Level-Dependent Experimental Optimization

Iliya Bluskov
Department of Mathematics
and Computer Science
University of Northern British Columbia
Prince George, B.C., Canada V2N 4Z9

February 22, 2002

Abstract

In this paper we discuss a self-adjusting and self-improving com-
binatorial optimization algorithm. Variations of this algorithm have
been successfully applied in recent research in Design Theory. The
approach is simple but general and can be applied in any instance of
combinatorial optimization problem.

1 Combinatorial Optimization Problems and
Local Search Algorithms

We start with a discussion on combinatorial optimization problems and the
computational methods that are used for solving them. A combinatorial
optimization problem deals with a set S of combinatorial objects called
solutions. Every solution i € S possesses a number of properties. The
question is to find a solution having an additional property, called opti-
mality. Optimality can be defined by introducing a function ¢ : S = R
from the set of solutions to the real numbers, called the cost function. An
optimal solution is a solution i* € S such that ¢(i*) < ¢(i) for all z € S.
We formally define a combinatorial optimization problem (COP) as
a pair (S, ¢) and the question of finding an optimal solution. The usual ap-
proach to solving a COP is by moving from one solution to another trying
to reduce the value of the cost function until it reaches its global minimum,
thereby producing an optimal solution.

In order to describe a combinatorial optimization algorithm we need
some further definitions. A move is a function d : S(d) — S, where
S(d) C S is the domain of d. Let D be the set of all moves of a COP. We

JCMCC 42 (2002), pp. 139-145

require that the union of the domains of all the moves in D is the solution

set, that is,
U s@=s
deD

(so that for every solution s € S there is at least one d € D so that
d(s) € S). A solution s’ is a neighbor of the solution s, if s’ = d(s) for
some d € D. The neighborhood N(s) of a solution s is the union of all
neighbors of s:

N = dis).

{deD|seS(d)}

Various optimization algorithms have been described in the literature.
The differences amongst these algorithms arise in the way the algorithm
moves from a current solution to another solution in the neighborhood of
the current solution. Some of the widely used algorithms include random
walk, simulated annealing, tabu search, steepest descent algorithm (some-
times called hill climbing), threshold accepting, great deluge algorithm,
record-to-record travel, etc. ([1], [6]), generally referred to as local search
algorithms. Each algorithm of this class can be characterized by the fol-
lowing common features:

1) examines one solution at a time,

2) keeps a single solution in memory, and

3) each time the current solution s is changed to §', it is true that
s' € N(s).

Local search algorithms have been used to study many problems in
constructive combinatorics. Amazingly, objects of quite precise structure
can be found by these methods. The author’s experience include some
successful searches in [2], [3], [4] and [5).

In spite of the success of the known local search algorithms, there are
some natural restrictions on the range of application, as well as some com-
mon problems with the performance of the algorithms, for example:

1) Possibility of getting stuck in a local minimum. This is a feature of
simple algorithms (such as random walk and hill climbing, for example).

2) Necessity of adjusting the (many) parameters of the algorithm in
order to achieve better convergence. This could be a problem with more
complicated algorithms, such as simulated annealing, for example.

In this paper we suggest a general procedure which avoids getting stuck
in a local minimum while being simple enough to require no adjustments,
except in the initial (fast) stage. Needless to say, quite naturally, an algo-
rithm with these qualities considerably extends the possible range of appli-
cations. Below are some observations that led to the creation of the new
efficient algorithm.

140

The best optimization processes allow using sideways (cost-preserving)
moves or even cost-increasing moves to avoid getting stuck in a local min-
imum. Most of the algorithms, however, do not have a good strategy on
when or how often to allow cost-increasing moves. Decisions as to when to
accept a cost-increasing move are usually based on some remotely similar
natural process (simulated annealing, great deluge) or on some prespeci-
fied mathematical function. None of the known algorithms addresses the
specifics of the particular COP.

There are not many reasons why an algorithm based on some natural
process should work well in a particular COP. Good convergence depends
considerably on the specifics of the problem. Hence the best approach to
finding a good convergence algorithm would be to base the algorithm on
experiments performed on the particular solutions of the problem and use
the results of the experiment to measure how often an acceptance of cost-
increasing moves is needed in order to obtain a good convergence.

We next describe the idea of the method in more precise terms.

2 The Idea of a Level-Dependent Experimen-
tal Optimization (LDEO)

We will use the following conventions: Solutions having the same cost will
be referred to as solutions having the same level. Given a solution
B, a good neighbour of B is any solution B' € N(B) with ¢(B') <
¢(B). A cost-decreasing or cost-preserving move will be called a good
move. In this section we give a general idea of the approach. We call it a
level-dependent experimental optimization, because the strategy of moving
from one solution to another is developed through a preliminary experiment
performed on the solutions of the particular COP. The experiment is
usually a rough optimization process that generally cannot find a global
minimum, but can establish the average number of moves needed to find
a good neighbour at any level with the exception of the lowest few levels.
Let C be the set of all possible costs. By studying the data from the
experiment we establish a function f : C = Z¥, where, for every ¢ € C,
f(c) is an approximation to the average number of moves needed to find a
good neighbour at level c. The experiment produces values of f for all but
the few lowest costs. We extend the function to the lowest costs using the
results of the experiment. We call this function the jump-down function.

The following scheme can be used to extend the jump-down function
to the lowest level. Suppose the COP has n possible levels and let c; be
the cost at level i, ¢ = 1,2,...,n. Let a; = f(c;). Suppose that the lowest
level reached by the experiment is the (k — 1)th, so we have the values
Gn,@n_1,..-,ar Of the jump-down function. A possible extension of the

141

jump-down function can be defined by

8n-1 +an-2 + ...+ Br—i
ag—1-i = [n—F—1i

Seol Zhoitl ak_,] , 1=0,1,....k—2.

Let B be a particular solution of our COP. Let g(B,c(B)) denote the
number of good neighbours of B. Clearly, 0 < g(B,c¢(B)) < |N(B)|. The

probability of choosing a good move is %ﬁ—f}g-?ln. Hence testing [ﬁ%%%%{l
randomly chosen neighbours of B provides a fair chance of finding a good

neighbour. Now, let S, C S be the set of all solutions of cost ¢. Then

B,c(B
2. Bes. |N_(cB—|n)

ISe|

is the average probability of finding a good nelghbour at the level c. We
denote this probability by p.. Testing at most - neighbours of B before
accepting a cost-increasing solution ylelds fairly good convergence of the
optimization process. Testing less than p— neighbours makes it difficult
to get to lower levels and increases the chance that the process will never
converge. A process that uses more than - moves will reach lower levels,
but it will be slower with greater chance of gettmg stuck in a local minimum,
that is, again, there will be a possibility that the process will never converge.

We will further assume that we have established a jump-down function,
that is, we know an approximation f(c) to ;Tlc' for every c € C.

3 The Algorithm

A description of an optimization algorithm starts by defining a cost function
and a move. It then continues with specifying a sequence of operations that
would eventually produce an optimal solution.

Assuming that a cost function and a move have been defined and a
jump-down function is known, a description of the optimization process is
given by the following,.

1. Start with any solution B. Set counter := 0.
2. If [counter < f(c(B)) and ¢(B) > 0] then

(a) Perform a single move d to obtain a new solution B' = d(B) €
N(B). Set counter := counter + 1.

(b) If ¢(B') < ¢(B) then set B := B’, set counter := 0 and go to 2.
Otherwise, go to (a).

142

3. If [counter > f(c(B)) and ¢(B) > 0] then set B := B', set counter :=
0 and go to 2). (Accept a cost-increasing solution and continue the
process.)

4. Stop. (c(B) =0, that is, a global minimum has been found.)

In other words: Try at most f(c(B)) neighbours of B in order to find a
good one. If a good neighbour is found, accept it and continue the process.
If no good neighbour is found after f(c(B)) moves, then accept a cost-
increasing solution and continue the process.

Here we assume without loss of generality that the minimum cost is
0. Note that we can impose different stop criterion: For example, we can
search for non-optimal solution.

4 Establishing of an Initial Jump-Down Func-
tion: The Preliminary Experiment

We can now take a closer look on the preliminary experiment. We use
the same algorithm as above except that the stop criterion is not at a
global minimum, but at some easily reachable low level and the jump-down
function is more or less arbitrarily defined. In fact, the entire process of
adjusting the jump-down function can also be programmed. One can take
the initial jump-down function to be some general exponential function of
the cost. For example, in the searches for designs in [2], we start with an
initial jump-down function

e = | Seh |

for ¢(B) > 2. (The neibourhood in these applications has a constant size.)

Suppose the algorithm has entered a certain level L and has already
accepted d — 1 cost-preserving solutions before finding a cost-decreasing
solution (the dth one). Let p;, i = 1,2,...,d, be the number of moves made
after accepting the (i — 1)th, but before accepting the ith good neighbour.
The sum p; + p; + ... + pg gives the number of moves tried in order to find
a cost-decreasing solution. Hence an approximation to the average number
of moves needed to find a good solution at the level L is

pL+p2+ ... +pa—1+ (P1 +p2+ ... +pa)
P .

Suppose the algorithm has visited n times the level L during a single run.
This allow us to determine a better jump-down function. Define s; =
2p1 + 2p2 + ... + 2p4; -1 + p4;, § = 1,2,...,n, where d; is defined as the d

143

above, but corresponds to the jth visit to level L. An approximation to
the average number of moves needed to find a good solution at the level L
would then be n

E j=1 Sj

E;:l d] .

A jump-down function takes on the values which are the approximations
for all visited levels during a single run of the algorithm. Once a jump-
down function is accepted according to the experiment (the first run), then
a new run of the algorithm can be used to possibly both “jump-down”
to lower levels and determine more precise jump-down function, using the
accumulated data from the two runs. Seemingly, the entire procedure can
be programmed into one self-improving optimization process, where the
jump-down function is periodically updated (based on the accumulated
data of all runs). The self-improvability concerns the fact that the jump-
down function improves with any new run (more and more data have been
examined). We should mention that for the application discussed in [2]
only two or three adjustments (runs) were needed for a good convergence
state.

5 Conclusion

In this article we discussed a new optimization method, LDEQ. The method
can be applied in any COP, especially for problems where we are only in-
terested in finding a global minimum. Based on the author’s experience,
LDEO outperforms the existing methods in both convergence and running
time. The justification of the good performance of LDEO comes from the
fact that it uses a self-adjusting and problem-dependent jump-down func-
tion instead of prespecified jump-down function as in the known algorithms.

Acknowledgments
This research was partially supported by NSERC grant 228274-00.

References

[1] E. H. L. AARTs AND J. K. LENSTRA, Introduction, in Local Search
in Combinatorial Optimization, pages 1-17, John Wiley and Sons Ltd.,
1997.

[2] R.J.R. ABEL, I. BLuskov AND M. GREIG, Balanced Incomplete
Block Designs with Block Size 8, Journal of Combinatorial Designs
9(2001), 233-268.

144

(3] I. BLuskov, Optimization Algorithms and Cyclic Designs, Journal of
Geometry, 67(2000), 42-49.

(4] 1. BLuskov AND HEIKKI HAMALAINEN, New Upper Bounds on the
Minimum Size of Covering Designs, Journal of Combinatorial Designs,
vol.6, No.1 (1998), 21-41.

[5] I. BLUSKOV AND S. MAGLIVERAS, On the Number of Mutually Dis-
joint Cyclic Designs and Large Sets of Designs, Journal of Statistical
Planning and Inference, 95(2001), 133-142.

[6] K. J. NURMELA, Constructing Combinatorial Designs by Local
Search, Research Report A27 , Digital Systems Laboratory, Helsinki
University of Technology, 1993.

145

