain a formula
p —

that depends only on p.

Corollary 10 Ifp is an odd prime, then

7Dy, 8)= ”——1(2”_1]4 [[2"_1)(21” -1)-P+1]-

p \p-1 p-1

Similar formulas depending only on an odd prime p can be obtained for
n=p*>and n=2p.

Corollary 11 If p is an odd prime, then ¥(D2P, , A) =

1’_‘1(21’2 ‘IT [(2”:_'11](21;“ +2p° —2)—(2::]1J(p—2)-1?2 +p}.

p \p-1 )4

Corollary 12 If p is an odd prime, then ?(D A) =

4p>

1(ap-1\"[(4p-1Y,. 5 . , 2p-1 )
- 8p° —4p* -5p+3)- 2p-1)-10p* +18p-10|.
p(Zp-l] [(21:-1 ( p=op =P ) p-1 (2p-1)-10p P

In conclusion, we now have developed a new formula for finding the
average Cayley genus for the dihedral group with generating set consisting of all
the reflections. This formula is an improvement in that it uses fewer cases and
enables us to find directly the coefficient sums without having to use the
generating function.
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