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Abstract

Let n, z be positive integers satisfying 1 < £ < n. Let H,; bea
group admitting a presentation of the form (a,b | a™ = b% = (ba)® =
1). When z = 2 the group Hy: is the familiar dihedral group, Dan.
Groups of the form H, . will be referred to as generalized dihedral
groups. It is possible to associate a cubic Cayley graph to each such
group, and we consider the problem of finding the isoperimetric num-
ber, i(G), of these graphs. In section two we prove some propositions
about isoperimetric numbers of regular graphs. In section three the
special cases when £ = 2,3 are analyzed. The former case is solved
completely. An upper bound, based on an analysis of the cycle struc-
ture of the graph, is given in the latter case. Generalizations of these
results are provided in section four. The indices of these graphs are
calculated in section five, and a lower bound on #(G) is obtained as a
result. We conclude with several conjectures suggested by the results

from earlier sections.

1 Introduction and Notation

Let G be a connected, finite, simple graph with vertex set V' (G) and edge
set E(G). Let S C V(G). We define the boundary of S, denoted 35, to be
the subset of E(G) consisting of those edges with exactly one endpoint in
S. Then we define the isoperimetric number of G, denoted i(G) by

. . 108

i{(G) = u;f 'l—SIl,
where the infimum is taken over all subsets S of V(G) satisfying |S| <
:IV(G)).
2
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As defined above the isoperimetric number is a combinatorial analog of
the Cheeger constant used by geometers to investigate the spectral proper-
ties of Riemann surfaces. It was introduced by Peter Buser in 1978. His idea
was to translate, via the isoperimetric number, spectral information about
graphs into spectral information about certain associated surfaces. This
aspect remains of considerable interest to geometers, see (3] for example.

The isoperimetric number is of interest to combinatorialists for several
reasons. One is that bounds on the eigenvalue spectrum of a graph can be
obtained from it. See [5] for a thorough description of such results. The
isoperimetric number can also be viewed as a measure of the connectedness
of the graph and is therefore relevant to the problem of constructing good
expanders. An introduction to this aspect of the subject can be found in
[6].

It is generally a difficult problem to determine explicitly the isoperi-
metric number of a given graph, as the number of cutsets that need to be
considered is generally quite large. Thus, most of the work in this area
has been devoted to bounding the isoperimetric numbers of certain families
of graphs. See [2] for example. In this paper we will consider an impor-
tant family of cubic Cayley graphs, and try to determine the structural
properties satisfied by their isoperimetric sets.

2 Three Propositions

For most of this paper we will restrict our attention to certain cubic Cayley
graphs. But first we establish three propositions that are true for any
regular graph. We start with a definition.

Definition 1. Let S C V(G) satisfying |S] < 3|V(G)|. Then the quotient
ﬁf is denoted by is(G) and is called the isoperimetric quotient of S.

Of course, it follows from the definition of i(G) that i(G) < is(G) for any
subset S of the appropriate size. We call S an isoperimetric set for the
graph G if i(G) = is(G).

Proposition 1. Let G be a k-regular graph of girth g. Assume g <
$IV(G). Theni(G) <k-2

Proof. Let S be a cycle of length g in G. Then we compute

. S k-2
lS(G)=I|_S|_I=£Tq—l=k_2'

Since i(G) < is(G) the proof is complete. |
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Proposition 2. Let G be as above and let S be an isoperimetric set for G.
Assume that i(G) # k — 2. Then S contains no vertices of order one.

Proof. Suppose that S contains a vertex v of order one. Define the set
S'=85-{v}.

Observe that |S’| = |S| — 1. Also observe that |3S’| = |9S| — (k — 2).
So we compute

|0S'] _|0S|—k+2 < [8S]

15| 151 -1 i
The last inequality follows from our assumption, and the fact that, by
Proposition one, we know that i(G) < k — 2. So we have ig/ (G) < i5(G).
This contradicts the assumption that S is an isoperimetric set and the proof
is complete. 0

Proposition 3. Let G be as above and let S C V(G). Assume that |S]| <
$IV(G)| and that S contains no vertices of order one. Let V, denote the
set of vertices in S that are joined by ezactly n edges to other elements of

S. Then
Zrea(n = )|Vl
|| '
Proof. We know by assumption that |V}| = 0 in this case. Observe that if

v € V,, then v is the endpoint of precisely k — n edges in 9S. It follows
that

is(G) =(k-2) -

k

0S| = 3" (k = n)[Va.

n=2
To prove the proposition it will suffice to show that
k k

1SI(k = 2) = > (n = 2[Val = > (k = n)|Val.

n=3 n=2

We perform the following calculation:

k k k
> (= 2)Val+ D (k= n)|Val = (k = 2|Vl + D ((n = 2)[Va| + (k = n)|Val)
n=3 n=2 n=3

k
= (k- 2)|Val + ) _(k — 2)|Val
n=3
k
=(k-2) ) IVal
n=2
= ISI(k~2)
and the proof is complete. a
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We will be using this proposition in the special case of cubic graphs, so
we will restate it in a form more useful for that purpose. First, we need a
definition.

Definition 2. Let G be a cubic graph and let S C V(G). Letv € S. We
will say that v is a claw in S if it is connected to three other vertices in S.
The number of claws in S will be denoted by Cs.

Proposition 4. Let G be a cubic graph and let S C V(G) satisfy |S| <
$IV(G)|. Assume that S contains no vertices connected to only one other
element in S. Then

. Cs
is(G)=1- —=.
(G) 5]
Proof. This follows immediately from proposition three. O

3 Two Examples

The abstract ideas to be presented in later sections will be more easily
understood if they are first explored in the context of specific examples.

Definition 3. Let H be a finite group and let 2 be a generating set for H.
Assume that 1 € Q and that Q = Q~!. We define the Cayley graph for H
with respect to ), denoted G(H,NY), as follows: the vertices of G are the
elements of H. Vertex v, is connected to vertez vy if and only if vy = vow
for some w € Q.

As defined above, Cayley graphs are simple, connected, |{2|-regular, and
vertex-transitive.

3.1 The Dihedral Groups Ds,

The groups Hp 2, with n > 2 are the familiar dihedral groups. We consider
the isoperimetric numbers of the Cayley graphs G(D2n, {a,a™!,b}), where
a has order n and b has order two.

This Cayley graph can be pictured as follows: let (u;,us,...,un) and
(v1,v2,...,un) be two cycles of length n. Complete the graph by adding
one edge for each pair of vertices of the form (u;,v;) with 1 <i < n. The
resulting graph, sometimes referred to as a ladder graph, is the desired
Cayley graph.

Proposition 5. With G as above, we have i(G) = %.
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Proof. Let S be the set of vertices {u1,us, ...,u,},vl,vz,...,v%}. Then it is
easy to see that

S| =n= l|V(Cv')| and ig(G) = —.
2 n

To see that S is actually an isoperimetric set, reason as follows: in the zy-
plane we take 2n unit squares and arrange them in the form of a rectangle
with dimensions 2xn. Now edges in G can be viewed as adjacencies between
squares. Call this rectangle R.

Since the graph G is vertex-transitive, we can find an isoperimetric set
S that excludes any particular edge. It follows that finding i(G) is equiv-
alent to finding the subset of R, composed of unit squares, that minimizes
the ratio of perimeter to area. But it is a consequence of the classical
isoperimetric theorem of Euclidean geometry that a rectangle of dimen-
sions 2 x § is the desired region. From this it follows that the set S above
is an isoperimetric set, and the proof is complete. O

The method of proof used here is frequently useful for calculating the
isoperimetric number of planar graphs.
We now point out three interesting properties of our set .S.

e It can be expressed as the union of cycles in S.
e All of those cycles have mnimial length.
o IS]=3IV(G)I.

It would be interesting to know if these properties hold for isoperimetric
sets of the generalized dihedral groups.

3.2 The Matrix Groups PSL(2,Z,)

The groups H, 3 are isomorphic to a certain family of matrix groups. Let
Z,. denote the set of integer residue classes mod n. Let SL(2,Z,) denote
the group of 2 x 2 matrices with entries in Z,, and determinant one. Let
PSL(2,Z,) denote the group SL(2,Z,)/{+1}. In discussing the elements
of this group, we will make no distinction between a matrix and the two-
element coset it represents.

It is well known that the set

11 1 -1 0 -1
o={( 1):6 3)G 9}
generates the group PSL(2,Z,). To simplify the notation we will denote

the elements of  as T,T~! and R respectively. Since R = R™!, we ob-
serve that  is a symmetric generating set. We can therefore talk about
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the Cayley graphs G(PSL(2,Z,),Q); for simplicity we will refer to these
graphs as G,. These graphs arise in an interesting way from the theory of
automorphic forms. The details can be found in [7].

These graphs are far more complicated than the ones in the previous
subsection. It seems reasonable, however, that a good candidate isoperi-
metric set could be formed by taking a union of cycles of shortest length.
In everything that follows we will assume that n > 6.

Proposition 6. The girth of G, is sit.

Proof. 1t is easy to see that (RT)® = (TR)® = I, and therefore the girth of
G is no greater than six. Showing that there is no shorter relation in 2 is
a simple exercise in matrix multiplication. O

In light of this proposition we make the following definition:

Definition 4. Given v € V(G,), we define the siz-cycle generated by
v, denoted by O,, to be the set {v, Rv, TRv, RTRv,(TR)*v, R(TR)*v}.

Proposition 7. Every cycle of length siz in G, is of the form O, for some
vertez v.

Proof. A cycle of length six in G, corresponds to a relation of six letters in
Q. It is easy to show that the only relations of length six in Q are (RT)3
and (TR)%. Now let v be an arbitrary vertex. In addition to O,, the only
cycle of length six containing v is seen to be

0, = {v,Tv, RTv, TRTv, (RT)?v, T(RT)*v} .

But now we have O}, = Or,. It follows that every cycle of length six has
the desired form and the proof is complete. 0

It is important to note that the statement O, = O, does not imply that
v = v'. Indeed, it is easy to see that Oy = Orpy = O(TR)2,- However,
one can verify that O, = O, does imply one of the following three things:
v=1v',v=TRv orv=(TR)%'.

Proposition 8. Let vy,v; € V(Gp). Assume that O,, # O,, and Oy, N
Oy, #0. Then O,, N O,, = {v, Rv} for some verter v.

Proof. This is a tedious exercise in matrix multiplication. The details of
the proof can be found in (8]. 0O

This proposition suggests a uesful way of picturing the six-cycles of Gy

Definition 5. Given two vertices v, and vz, we will say that O,, is adja-
cent to O,, provided O,, # Oy, and O,, NO,, # 0.
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Now define a new graph, which we shall denote G, as follows: there wil
be one vertex for each six-cycle of Gn,. Two vertices will be connected if
they represent adjacent six-cycles. The graph G}, is plainly three-regular.
Since every vertex in G, is an element of exactly two six-cycles, we find
that |G}| = %lGnl.

We will now construct a candidate isoperimetric set for G,,. First, ob-
serve that T™ = I. It follows that the set of vertices

{v,Tv,T?v, ..., 7m0, T v}

is a cycle of length n in G,,.
Now we define the following set:

S= {Om Ory, O124; 0y Opn=2y, OT""U} .

Note that Opi, N Opis1, = {T?, RT'v}, where 0 < @ < n — 1. It follows
that Ori, and Oris1, represent adjacent vertices in G,. In particular, the
set S is a cycle of length n in G%,. (This shows, incidentally, that the girth
of G, is no greater than n).

We now evaluate ig(G,). To evaluate |S|, observe that O, contributes
six vertices to S, each of the next n — 2 six-cycles in S contributes four
vertices each, and Opn-1, then contributes two vertices. It follows that

|S| =6+4(n -2) +2=4n.

How many of these vertices are claws? Each of the n six-cycles contains
four claws and two non-claws. This makes a total of 4n claws. However,
each claw is an element of two adjacent six-cycles. It follows that the actual
number of claws is 2n.

We see, therefore, that

. . Cs _ 2n 1
1(Gﬂ)SzS(Gn)—l_lﬁ—l 15_2_

4 Generalized Dihedral Groups

We now let H, . be a group with presentation {(a,b | a™ = b* = (ba)* = 1).
Here z represents an arbitrary positive integer. For each value of z we get
an infinite family of graphs, one for each integer n satisfying n > z. For
reasons that will become clear later, we will restrict our attention to values
of n satisfying n > 2z. We let G, ; denote the Cayley graphs of H, ; with
respect to the symmetric generating set @ = {a,a™!,b}. In what follows we
will assume that n and = are given, and simply refer to a particular graph
as G.
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Our goal is to derive an upper bound on (G) in terms of n and z. Since
isoperimetric sets can not exceed half the number of vertices, we must first
establish a crude lower bound on the size of G.

Definition 6. Let v € V(G). Then the n-orbit generated by v is the set
N, = {v,av,a%v, ...,a" " 2v,a" 10}

We can define an equivalence relation on V(G) by declaring v,v' to be
equivalent if and only if AV, = N,+. The equivalence classes of this relation
are clearly given by the n-orbits. It follows that the n-orbits partition the
graph G. Further, multiplying a vertex by a or a~! moves you to a different
vertex in the same n-orbit, while multiplying by b moves you to a different
orbit.

Proposition 9. With G defined as above, we have |G| > n®~1.

Proof. Note that the Cayley graph G(H, ) is the unique graph satisfying
the following two properties:

1. Every vertex is of degree three, with one edge for each of the three
generators.

2. Every relation is satisfied at every vertex of G.

We now construct our Cayley graph as follows: We will continue to
add vertices to our graph until we are compelled, by condition two, to
identify two vertices. We begin with n vertices corresponding to N;. We
then multiply each of these vertices by b, and complete each of the n-orbits
arising as a result of this multiplication. Let us refer to these cycles as
second generation n-orbits. We can assume that there are precisely n of
them, as otherwise our graph would exhibit a relation not mandated by our
presentation.

We can now repeat the procedure on each of our n second generation
n-orbits. Each such n-orbit has n — 1 vertices of degree two. We multiply
each of these by b, creating n(n — 1) third generation n-orbits. We can
continue this procedure through = — 1 generations before being forced, by
the relation (ba)* = 1, to identify two of the n-orbits so produced.

The result will be that after z — 1 generations we will have produced

z—-1
[Jtn—i)2n="

i=0

n-orbits. Since each of these n-orbits contains n vertices, we conclude that
|G| > n®~! as claimed. O
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Just as in the last section, we now see what bound we can achieve by
taking clever unions of cycles whose length is the girth of G. We need one
more definition, generalizing the idea of a six-cycle.

Definition 7. Given o vertezv € V(G), we define the 2z-cycle generated
by v to be the set of vertices

O, = {‘U, bv, abu, babv, (ba)zv, ... ,a(ba)"lv},
Proposition 10. Given G as above, we have i(G) < i.:_;f.

Proof. Our assumption that 2z < n implies that the girth of G is 2z.
Construct the following set S C V(G):

S= {Ovy Oav, 002,,, ce »Oa"-‘u}~
Then we have
[S|=2z+(2z-2)(n—2)+2z+4
=2z+(2nz —2n -4+ 4) + 2z - 4
=2nz —2n
=2n(z - 1).
This is easily seen to be less than |G|. To evaluate Cs we observe that
e (0, contributes four claws to Cs.
o O,i,, with 1 <7 < n — 2 contributes two additional claws each.
o (O -1, contributes no claws that have not already been counted.
From this we conclude that

Cs =4+2(n—2)=2n.

Therefore, we have that

C 2n 1 . 1 T-2
Esl.—_-%(z_l)zz_landz(G)gl———:

z-1 z-1
and the proof is complete. a

It would be possible to make small improvements in this bound by
cleverly choosing additional 2z-cycles for our set S. The improvements
gained by doing this are not worth the trouble of refiguring the arithmetic.
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5 Lower Bounds on i(G)

Bounding the isoperimetric number of a graph from above is a relatively
simple matter. One simply chooses an arbitrary set of vertices S of the
appropriate size and evaluates Is(G). Lower bounds are a different matter
entirely. We will briefly consider one interesting example of such a bound
in this section, but we need some definitions first. In the definitions below
we assume that G is a general, vertex-transitive graph. Such graphs are
regular, say of degree k. Of course, the class of vertex-transitive graphs
includes as a subset the set of all Cayley graphs.

Definition 8. Let G be as above. Given two edges e),es € E(G) we say
ey is related to ey if there is an element ¢ € Aut(G) such that ¢(e;) = es.
This defines an equivalence relation on E(G). We will suppose that there
are T equivulence classes, which we will denote by E\, E,, ...E,.

Definition 9. Let G be as above. Then the index of G, denoted by ind(G),
is given by the formula

ind(G) = ir}f lEI:é?I)l

If G is edge-transitive as well as vertex-transitive then there will be only
one equivalence class of edges and it will have size |E(G)|. On the other
hand, it is easy to see that |E;| > &. It follows that 1 < ind(G) < k.

Proposition 11. Let G be as above. Then

: 1 1
4G 2 35 tma@) 2 D%’

where D represents the diameter of G.

A proof of this result can be found in [5].
Determining the index of the Cayley graphs for the generalized dihedral
groups is actually quite simple.

Proposition 12. Let G = (a,b | a™ = b* = (ba)® = 1) be a presentation of
the generalized dihedral group. Then G has two equivalence classes of edges
given by

E) ={(v,av) :v € V(G)} aend E; = {(v,bv) : v € V(G)}.

Further, we have |E,| = §|E(G)| and |E;| = |E(G)].
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Proof. 1t is easy to show that given g € G, the function ¢, : V(G) = V(G)
given by v — gv is a graph automorphism. Let v;,v2 € V(G). Lety &
denote the edge (v,,av;) and let e; denote (vy,bv,). Let e3,eq denote the
edges (vz,avs) and (ve, buz) respectively. Then we find that ¢,, -1 (e1) = e3
and d’uzv{‘ (e2) = e4. This shows that all of the edges in E; are equivalent,
as are all of the elements in E,. It remains to show that no edge of the
form (v,av) is similar to any edge of the form (v, bv).

To do this we note that any edge of the form (v, bv) is contained in pre-
cisely two different 2z-cycles; specifically O, and O,,. By contrast, edges
of the form (v, av) are contained in only one cycle of length 2z; specifically
Oay. We conclude that there is no graph automorphism mapping an ele-
ment of E; to an element of E,. Since E, and E, partition E(G), we see
that we have found all of the equivalence classes.

Finally, observe that every vertex is the endpoint of two edges of the
form (v,av) but is the endpoint of only one edge of the form (v, bv). This
shows that |E}| = %[E(G’)l and |E;| = }|E(G)| and the proof is complete.

]

It follows that ind(G) = 2. So by the inequality of proposition 11, we
have ]

i(G) > 3D

6 Conjectures

The usefulness of the results given above depend partly on the truth or
falsity of the following conjectures. If they are true, then there is hope of
finding formulas for the isoperimetric numbers of an important family of
graphs.

Conjecture 1. The graphs G, . have an isoperimetric set such that every
v €S is part of a cycle in S.

Conjecture 2. The graphs G, have an isoperimetric set such that every
edge with both endpoints in S is contained in a cycle in S.

Conjecture 3. The graphs G, have an isoperimetric set S that can be
constructed as a union of cycles of shortest length.

Conjecture 4. Every isoperimetric set of the graphs G, o is ezpressible as
the union of cycles of shortest length.

These conjectures clearly increase in strength as you go down the list. Prov-
ing conjecture four would imply the other three. Also, all of these conjec-
tures are clearly true for the Cayley graphs associated to D,,. There seems
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to be more results to be discovered here, and I hope that others will be en-
couraged to take up the challenge.
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